Effects of Tillage Methods on Carbon and Nitrogen Sequestration and Soil Microbial Stoichiometric Equilibrium in a Black Soil Farmland with Full Return of Straw to the Field
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Soil Sampling and Physicochemical Analysis
2.4. Data Analysis
3. Results
3.1. Effect of Tillage Methods on the Physical Parameters of Soils
3.2. Effect of Tillage Methods on Soil Organic Carbon, Total Nitrogen Content and Carbon to Nitrogen Ratio
3.3. Effect of Tillage Methods on Soil Microbial Biomass Carbon, Microbial Biomass Nitrogen and Microbial Biomass Carbon to Nitrogen Ratio
3.4. Effect of Tillage Methods on Soil Microbial Quotient
3.5. Effect of Tillage Methods on Soil Microbial Stoichiometric Imbalances
3.6. Effect of Tillage Methods on Maize Yield Under Successive Years of Straw Return
3.7. Structural Equation Modeling of the Effect of Tillage Methods on the Structure, Fertility, Microbiology, Nutrient Sequestration, Soil Quality and Yield Characteristics of Black Soils
4. Discussion
4.1. Influence of Tillage Methods on Soil Physical Properties Under Long-Term Straw Tillage
4.2. Influence of Tillage Methods on Soil Microbial Biomass Under Long-Term Straw Reclamation
4.3. Effects of Straw Return on Soil Microbial Quotient and Soil Microbial Stoichiometry
4.4. Effect of Straw Return on Maize Yield in Black Soil Farmland
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Reference Base for Soil Resources. Available online: https://www.isric.org/explore/wrb (accessed on 19 June 2025).
- National Bureau of Statistics of the People’s Republic of China. China Statistics Yearbook; China Statistics Press: Beijing, China, 2021.
- Gu, Z.; Xie, Y.; Gao, Y.; Ren, X.; Cheng, C.; Wang, S. Quantitative assessment of soil productivity and predicted impacts of water erosion in the black soil region of northeastern China. Sci. Total Environ. 2018, 637–638, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Cong, P.; Wang, J.; Li, Y.; Liu, N.; Dong, J.; Pang, H.; Zhang, L.; Gao, Z. Changes in soil organic carbon and microbial community under varying straw incorporation strategies. Soil Tillage Res. 2020, 204, 104735. [Google Scholar] [CrossRef]
- Fan, W.; Wu, J.; Ahmed, S.; Hu, J.; Chen, X.; Li, X.; Zhu, W.; Opoku-Kwanowaa, Y. Short-term effects of different straw returning methods on the soil physicochemical properties and quality index in dryland farming in NE China. Sustainability 2020, 12, 2631. [Google Scholar] [CrossRef]
- Ma, S.; Kan, Z.; Qi, J.; Zhang, H. Effects of straw return mode on soil aggregates and associated carbon in the north China plain. Agronomy 2020, 10, 61. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, R.; Xue, J.-F.; Pu, C.; Zhang, X.-Q.; Liu, S.-L.; Chen, F.; Lal, R.; Zhang, H.-L. Management-induced changes to soil organic carbon in China: A meta-analysis. Adv. Agron. 2015, 134, 1–50. [Google Scholar]
- Liu, C.; Si, B.; Zhao, Y.; Wu, Z.; Lu, X.; Chen, X.; Han, X.; Zhu, Y.; Zou, W. Drivers of soil quality and maize yield under long-term tillage and straw incorporation in Mollisols. Soil Tillage Res. 2025, 246, 106360. [Google Scholar] [CrossRef]
- Liu, H.; Su, B.; Liu, R.; Wang, J.; Wang, T.; Lian, Y.; Lu, Z.; Yuan, X.; Song, Z.; Li, R. Conservation Tillage Mitigates Soil Organic Carbon Losses While Maintaining Maize Yield Stability Under Future Climate Change Scenarios in Northeast China: A Simulation of the Agricultural Production Systems Simulator Model. Agronomy 2024, 15, 1. [Google Scholar] [CrossRef]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland maizes: A meta-analysis. Glob. Change Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, Z.; Zhou, J.; Xu, X.; Zhu, Y. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize–wheat rotation on China’s Loess Plateau. Sci. Total Environ. 2021, 775, 145930. [Google Scholar] [CrossRef]
