Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,323)

Search Parameters:
Keywords = root mean square error

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2291 KiB  
Article
State of Charge Estimation for Sodium-Ion Batteries Based on LSTM Network and Unscented Kalman Filter
by Xiangang Zuo, Xiaoheng Fu, Xu Han, Meng Sun and Yuqian Fan
Batteries 2025, 11(7), 274; https://doi.org/10.3390/batteries11070274 (registering DOI) - 18 Jul 2025
Abstract
With the increasing application of sodium-ion batteries in energy storage systems, accurate state of charge (SOC) estimation plays a vital role in ensuring both available battery capacity and operational safety. Traditional Kalman-filter-based methods often suffer from limited model expressiveness or oversimplified physical assumptions, [...] Read more.
With the increasing application of sodium-ion batteries in energy storage systems, accurate state of charge (SOC) estimation plays a vital role in ensuring both available battery capacity and operational safety. Traditional Kalman-filter-based methods often suffer from limited model expressiveness or oversimplified physical assumptions, making it difficult to balance accuracy and robustness under complex operating conditions, which may lead to unreliable estimation results. To address these challenges, this paper proposes a hybrid framework that combines an unscented Kalman filter (UKF) with a long short-term memory (LSTM) neural network for SOC estimation. Under various driving conditions, the UKF—based on a second-order equivalent circuit model with online parameter identification—provides physically interpretable estimates, while LSTM effectively captures complex temporal dependencies. Experimental results under CLTC, NEDC, and WLTC cycles demonstrate that the proposed LSTM-UKF approach reduces the mean absolute error (MAE) by an average of 2% and the root mean square error (RMSE) by an average of 3% compared to standalone methods. The proposed framework exhibits excellent adaptability across different scenarios, offering a precise, stable, and robust solution for SOC estimation in sodium-ion batteries. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

21 pages, 8601 KiB  
Article
Impact of Cloud Microphysics Initialization Using Satellite and Radar Data on CMA-MESO Forecasts
by Lijuan Zhu, Yuan Jiang, Jiandong Gong and Dan Wang
Remote Sens. 2025, 17(14), 2507; https://doi.org/10.3390/rs17142507 - 18 Jul 2025
Abstract
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar [...] Read more.
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar reflectivity from the China Meteorological Administration (CMA) to construct cloud microphysical initial fields and evaluate their impact on the CMA-MESO 3 km regional model. An analysis of the catastrophic rainfall event in Henan on 20 July 2021, and a 92-day continuous experiment (May–July 2024) revealed that assimilating cloud microphysical variables significantly improved precipitation forecasting: the equitable threat scores (ETSs) for 1 h forecasts of light, moderate, and heavy rain increased from 0.083, 0.043, and 0.007 to 0.41, 0.36, and 0.217, respectively, with average hourly ETS improvements of 21–71% for 2–6 h forecasts and increases in ETSs for light, moderate, and heavy rain of 7.5%, 9.8%, and 24.9% at 7–12 h, with limited improvement beyond 12 h. Furthermore, the root mean square error (RMSE) of the 2 m temperature forecasts decreased across all 1–72 h lead times, with a 4.2% reduction during the 1–9 h period, while the geopotential height RMSE reductions reached 5.8%, 3.3%, and 2.0% at 24, 48, and 72 h, respectively. Additionally, synchronized enhancements were observed in 10 m wind prediction accuracy. These findings underscore the critical role of cloud microphysical initialization in advancing mesoscale numerical weather prediction systems. Full article
Show Figures

