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Abstract

Expansive clays damage the foundations, slabs, and utilities of low- and mid-rise buildings,
threatening daily operations and incurring billions of dollars in costs globally. This study pi-
oneers a domain-informed machine learning framework, coupled with a collinearity-aware
feature selection strategy, to predict soil swell potential solely from routine index properties.
Following hard-limit filtering and Unified Soil Classification System (USCS) screening,
291 valid samples were extracted from a public dataset of 395 cases. A random forest
benchmark model was developed using five correlated features, and a multicollinearity
analysis, as indicated by the variance inflation factor, revealed exact linear dependence
among the Atterberg limits. A parsimonious two-variable model, based solely on plasticity
index (PI) and clay fraction (C), was retained. On an 80:20 stratified hold-out set, this
simplified model reduced root mean square error (RMSE) from 9.0% to 6.8% and maximum
residuals from 42% to 16%. Bootstrap analysis confirmed a median RMSE of 7.5% with
stable 95% prediction intervals. Shapley Additive Explanations (SHAP) analysis revealed
that PI accounted for approximately 75% of the model’s influence, highlighting the crit-
ical swell surge beyond PI ≈ 55%. This work introduces a rule-based cleaning pipeline
and collinearity-aware feature selection to derive a robust, two-variable model balancing
accuracy and interpretability, a lightweight, interpretable tool for foundation design, GIS
zoning, and BIM workflows.

Keywords: clay content; expansive soils; machine learning; plasticity index; random forest;
SHAP interpretability

1. Introduction
Expansive clays present a significant geotechnical hazard for the built environment

due to their tendency to swell upon wetting and shrink upon drying [1–3]. These volu-
metric changes can lead to substantial ground movement, causing structural distress to
shallow foundations, floor slabs, retaining walls, and underground utilities [4,5]. In regions
characterized by arid and semi-arid climates, where seasonal or event-driven fluctuations
in moisture are typical, expansive soils are a leading cause of differential settlement and
long-term damage to low- and mid-rise buildings [5,6]. The global economic burden from
expansive soil-related damage is estimated in the billions of dollars annually, with repairs
frequently involving underpinning, slab lifting, or complete structural rehabilitation [7,8].

For building engineers, designers, and construction managers, the early identifica-
tion and management of expansive soils is therefore critical [9,10]. Swelling behavior can
compromise not only the initial construction integrity but also the long-term performance,
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safety, and serviceability of buildings [11,12]. Despite the seriousness of this threat, expan-
sive soils are frequently underassessed in early-stage design due to the cost and complexity
of traditional testing methods [11]. Laboratory procedures such as oedometer swell tests or
swell pressure tests are accurate but time-consuming, expensive, and impractical for broad
site coverage or early-phase feasibility studies [1]. These constraints limit their utility in
the fast-paced workflows of modern construction and infrastructure planning.

In light of these limitations, there is growing interest in geotechnical and building engi-
neering research in applying data-driven methods as potential alternatives to conventional
swell assessment techniques [7,13–16]. Among these, ML models have shown promise
in predicting soil swell behavior from basic index properties, such as the plasticity index,
liquid limit, and clay fraction, which are routinely measured in standard geotechnical in-
vestigations [8,17–19]. By learning predictive relationships from historical data, ML models
can reduce the reliance on slow laboratory tests and provide preliminary risk screening at
the planning and design stages [17,18].

However, many existing ML models for swell prediction are hindered by limita-
tions that restrict their practical value in the building domain. Common issues include
small or region-specific datasets, overfitting due to high feature redundancy, and a lack
of transparency in model predictions. In particular, models that use correlated geotech-
nical parameters without accounting for multicollinearity can yield unstable or mislead-
ing outputs [19,20]. Additionally, most models do not provide uncertainty bounds or
insight into the reasoning behind a given prediction, reducing their trustworthiness in
design workflows [21,22].