- Soong, J.L.; Fuchslueger, L.; Marañon-Jimenez, S.; Torn, M.S.; Janssens, I.A.; Penuelas, J.; Richter, A. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob. Change Biol. 2020, 26, 1953–1961. [Google Scholar] [CrossRef]
- Liu, Q.; Atere, C.T.; Zhu, Z.; Shahbaz, M.; Wei, X.; Pausch, J.; Wu, J.; Ge, T. Vertical and horizontal shifts in the microbial community structure of paddy soil under long-term fertilization regimes. Appl. Soil Ecol. 2022, 169, 104248. [Google Scholar] [CrossRef]
- Chu, J.; Wang, L.; Jia, R.; Zhou, J.; Zang, H.; Wang, J.; Yang, Y.; Jiang, Y.; Wang, Y.; Peixoto, L.; et al. Straw Returning With No-Tillage Alleviates Microbial Metabolic Carbon Limitation and Improves Soil Multifunctionality in the Northeast Plain. Land Degrad. Dev. 2024, 35, 5149–5161. [Google Scholar] [CrossRef]
- Liu, Q.; Dai, H.; Wang, L.; Qian, X.; Gao, Y.; Zhang, H.; Liu, K.; Li, Z.; Zamanian, K. Microbial Community and Functions Depending on Tillage and Straw Returning Management: Consequences for Soil Health and Ecosystem Services. Land Degrad. Dev. 2024, 35, 5357–5366. [Google Scholar] [CrossRef]
- Gao, D.; Shi, W.; Wang, H.; Liu, Z.; Jiang, Q.; Lv, W.; Wang, S.; Zhang, Y.-L.; Zhao, C.; Hagedorn, F. Contrasting global patterns of soil microbial quotients of carbon, nitrogen, and phosphorus in terrestrial ecosystems. Catena 2024, 243, 108145. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, H. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China. Sci. World J. 2014, 2014, 487961. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Wang, C.K. Changes of the relationships between soil and microbes in carbon, nitrogen and phosphorus stoichiometry during ecosystem succession. Chin. J. Plant Ecol. 2016, 40, 1257–1266. [Google Scholar]
- Mooshammer, M.; Wanek, W.; Boltenstern, Z.S.; Richter, A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Front. Microbiol. 2014, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Carter, T.L.; Schaecher, C.; Monteith, S.; Ferguson, R. Using combustion analysis to simultaneously measure soil organic and inorganic carbon. Geoderma 2024, 451, 117066. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Lin, X.G. Principles and Methods of Soil Microbiology Research; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory methods of soil and plant analysis: A working manual second edition. Sacred Afr. Nairobi 2002, 21, 25–26. [Google Scholar]
- Xu, J.; Song, F.; Wang, Z.; Qi, Z.; Liu, M.; Guan, S.; Sun, J.; Li, S.; Zhao, J. Effects of Different Straw Return Methods on the Soil Structure, Organic Carbon Content and Maize Yield of Black Soil Farmland. Agronomy 2024, 14, 2011. [Google Scholar] [CrossRef]
- Wang, J.; Sun, C.; Zhang, Y.; Xiao, J.; Ma, Y.; Jiang, J.; Jiang, Z.; Zhang, L. Straw return rearranges soil pore structure improving soil moisture memory in a maize field experiment under rainfed conditions. Agric. Water Manag. 2024, 306, 109164. [Google Scholar] [CrossRef]
- Abdollahi, L.; Schjønning, P.; Elmholt, S.; Munkholm, L. The effects of organic matter application and intensive tillage and traffic on soil structure formation and stability. Soil Tillage Res. 2014, 136, 28–37. [Google Scholar] [CrossRef]