Figure 1

20 pages, 6319 KiB  
Article
Spatiotemporal Deformation Prediction Model for Retaining Structures Integrating ConvGRU and Cross-Attention Mechanism
by Yanyong Gao, Zhaoyun Xiao, Zhiqun Gong, Shanjing Huang and Haojie Zhu
Buildings 2025, 15(14), 2537; https://doi.org/10.3390/buildings15142537 - 18 Jul 2025
Abstract
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep [...] Read more.
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep learning framework, CGCA (Convolutional Gated Recurrent Unit with Cross-Attention), which integrates ConvGRU and cross-attention mechanisms. The model achieves spatio-temporal feature extraction and deformation prediction via an encoder–decoder architecture. Specifically, the convolutional structure captures spatial dependencies between monitoring points, while the recurrent unit extracts time-series characteristics of deformation. A cross-attention mechanism is introduced to dynamically weight the interactions between spatial and temporal data. Additionally, the model incorporates multi-dimensional inputs, including full-depth inclinometer measurements, construction parameters, and tube burial depths. The optimization strategy combines AdamW and Lookahead to enhance training stability and generalization capability in geotechnical engineering scenarios. Case studies of foundation pit engineering demonstrate that the CGCA model exhibits superior performance and robust generalization capabilities. When validated against standard section (CX1) and complex working condition (CX2) datasets involving adjacent bridge structures, the model achieves determination coefficients (R2) of 0.996 and 0.994, respectively. The root mean square error (RMSE) remains below 0.44 mm, while the mean absolute error (MAE) is less than 0.36 mm. Comparative experiments confirm the effectiveness of the proposed model architecture and the optimization strategy. This framework offers an efficient and reliable technical solution for deformation early warning and dynamic decision-making in foundation pit engineering. Full article
(This article belongs to the Special Issue Research on Intelligent Geotechnical Engineering)
Show Figures

Figure 1

28 pages, 7756 KiB  
Article
An Interpretable Machine Learning Framework for Unraveling the Dynamics of Surface Soil Moisture Drivers
by Zahir Nikraftar, Esmaeel Parizi, Mohsen Saber, Mahboubeh Boueshagh, Mortaza Tavakoli, Abazar Esmaeili Mahmoudabadi, Mohammad Hassan Ekradi, Rendani Mbuvha and Seiyed Mossa Hosseini
Remote Sens. 2025, 17(14), 2505; https://doi.org/10.3390/rs17142505 - 18 Jul 2025
Abstract
Understanding the impacts of the spatial non-stationarity of environmental factors on surface soil moisture (SSM) in different seasons is crucial for effective environmental management. Yet, our knowledge of this phenomenon remains limited. This study introduces an interpretable machine learning framework that combines the [...] Read more.
Understanding the impacts of the spatial non-stationarity of environmental factors on surface soil moisture (SSM) in different seasons is crucial for effective environmental management. Yet, our knowledge of this phenomenon remains limited. This study introduces an interpretable machine learning framework that combines the SHapley Additive exPlanations (SHAP) method with two-step clustering to unravel the spatial drivers of SSM across Iran. Due to the limited availability of in situ SSM data, the performance of three global SSM datasets—SMAP, MERRA-2, and CFSv2—from 2015 to 2023 was evaluated using agrometeorological stations. SMAP outperformed the others, showing the highest median correlation and the lowest Root Mean Square Error (RMSE). Using SMAP, we estimated SSM across 609 catchments employing the Random Forest (RF) algorithm. The RF model yielded R2 values of 0.89, 0.83, 0.70, and 0.75 for winter, spring, summer, and autumn, respectively, with corresponding RMSE values of 0.076, 0.081, 0.098, and 0.061 m3/m3. SHAP analysis revealed that climatic factors primarily drive SSM in winter and autumn, while vegetation and soil characteristics are more influential in spring and summer. The clustering results showed that Iran’s catchments can be grouped into five categories based on the SHAP method coefficients, highlighting regional differences in SSM controls. Full article
(This article belongs to the Special Issue Earth Observation Satellites for Soil Moisture Monitoring)
Show Figures