To make ML a reliable tool for building-related geotechnical prediction, domain
knowledge must be explicitly integrated into the modeling process. A domain-informed ML
approach involves applying geotechnical expertise at every stage, from data preprocessing
and feature selection to model evaluation and interpretation [23,24]. For instance, rather
than using all available index properties indiscriminately, this study emphasizes the role of
plasticity index and clay content, parameters with established links to swelling behavior and
physical soil mechanisms [25,26]. Reducing inputs to the most influential and geotechnically
sound variables improves model stability and interpretability [14,27].

Interpretability is especially important for practical building applications, where de-
sign engineers and construction professionals must understand the rationale behind a risk
assessment. To support this, explainable techniques, including SHAP and partial depen-
dence plots (PDPs), are employed. These tools clarify how each input feature contributes
to a prediction, enabling the model to function as a transparent decision-support system
rather than a black box [28,29]. SHAP values indicate which features, such as high plasticity
or elevated clay fraction, drive the model’s swell predictions, while PDPs visualize these
relationships across a realistic range of soil conditions [18,30]. Comparable progress has
been reported for seismic problems; Pistolesi et al. [31] demonstrated that an explainable AI
model can predict failure mechanisms and critical seismic acceleration of flexible retaining
walls in milliseconds while still providing SHAP-based insights.

This study also emphasizes the importance of predictive uncertainty. Using bootstrap
resampling techniques, confidence intervals for model outputs are constructed, allow-
ing building professionals to evaluate not only the predicted swell value but also the
degree of confidence in that prediction [32]. This is critical for risk-aware building design,
zoning decisions, and foundation planning, particularly in environments with variable
subsurface conditions.

This work presents a lightweight, domain-informed random forest model for pre-
dicting the swell potential of expansive soils using routine geotechnical index data. The
model is trained and validated using a screened subset of a publicly available dataset,
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after applying hard-limit filters and feature pruning that is aware of multicollinearity. A
simplified two-feature version of the model, using only plasticity index and clay fraction, is
retained and benchmarked against a full-feature version. Model evaluation includes an
80:20 stratified hold-out test, k-fold cross-validation, and bootstrap uncertainty analysis.
The model’s internal logic is examined using SHAP and PDP tools, with particular attention
given to consistency with established geotechnical principles.

By aligning ML methodology with geotechnical domain knowledge and emphasizing
explainability, this work contributes a practical predictive tool that supports early-stage
design, construction planning, and risk mitigation for buildings situated on expansive
soils. The proposed model is lightweight, fast to implement, and suitable for integra-
tion into digital workflows such as building information modeling (BIM) and GIS-based
site screening.

The remainder of the paper is structured as follows: Section 2 reviews prior research
and identifies limitations in empirical and machine-learning-based swell prediction meth-
ods. Section 3 outlines the methodology, including dataset preparation, domain-guided
feature selection, model training, and evaluation. Section 4 presents the results on pre-
dictive performance and model interpretability. Section 5 discusses the implications for
building design and construction risk management. Section 6 concludes with a summary
of contributions and future research directions.

2. Literature Review
This literature review synthesizes developments in expansive soil swell prediction,

tracing the progression from classical empirical methods to modern ML. Emphasis is placed
on the persistent challenges of data quality, multicollinearity, uncertainty quantification, and
model interpretability. The review establishes the basis for a domain-informed modeling
framework that aligns with the objectives of the present study and supports practical
applications in the context of building engineering.

Expansive soils contain clay minerals, notably montmorillonite, which swell signifi-
cantly upon wetting due to high specific surface area and cation exchange capacity [15,33].
These mineralogical traits lead to structural distress in shallow foundations, floor slabs, and
buried infrastructure [34]. In geotechnical mechanics, clay swelling originates from two
principal physicochemical processes. Interlayer hydration occurs when water molecules
diffuse into the crystalline layers of expandable clays, causing them to expand and generate
osmotic pressures that increase the soil mass. Diffuse double-layer repulsion arises from
negatively charged clay plate surfaces attracting counterions and their hydration shells.
As the moisture content changes, variations in ion concentration alter the thickness of
this double layer, driving further volume change [35]. Together, these mechanisms cre-
ate the characteristic threshold-type and nonlinear swelling curves observed in empirical
charts. The plasticity index serves as a macroscopic proxy for mineral reactivity, which is
linked to the interlayer hydration potential, while the clay fraction measures the volume
of reactive platelets available. As a result, practitioners often rely on indirect indicators,
such as plasticity index (PI) and clay content, to infer swell potential. This has driven the
development of prediction tools that can function effectively even when mineralogical
testing is unavailable.