- Cui, J.; Holden, N.M. The relationship between soil microbial activity and microbial biomass, soil structure and grassland management. Soil Tillage Res. 2015, 146, 32–38. [Google Scholar] [CrossRef]
- Jha, P.; Hati, K.M.; Dalal, R.C.; Dang, Y.P.; Kopittke, P.M.; Menzies, N.W. Soil carbon and nitrogen dynamics in a Vertisol following 50 years of no-tillage, maize stubble retention and nitrogen fertilization. Geoderma 2020, 358, 113996. [Google Scholar] [CrossRef]
- Besen, M.R.; Ribeiro, R.H.; Bratti, F.; Locatelli, J.L.; Schmitt, D.E.; Piva, J.T. Cover cropping associated with no-tillage system promotes soil carbon sequestration and increases crop yield in Southern Brazil. Soil Tillage Res. 2024, 242, 106162. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, X.; Wang, H.; Wei, W.; Zhou, J. Long-term straw return influenced ammonium ion retention at the soil aggregate scale in an Anthrosol with rice-wheat rotations in China. J. Integr. Agric. 2022, 21, 521–531. [Google Scholar] [CrossRef]
- Yang, Y.; Long, Y.; Li, S.; Liu, X. Straw Return Decomposition Characteristics and Effects on Soil Nutrients and Maize Yield. Agriculture 2023, 13, 1570. [Google Scholar] [CrossRef]
- Button, E.S.; Pett-Ridge, J.; Murphy, D.V.; Kuzyakov, Y.; Chadwick, D.R.; Jones, D.L. Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biol. Biochem. 2022, 170, 108697. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, Y.; He, H.; Zhu, T.; Chen, X.; Zhang, X.; Liang, C.; Xie, H.; Zhang, J.; Müller, C.; et al. Effects of long-term no-tillage and maize straw mulching on gross nitrogen transformations in Mollisols of Northeast China. Geoderma 2022, 428, 116194. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Thierfelder, C.; White, R.P.; Jat, M.L. Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agric. Ecosyst. Environ. 2016, 220, 164–174. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.H.E.; Wan, S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Change Biol. 2009, 15, 184–195. [Google Scholar] [CrossRef]
- Prommer, J.; Walker, T.W.N.; Wanek, W.; Braun, J.; Zezula, D.; Hu, Y.; Hofhansl, F.; Richter, A. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Chang. Biol. 2020, 26, 669–681. [Google Scholar] [CrossRef]
- Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Handa, I.T.; Aerts, R.; Berendse, F. Consequences of biodiversity loss for litter decomposition across biomes. Nature 2014, 509, 218–221. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Y.; Liang, C.; Luo, Y.; Xu, Q.; Han, C.; Zhao, Q.; Sun, B. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome 2019, 7, 77. [Google Scholar] [CrossRef]
- Singh, J.S.; Gupta, V.K. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Sci. Total Environ. 2018, 634, 497–500. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Zhao, B.; Yan, P.; Zhou, G.; Xin, X. Effects of straw amendment and moisture on microbial communities in Chinese fluvo-aquic soil. J. Soils Sediments 2014, 14, 1829–1840. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Shen, J.; Liu, S.; Wang, C.; Chen, D.; Huang, T.; Zhang, J. Soil microbial C: N ratio is a robust indicator of soil productivity for paddy fields. Sci. Rep. 2016, 6, 35266. [Google Scholar] [CrossRef] [PubMed]
- Waring, B.G.; Weintraub, S.R.; Sinsabaugh, R.L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 2014, 117, 101–113. [Google Scholar] [CrossRef]
- Jia, G.; Cao, J.; Wang, C. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China. For. Ecol. Manag. 2005, 217, 117–125. [Google Scholar] [CrossRef]