Figure 1

24 pages, 1816 KiB  
Article
Efficient Swell Risk Prediction for Building Design Using a Domain-Guided Machine Learning Model
by Hani S. Alharbi
Buildings 2025, 15(14), 2530; https://doi.org/10.3390/buildings15142530 - 18 Jul 2025
Abstract
Expansive clays damage the foundations, slabs, and utilities of low- and mid-rise buildings, threatening daily operations and incurring billions of dollars in costs globally. This study pioneers a domain-informed machine learning framework, coupled with a collinearity-aware feature selection strategy, to predict soil swell [...] Read more.
Expansive clays damage the foundations, slabs, and utilities of low- and mid-rise buildings, threatening daily operations and incurring billions of dollars in costs globally. This study pioneers a domain-informed machine learning framework, coupled with a collinearity-aware feature selection strategy, to predict soil swell potential solely from routine index properties. Following hard-limit filtering and Unified Soil Classification System (USCS) screening, 291 valid samples were extracted from a public dataset of 395 cases. A random forest benchmark model was developed using five correlated features, and a multicollinearity analysis, as indicated by the variance inflation factor, revealed exact linear dependence among the Atterberg limits. A parsimonious two-variable model, based solely on plasticity index (PI) and clay fraction (C), was retained. On an 80:20 stratified hold-out set, this simplified model reduced root mean square error (RMSE) from 9.0% to 6.8% and maximum residuals from 42% to 16%. Bootstrap analysis confirmed a median RMSE of 7.5% with stable 95% prediction intervals. Shapley Additive Explanations (SHAP) analysis revealed that PI accounted for approximately 75% of the model’s influence, highlighting the critical swell surge beyond PI ≈ 55%. This work introduces a rule-based cleaning pipeline and collinearity-aware feature selection to derive a robust, two-variable model balancing accuracy and interpretability, a lightweight, interpretable tool for foundation design, GIS zoning, and BIM workflows. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

26 pages, 6787 KiB  
Article
Frost Resistance Prediction of Concrete Based on Dynamic Multi-Stage Optimisation Algorithm
by Xuwei Dong, Jiashuo Yuan and Jinpeng Dai
Algorithms 2025, 18(7), 441; https://doi.org/10.3390/a18070441 - 18 Jul 2025
Abstract
Concrete in cold areas is often subjected to a freeze–thaw cycle period, and a harsh environment will seriously damage the structure of concrete and shorten its life. The frost resistance of concrete is primarily evaluated by relative dynamic elastic modulus and mass loss [...] Read more.
Concrete in cold areas is often subjected to a freeze–thaw cycle period, and a harsh environment will seriously damage the structure of concrete and shorten its life. The frost resistance of concrete is primarily evaluated by relative dynamic elastic modulus and mass loss rate. To predict the frost resistance of concrete more accurately, based on the four ensemble learning models of random forest (RF), adaptive boosting (AdaBoost), categorical boosting (CatBoost), and extreme gradient boosting (XGBoost), this paper optimises the ensemble learning models by using a dynamic multi-stage optimisation algorithm (DMSOA). These models are trained using 7090 datasets, which use nine features as input variables; relative dynamic elastic modulus (RDEM) and mass loss rate (MLR) as prediction indices; and six indices of the coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (CC), and standard deviation ratio (SDR) are selected to evaluate the models. The results show that the DMSOA-CatBoost model exhibits the best prediction performance. The R2 of RDEM and MLR are 0.864 and 0.885, respectively, which are 6.40% and 11.15% higher than those of the original CatBoost model. Moreover, the model performs better in error control, with significantly lower MSE, RMSE, and MAE and stronger generalization ability. Additionally, compared with the two mainstream optimisation algorithms (SCA and AOA), DMSOA-CatBoost also has obvious advantages in prediction accuracy and stability. Related work in this paper has a certain significance for improving the durability and quality of concrete, which is conducive to predicting the performance of concrete in cold conditions faster and more accurately to optimise the concrete mix ratio whilst saving on engineering cost. Full article
Show Figures