- Bradford, M.A.; Wood, S.A.; Bardgett, R.D.; Black, H.I.J.; Bonkowski, M.; Eggers, T.; Grayston, S.J.; Kandeler, E.; Manning, P.; Setälä, H.; et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl. Acad. Sci. USA 2014, 111, 14478–14483. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Chen, L.; Li, Y.; Wang, Q.; Zhang, C.; Ma, D.; Li, J.; Zhang, J. N, P and straw return influence the accrual of organic carbon fractions and microbial traits in a Mollisol. Geoderma 2021, 403, 115373. [Google Scholar] [CrossRef]
- Song, J.H.; Huang, J.Y.; Guo, X.Y.; Song, J.J.; Huang, Y.M.; Wang, C.Y.; Feng, Y.Z.; Ren, G.X.; Wang, X. Influence of Straw Return and Fertilizer Matching on Microbial Quantity and Stoichiometric Characteristics and Microbial Entropy of Winter Wheat Soils. Environ. Sci. 2025, 46, 3957–3964. (In Chinese) [Google Scholar]
- Waring, B.G.; Averill, C.; Hawkes, C.V.; Holyoak, M. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: Insights from meta-analysis and theoretical models. Ecol. Lett. 2013, 16, 887–894. [Google Scholar] [CrossRef]
- Zhou, J.; Xue, K.; Xie, J.; Deng, Y.; Wu, L.; Cheng, X.; Fei, S.; Deng, S.; He, Z.; Nostrand, V.; et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change 2012, 2, 2, 106–110. [Google Scholar] [CrossRef]
- De Vries, F.T.; Hoffland, E.; van Eekeren, N.; Brussaard, L.; Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 2006, 38, 2092–2103. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G.A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef]
- Trivedi, P.; Delgado, B.; Anderson, I.; Singh, B. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front. Plant Sci. 2016, 7, 990. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, N.; Ge, T.; Kuzyakov, Y.; Wang, Z.; Li, Z.; Tang, Z.; Chen, Y.; Wu, C.; Lou, Y. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Appl. Soil Ecol. 2017, 111, 65–72. [Google Scholar] [CrossRef]
- Anderson, T.H.; Domsch, K.H. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 1989, 21, 471–479. [Google Scholar] [CrossRef]
- Sparling, G.P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Res. 1992, 30, 195–207. [Google Scholar] [CrossRef]
- Xu, X.; Schimel, J.P.; Thornton, P.E.; Song, X.; Yuan, F.; Goswami, S.; Bardgett, R. Substrate and environmental controls on microbial assimilation of soil organic carbon: A framework for Earth system models. Ecol. Lett. 2014, 17, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar]
- Yan, Y.; Wang, C.; Zhang, J.; Sun, Y.; Xu, X.; Zhu, N.; Cai, Y.; Xu, D.; Wang, X.; Xin, X.; et al. Response of soil microbial biomass C, N, and P and microbial quotient to agriculture and agricultural abandonment in a meadow steppe of northeast China. Soil Tillage Res. 2022, 223, 105475. [Google Scholar] [CrossRef]
- Chi, Y.; Song, S.; Xiong, K.; Albasher, G.; Fang, J. Responses of soil microbial biomass, microbial entropy and soil-microorganism stoichiometry imbalance to different utilization patterns in the artificial grassland of karst desertification area. Front. Microbiol. 2023, 14, 1293353. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Li, X.; Tian, X.; Zhao, A.; Wang, S.; Wang, S.; Shi, J. Effect of straw management on carbon sequestration and grain production in a maize–wheat cropping system in Anthrosol of the Guanzhong Plain. Soil Tillage Res. 2016, 157, 43–51. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-tillage. Soil Tillage Res. 2007, 95, 240–254. [Google Scholar] [CrossRef]
- West, O.; Post, M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, G.; Liu, Y.; Du, Z.; Du, K.; Wu, Y.; Ma, S.; Jiang, Z. Effects of long-term modified conservation tillage on carbon sequestration, microbial communities, and crop productivity in northeastern Chinese Mollisols. Pedosphere, 2025; in press. [Google Scholar]
- Wang, S.C.; Zhao, Y.W.; Wang, J.Z.; Zhu, P.; Cui, X.; Han, X.Z.; Xu, M.G.; Lu, C.A. The efficiency of long-term straw return to sequester organic carbon in Northeast China’s cropland. J. Integr. Agric. 2017, 17, 436–448. [Google Scholar] [CrossRef]
- Xu, J.; Han, H.; Ning, T.; Li, Z.; Lal, R. Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system. Field Crops Res. 2019, 233, 33–40. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
Soil Initial Properties | Soil Depth (cm) | |||
---|---|---|---|---|
0–10 cm | 10–20 cm | 20–40 cm | 40–60 cm | |
SBD (g cm−3) | 1.40 | 1.42 | 1.42 | 1.44 |
SOC (g kg−1) | 19.25 | 17.37 | 13.15 | 13.28 |
TN (g kg−1) | 1.95 | 1.92 | 1.43 | 0.74 |
AP (mg kg−1) | 47.9 | 22.3 | 7.7 | 10.4 |
AK (mg kg−1) | 62.7 | 41.3 | 38.7 | 32.2 |
pH (H2O) | 7.97 | 8.05 | 8.10 | 8.29 |
Tillage Methods | Field-Specific Implementation Plan |
---|---|
Deep tillage with straw to the field (DTS) | After the maize harvest, all the stalks are crushed and returned to the field, the soil is deeply tilled (tillage depth 30–35 cm), the soil is re-harrowed in the spring of the following year, and then maize is sown. |
Deep harrow with straw return to the field (DHS) | After the maize harvest, all the stalks are crushed and returned to the field, and then the soil is re-harrowed 2 times (re-harrowing depth of 10–15 cm) in the spring of the following year, and then the maize is sown. |
Rotary tillage with straw return to the field (RTS) | After the maize harvest, all the stalks are crushed and returned to the field, and then the soil is harrowed twice by rotary plowing (rotary plowing depth of 10–15 cm), and the soil is re-harrowed in the spring of the following year, and then the maize is sown. |
No tillage with straw return to the field (NTS) | After the maize harvest, all the stalks are crushed and evenly covered on the surface to be returned to the field; no-till seeders are used directly in the spring of the following year to complete sowing, fertilization and compaction. |
Conventional tillage with straw removal (CT) | After the maize harvest, all the stalks are removed, the soil is shallowly turned (tillage depth 15–20 cm), the soil is re-harrowed in the spring of the following year, and then the maize is sown. |
Years | Tillage Methods (kg·ha−1) | |||
---|---|---|---|---|
DTS | DHS | RTS | NTS | |
2018 | 9586.72 | 10,608.88 | 9827.75 | 9912.26 |
2019 | 10,789.76 | 10,661.04 | 9581.05 | 9517.37 |
2020 | 12,093.05 | 12,355.01 | 12,116.59 | 9940.43 |
2021 | 13,599.92 | 11,222.91 | 12,134.26 | 10,247.58 |
2022 | 13,705.69 | 12,913.53 | 12,851.99 | 10,521.00 |
2023 | 13,365.80 | 12,306.31 | 11,490.42 | 11,152.77 |
Index | Depth (cm) | Tillage Methods | ||||
---|---|---|---|---|---|---|
DTS | DHS | RTS | NTS | CT | ||
Soil bulk density (g·cm−3) | 0–10 cm | 1.09 ± 0.02 c | 1.16 ± 0.01 b | 1.10 ± 0.01 c | 1.21 ± 0.02 a | 1.19 ± 0.01 a |
10–20 cm | 1.21 ± 0.01 c | 1.28 ± 0.01 b | 1.29 ± 0.01 b | 1.37 ± 0.02 a | 1.28 ± 0.03 b | |
20–40 cm | 1.26 ± 0.02 d | 1.31 ± 0.02 c | 1.35 ± 0.03 b | 1.40 ± 0.01 a | 1.37 ± 0.02 ab | |
40–60 cm | 1.30 ± 0.02 c | 1.34 ± 0.02 c | 1.32 ± 0.02 c | 1.42 ± 0.02 a | 1.38 ± 0.02 b | |
Soil porosity (%) | 0–10 cm | 58.89 ± 1.03 a | 55.01 ± 0.55 bc | 56.21 ± 0.83 b | 50.81 ± 0.78 d | 52.88 ± 0.80 c |
10–20 cm | 55.91 ± 0.51 a | 50.77 ± 0.76 bc | 50.95 ± 0.64 b | 47.01 ± 0.83 d | 48.91 ± 0.75 c | |
20–40 cm | 52.11 ± 0.90 a | 47.55 ± 0.54 b | 48.00 ± 0.72 b | 45.77 ± 0.21 c | 47.22 ± 0.68 b | |