Figure 1

26 pages, 54898 KiB  
Article
MSWF: A Multi-Modal Remote Sensing Image Matching Method Based on a Side Window Filter with Global Position, Orientation, and Scale Guidance
by Jiaqing Ye, Guorong Yu and Haizhou Bao
Sensors 2025, 25(14), 4472; https://doi.org/10.3390/s25144472 - 18 Jul 2025
Abstract
Multi-modal remote sensing image (MRSI) matching suffers from severe nonlinear radiometric distortions and geometric deformations, and conventional feature-based techniques are generally ineffective. This study proposes a novel and robust MRSI matching method using the side window filter (MSWF). First, a novel side window [...] Read more.
Multi-modal remote sensing image (MRSI) matching suffers from severe nonlinear radiometric distortions and geometric deformations, and conventional feature-based techniques are generally ineffective. This study proposes a novel and robust MRSI matching method using the side window filter (MSWF). First, a novel side window scale space is constructed based on the side window filter (SWF), which can preserve shared image contours and facilitate the extraction of feature points within this newly defined scale space. Second, noise thresholds in phase congruency (PC) computation are adaptively refined with the Weibull distribution; weighted phase features are then exploited to determine the principal orientation of each point, from which a maximum index map (MIM) descriptor is constructed. Third, coarse position, orientation, and scale information obtained through global matching are employed to estimate image-pair geometry, after which descriptors are recalculated for precise correspondence search. MSWF is benchmarked against eight state-of-the-art multi-modal methods—six hand-crafted (PSO-SIFT, LGHD, RIFT, RIFT2, HAPCG, COFSM) and two learning-based (CMM-Net, RedFeat) methods—on three public datasets. Experiments demonstrate that MSWF consistently achieves the highest number of correct matches (NCM) and the highest rate of correct matches (RCM) while delivering the lowest root mean square error (RMSE), confirming its superiority for challenging MRSI registration tasks. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

22 pages, 12507 KiB  
Article
Research on the Friction Prediction Method of Micro-Textured Cemented Carbide–Titanium Alloy Based on the Noise Signal
by Hao Zhang, Xin Tong and Baiyi Wang
Coatings 2025, 15(7), 843; https://doi.org/10.3390/coatings15070843 - 18 Jul 2025
Abstract
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force [...] Read more.
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force for processing quality control. Consequently, investigating the underlying mechanisms that link friction noise and friction is of considerable importance. This study focuses on the friction and wear acoustic signals generated by micro-textured cemented carbide–titanium alloy. A friction testing platform specifically designed for the micro-textured cemented carbide grinding of titanium alloy has been established. Acoustic sensors are employed to capture the acoustic signals, while ultra-depth-of-field microscopy and scanning electron microscopy are utilized for surface analysis. A novel approach utilizing the dung beetle algorithm (DBO) is proposed to optimize the parameters of variational mode decomposition (VMD), which is subsequently combined with wavelet packet threshold denoising (WPT) to enhance the quality of the original signal. Continuous wavelet transform (CWT) is applied for time–frequency analysis, facilitating a discussion on the underlying mechanisms of micro-texture. Additionally, features are extracted from the time domain, frequency domain, wavelet packet, and entropy. The Relief-F algorithm is employed to identify 19 significant features, leading to the development of a hybrid model that integrates Bayesian optimization (BO) and Transformer-LSTM for predicting friction. Experimental results indicate that the model achieves an R2 value of 0.9835, a root mean square error (RMSE) of 0.2271, a mean absolute error (MAE) of 0.1880, and a mean bias error (MBE) of 0.1410 on the test dataset. The predictive performance and stability of this model are markedly superior to those of the BO-LSTM, LSTM–Attention, and CNN–LSTM–Attention models. This research presents a robust methodology for predicting friction in the context of friction and wear of cemented carbide–titanium alloys. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