40–60 cm | 50.58 ± 0.52 a | 44.63 ± 0.63 b | 45.66 ± 1.03 b | 45.01 ± 0.95 b | 44.45 ± 1.03 b |
Index | Depth (cm) | Tillage Methods | ||||
---|---|---|---|---|---|---|
DTS | DHS | RTS | NTS | CT | ||
Soil microbial quotient MBC/SOC (%) | 0–10 cm | 1.20 ± 0.05 a | 1.08 ± 0.01 b | 1.11 ± 0.02 b | 1.08 ± 0.04 b | 0.93 ± 0.01 c |
10–20 cm | 1.52 ± 0.03 a | 1.29 ± 0.02 b | 1.46 ± 0.06 a | 1.48 ± 0.05 a | 1.23 ± 0.04 b | |
20–40 cm | 1.42 ± 0.05 ab | 1.25 ± 0.05 c | 1.36 ± 0.02 b | 1.47 ± 0.03 a | 1.06 ± 0.03 d | |
40–60 cm | 1.26 ± 0.02 a | 1.11 ± 0.03 c | 1.09 ± 0.03 b | 1.11 ± 0.02 b | 0.93 ± 0.02 d | |
Soil microbial quotient MBN/TN (%) | 0–10 cm | 1.51 ± 0.03 a | 1.44 ± 0.07 b | 1.40 ± 0.04 bc | 1.35 ± 0.04 c | 1.23 ± 0.03 d |
10–20 cm | 1.84 ± 0.01 a | 1.81 ± 0.06 ab | 1.84 ± 0.05 a | 1.85 ± 0.06 a | 1.71 ± 0.07 b | |
20–40 cm | 2.08 ± 0.06 a | 1.81 ± 0.02 c | 1.91 ± 0.08 bc | 1.99 ± 0.02 b | 1.74 ± 0.06 d | |
40–60 cm | 2.34 ± 0.04 a | 2.14 ± 0.05 b | 2.15 ± 0.10 b | 2.10 ± 0.05 c | 1.90 ± 0.06 d |
Years | Tillage Methods (kg·ha−1) | ||||
---|---|---|---|---|---|
DTS | DHS | RTS | NTS | CT | |
2018 | 7514.79 ± 52.79 c | 8440.47 ± 120.05 a | 7115.04 ± 95.07 d | 7921.03 ± 62.48 b | 7998.76 ± 13.68 b |
2019 | 8952.35 ± 107.06 a | 9169.41 ± 192.15 a | 8329.82 ± 118.88 b | 7836.04 ± 92.43 c | 7885.40 ± 103.30 c |
2020 | 9843.05 ± 207.67 a | 9561.35 ± 176.22 b | 9719.92 ± 157.71 ab | 8245.16 ± 63.35 c | 8102.96 ± 50.26 c |
2021 | 10,477.06 ± 254.58 a | 9117.25 ± 318.43 c | 9784.26 ± 154.46 b | 8779.49 ± 314.44 cd | 8348.90 ± 49.16 d |
2022 | 10,301.51 ± 182.39 a | 9261.72 ± 292.12 b | 9594.61 ± 287.04 b | 9240.28 ± 293.81 b | 8552.92 ± 115.10 c |
2023 | 10,469.52 ± 385.82 a | 9469.56 ± 456.28 b | 9613.56 ± 179.48 b | 9622.30 ± 173.35 b | 8679.86 ± 126.51 c |
2024 | 10,635.75 ± 90.68 a | 9756.71 ± 143.73 b | 10,099.87 ± 240.96 b | 10,087.91 ± 436.02 b | 8630.14 ± 49.91 c |
Average | 9742.00 ± 1094.35 | 9253.78 ± 460.44 | 9179.58 ± 1025.62 | 8818.89 ± 850.07 | 8314.14 ± 312.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, M.; Wang, Z.; Zhang, X.; Lu, Z.; Bai, L.; Cheng, Z.; Wang, T.; Zhang, Y.; Liang, H.; Meng, T.; et al. Effects of Tillage Methods on Carbon and Nitrogen Sequestration and Soil Microbial Stoichiometric Equilibrium in a Black Soil Farmland with Full Return of Straw to the Field. Agronomy 2025, 15, 1664. https://doi.org/10.3390/agronomy15071664
Rong M, Wang Z, Zhang X, Lu Z, Bai L, Cheng Z, Wang T, Zhang Y, Liang H, Meng T, et al. Effects of Tillage Methods on Carbon and Nitrogen Sequestration and Soil Microbial Stoichiometric Equilibrium in a Black Soil Farmland with Full Return of Straw to the Field. Agronomy. 2025; 15(7):1664. https://doi.org/10.3390/agronomy15071664
Chicago/Turabian StyleRong, Meiren, Zhigang Wang, Xiangqian Zhang, Zhanyuan Lu, Lanfang Bai, Zhipeng Cheng, Tianhao Wang, Yajing Zhang, Hongwei Liang, Tiantian Meng, and et al. 2025. "Effects of Tillage Methods on Carbon and Nitrogen Sequestration and Soil Microbial Stoichiometric Equilibrium in a Black Soil Farmland with Full Return of Straw to the Field" Agronomy 15, no. 7: 1664. https://doi.org/10.3390/agronomy15071664
APA StyleRong, M., Wang, Z., Zhang, X., Lu, Z., Bai, L., Cheng, Z., Wang, T., Zhang, Y., Liang, H., Meng, T., Liu, L., & Luo, F. (2025). Effects of Tillage Methods on Carbon and Nitrogen Sequestration and Soil Microbial Stoichiometric Equilibrium in a Black Soil Farmland with Full Return of Straw to the Field. Agronomy, 15(7), 1664. https://doi.org/10.3390/agronomy15071664