14 pages, 16969 KiB  
Article
FTT: A Frequency-Aware Texture Matching Transformer for Digital Bathymetry Model Super-Resolution
by Peikun Xiao, Jianping Wu and Yingjie Wang
J. Mar. Sci. Eng. 2025, 13(7), 1365; https://doi.org/10.3390/jmse13071365 - 17 Jul 2025
Abstract
Deep learning has shown significant advantages over traditional spatial interpolation methods in single image super-resolution (SISR). Recently, many studies have applied super-resolution (SR) methods to generate high-resolution (HR) digital bathymetry models (DBMs), but substantial differences between DBM and natural images have been ignored, [...] Read more.
Deep learning has shown significant advantages over traditional spatial interpolation methods in single image super-resolution (SISR). Recently, many studies have applied super-resolution (SR) methods to generate high-resolution (HR) digital bathymetry models (DBMs), but substantial differences between DBM and natural images have been ignored, which leads to serious distortions and inaccuracies. Given the critical role of HR DBM in marine resource exploitation, economic development, and scientific innovation, we propose a frequency-aware texture matching transformer (FTT) for DBM SR, incorporating global terrain feature extraction (GTFE), high-frequency feature extraction (HFFE), and a terrain matching block (TMB). GTFE has the capability to perceive spatial heterogeneity and spatial locations, allowing it to accurately capture large-scale terrain features. HFFE can explicitly extract high-frequency priors beneficial for DBM SR and implicitly refine the representation of high-frequency information in the global terrain feature. TMB improves fidelity of generated HR DBM by generating position offsets to restore warped textures in deep features. Experimental results have demonstrated that the proposed FTT has superior performance in terms of elevation, slope, aspect, and fidelity of generated HR DBM. Notably, the root mean square error (RMSE) of elevation in steep terrain has been reduced by 4.89 m, which is a significant improvement in the accuracy and precision of the reconstruction. This research holds significant implications for improving the accuracy of DBM SR methods and the usefulness of HR bathymetry products for future marine research. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 4652 KiB  
Article
Challenge and Bias Correction for Surface Wind Speed Prediction: A Case Study in Shanxi Province, China
by Zengyuan Guo, Zhuozhuo Lyu and Yunyun Liu
Climate 2025, 13(7), 150; https://doi.org/10.3390/cli13070150 - 17 Jul 2025
Abstract
Accurate prediction of wind speed is critical for wind power generation and bias correction serves as an effective tool to enhance the precision of climate model forecasts. This study evaluates the effectiveness of three bias correction methods—Quantile Regression at the 50th percentile (QR50), [...] Read more.
Accurate prediction of wind speed is critical for wind power generation and bias correction serves as an effective tool to enhance the precision of climate model forecasts. This study evaluates the effectiveness of three bias correction methods—Quantile Regression at the 50th percentile (QR50), Linear Regression (LR), and Optimal Threat Score (OTS)—for improving wind speed predictions at a height of 70 m from the NCEP CFSv2 model in Shanxi Province, China. Using observational data from nine wind towers (2021–2024) and corresponding model hindcasts, we analyze systematic biases across lead times of 1–45 days. Results reveal persistent model errors: overestimation of low wind speeds (<6 m/s) and underestimation of high wind speeds (>6 m/s), with the Root Mean Square Error (RMSE) exceeding 1.5 m/s across all lead times. Among the correction methods, QR50 demonstrates the most robust performance, reducing the mean RMSE by 11% in October 2023 and 10% in February 2024. Correction efficacy improves significantly at longer lead times (>10 days) and under high RMSE conditions. These findings underscore the value of regression-based approaches in complex terrain while emphasizing the need for dynamic adjustments during extreme wind events. Full article
(This article belongs to the Special Issue Wind‑Speed Variability from Tropopause to Surface)
Show Figures

Figure 1

13 pages, 2051 KiB  
Article
Near-Infrared Spectroscopy and Machine Learning for Fast Quality Prediction of Bottle Gourd
by Xiao Guo, Hongyu Huang, Haiyan Wang, Chang Cai, Ying Wang, Xiaohua Wu, Jian Wang, Baogen Wang, Biao Zhu and Yun Xiang
Foods 2025, 14(14), 2503; https://doi.org/10.3390/foods14142503 - 17 Jul 2025
Abstract
Protein and amino acid content are the crucial quality parameters in bottle gourd, and traditional measurement methods for detecting those parameters are complicated, time-consuming, and costly. In this study, we employed NIRS along with machine learning and neural network-based methods to model and [...] Read more.
Protein and amino acid content are the crucial quality parameters in bottle gourd, and traditional measurement methods for detecting those parameters are complicated, time-consuming, and costly. In this study, we employed NIRS along with machine learning and neural network-based methods to model and predict protein and free amino acids (FAAs) of bottle gourd. Specifically, the content of protein and FAAs were measured through conventional methods. Then a near-infrared analyzer was utilized to obtain the spectral data, which were processed using multiple scattering correction (MSC) and standard normalized variate (SNV). The processed spectral data were further processed using feature importance selection to select the feature bands that had the highest correlation with protein and FAAs, respectively. The models for protein and FAAs estimation were developed using support vector regression (SVR), ridge regression (RR), random forest regression (RFR), and fully connected neural networks (FCNNs). Among them, ridge regression achieved the optimal performance, with determination coefficients (R2) of 0.96 and 0.77 on the protein and FAAs test sets, respectively, and root mean square error (RMSE) values of 0.23 and 0.5, respectively. Based on this, we developed a precise and rapid prediction model for the important quality indices of bottle gourd. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

21 pages, 10725 KiB  
Article
A Partitioned Cloth Simulation Filtering Method for Extracting Tree Height of Plantation Forests Using UAV-LiDAR Data in Subtropical Regions of China
by Kaisen Ma, Jing Yi, Hua Sun, Song Chen, Chaokui Li and Ming Gong
Forests 2025, 16(7), 1179; https://doi.org/10.3390/f16071179 - 17 Jul 2025
Abstract
Tree height is a critical indicator for estimating forest stock and can be effectively acquired by UAV-LiDAR. Ground filtering works to classify ground points and non-ground points and can impact the tree height extraction results, while the points classification quality obtained by ordinary [...] Read more.
Tree height is a critical indicator for estimating forest stock and can be effectively acquired by UAV-LiDAR. Ground filtering works to classify ground points and non-ground points and can impact the tree height extraction results, while the points classification quality obtained by ordinary filtering methods is limited in complex forest conditions. A partitioned cloth simulation filtering (PCSF) method based on different vegetation cover was proposed in this study to improve the classification accuracy, and tree heights were extracted to demonstrate the effectiveness of the proposed method. UAV-LiDAR data and field measurements collected from the Lutou experimental forest farm in the southern subtropical forest region of China were used for validation, and the slope-based filtering, progressive triangulated irregular network densification filtering (PTD), moving surface fitting filtering (MSFF), and CSF were adopted for comparisons. The results showed that the proposed method yielded the best ground filtering effect, reducing the filtering total error by 2.12%–4.22% compared with other methods, and the relative root mean squared error (rRMSE) of extracted tree heights was reduced by 1.24%–3.84%, respectively. The proposed method can achieve a satisfactory filtering effect and tree height extraction result, which provides a methodological basis to precisely extract tree heights in large-scale forests. Full article
Show Figures

Figure 1

23 pages, 2859 KiB  
Article
Air Quality Prediction Using Neural Networks with Improved Particle Swarm Optimization
by Juxiang Zhu, Zhaoliang Zhang, Wei Gu, Chen Zhang, Jinghua Xu and Peng Li
Atmosphere 2025, 16(7), 870; https://doi.org/10.3390/atmos16070870 - 17 Jul 2025
Abstract
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight [...] Read more.
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight particle swarm optimization (AWPSO) algorithm with a back propagation neural network (BPNN). First, the random forest (RF) algorithm is used to scree the influencing factors of AQI concentration. Second, the inertia weights and learning factors of the standard PSO are improved to ensure the global search ability exhibited by the algorithm in the early stage and the ability to rapidly obtain the optimal solution in the later stage; we also introduce an adaptive variation algorithm in the particle search process to prevent the particles from being caught in local optima. Finally, the BPNN is optimized using the AWPSO algorithm, and the final values of the optimized particle iterations serve as the connection weights and thresholds of the BPNN. The experimental results show that the RFAWPSO-BP model reduces the root mean square error and mean absolute error by 9.17 μg/m3, 5.7 μg/m3, 2.66 μg/m3; and 9.12 μg/m3, 5.7 μg/m3, 2.68 μg/m3 compared with the BP, PSO-BP, and AWPSO-BP models, respectively; furthermore, the goodness of fit of the proposed model was 14.8%, 6.1%, and 2.3% higher than that of the aforementioned models, respectively, demonstrating good prediction accuracy. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

23 pages, 6348 KiB  
Article
A Framework for Predicting Winter Wheat Yield in Northern China with Triple Cross-Attention and Multi-Source Data Fusion
by Shuyan Pan and Liqun Liu
Plants 2025, 14(14), 2206; https://doi.org/10.3390/plants14142206 - 16 Jul 2025
Viewed by 56
Abstract
To solve the issue that existing yield prediction methods do not fully capture the interaction between multiple factors, we propose a winter wheat yield prediction framework with triple cross-attention for multi-source data fusion. This framework consists of three modules: a multi-source data processing [...] Read more.
To solve the issue that existing yield prediction methods do not fully capture the interaction between multiple factors, we propose a winter wheat yield prediction framework with triple cross-attention for multi-source data fusion. This framework consists of three modules: a multi-source data processing module, a multi-source feature fusion module, and a yield prediction module. The multi-source data processing module collects satellite, climate, and soil data based on the winter wheat planting range, and constructs a multi-source feature sequence set by combining statistical data. The multi-source feature fusion module first extracts deeper-level feature information based on the characteristics of different data, and then performs multi-source feature fusion through a triple cross-attention fusion mechanism. The encoder part in the production prediction module adds a graph attention mechanism, forming a dual branch with the original multi-head self-attention mechanism to ensure the capture of global dependencies while enhancing the preservation of local feature information. The decoder section generates the final predicted output. The results show that: (1) Using 2021 and 2022 as test sets, the mean absolute error of our method is 385.99 kg/hm2, and the root mean squared error is 501.94 kg/hm2, which is lower than other methods. (2) It can be concluded that the jointing-heading stage (March to April) is the most crucial period affecting winter wheat production. (3) It is evident that our model has the ability to predict the final winter wheat yield nearly a month in advance. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

26 pages, 39229 KiB  
Article
Local–Linear Two-Stage Estimation of Local Autoregressive Geographically and Temporally Weighted Regression Model
by Dan Xiang and Zhimin Hong
ISPRS Int. J. Geo-Inf. 2025, 14(7), 276; https://doi.org/10.3390/ijgi14070276 - 16 Jul 2025
Viewed by 48
Abstract
A geographically and temporally weighted regression (GTWR) model is an effective tool for dealing with spatial heterogeneity and temporal non-stationarity simultaneously. As an important characteristic of spatiotemporal data, spatiotemporal autocorrelation should be considered when constructing spatiotemporally varying coefficient models. The proposed local autoregressive [...] Read more.
A geographically and temporally weighted regression (GTWR) model is an effective tool for dealing with spatial heterogeneity and temporal non-stationarity simultaneously. As an important characteristic of spatiotemporal data, spatiotemporal autocorrelation should be considered when constructing spatiotemporally varying coefficient models. The proposed local autoregressive geographically and temporally weighted regression (GTWRLAR) model can simultaneously handle spatiotemporal autocorrelations among response variables and the spatiotemporal heterogeneity of regression relationships. The two-stage weighted least squares (2SLS) estimation can effectively reduce computational complexity. However, the weighted least squares estimation is essentially a Nadaraya–Watson kernel-smoothing approach for nonparametric regression models, and it suffers from a boundary effect. For spatiotemporally varying coefficient models, the three-dimensional spatiotemporal coefficients (longitude, latitude, and time) inherently exhibit larger boundaries than one-dimensional intervals. Therefore, the boundary effect of the 2SLS estimation of GTWRLAR will be more serious. A local–linear geographically and temporally weighted 2SLS (GTWRLAR-L) estimation is proposed to correct the boundary effect in both the spatial and temporal dimensions of GTWRLAR and simultaneously improve parameter estimation accuracy. The simulation experiment shows that the GTWRLAR-L method reduces the root mean square error (RMSE) of parameter estimates compared to the standard GTWRLAR approach. Empirical analyses of carbon emissions in China’s Yellow River Basin (2017–2021) show that GTWRLAR-L enhances the adjusted R2 from 0.888 to 0.893. Full article
Show Figures

Figure 1

Back to TopTop