Early empirical methods correlated Atterberg limits and dry density with swell in-
dicators but lacked generalizability. Classical charts and regressions, such as those by
Holtz and Gibbs [36] and Komornik and David [37], offered site-specific guidance but
suffered from limited transferability and the absence of uncertainty estimates. Even com-
prehensive regressions using larger datasets remained deterministic and typically assumed
linear relationships among index properties, ignoring complex interactions and regional
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variability. These limitations constrained their reliability for predictive design in diverse
geotechnical settings.

More recently, a significant body of literature has explored the development
of semi-empirical classification systems based on regional calibration. For instance,
Snethen et al. [38] introduced a classification chart mapping Atterberg limits to swell sever-
ity levels (low, medium, high). While such tools are simple and accessible, they inherit
strong regional biases. Previous studies attempted to generalize these methods using
broader datasets, yet the regressions remained predominantly linear and offered no proba-
bilistic interpretation. These methods typically lack dynamic updating capabilities and are
unable to respond adaptively to novel data conditions, further limiting their usefulness in
the evolving context of construction risk management.

In response, ML has emerged as a powerful alternative for modeling swell potential.
ML models such as random forest, gradient boosting, and support vector machines have
demonstrated the ability to model nonlinear relationships and complex feature interac-
tions. However, persistent methodological pitfalls, especially over-training on small, noisy
datasets and the lack of truly independent test sets, have been documented in ecological
ANN studies and remain highly relevant to geotechnical ML applications [39]. Studies by
Habib et al. [18], Eyo et al. [40], and Utkarsh and Jain [41] report high predictive perfor-
mance on laboratory datasets, with R2 values often exceeding 0.90. These models also allow
for flexible inclusion of diverse input parameters, potentially integrating mineralogical,
hydraulic, and density-based features. However, these advantages are tempered by several
common issues that remain unresolved in the current literature.

Firstly, many models are trained on limited datasets (typically 100–200 samples), often
collated from disparate sources with inconsistent testing standards [42]. This introduces
noise and reduces generalizability. Additionally, performance is usually evaluated using
internal cross-validation only, with few studies validating results on external or field-based
datasets [43]. Consequently, high reported accuracy may reflect data memorization rather
than true predictive power [43]. Furthermore, the lack of standardized reporting on dataset
composition, preprocessing steps, and validation procedures impairs reproducibility and
limits comparative assessment across studies [42].

Secondly, the majority of models rely heavily on conventional index properties such
as liquid limit, plastic limit, plasticity index, moisture content, and clay content [44]. These
features, while easy to obtain, are strongly interrelated. Including multiple correlated
variables introduces multicollinearity, which can distort model interpretations and reduce
robustness [45]. Although ML models are less sensitive to multicollinearity than linear
models, the issue still impacts feature importance rankings and decision transparency [46].
High variance inflation factors (VIFs) among Atterberg indices have been observed in
multiple studies, indicating significant redundancy among these indices. Without proper
handling of multicollinearity, predictive models may appear statistically sound while
lacking physical coherence, a key requirement for geotechnical acceptance [45].

Several studies demonstrate that domain-guided feature pruning can improve both
accuracy and interpretability [47]. Symbolic regression and parsimony-constrained algo-
rithms have shown that eliminating collinear features does not compromise accuracy and
can yield clearer, more stable models. For instance, pruning the liquid limit and plastic
limit while retaining PI and clay content is effective in maintaining high predictive accuracy
while reducing collinearity [45]. Domain-informed feature selection is thus crucial in ensur-
ing that model outputs accurately reflect actual mechanistic behavior rather than statistical
artifacts [44]. Feature parsimony also enhances deployment feasibility, as fewer input
variables reduce testing time and cost, making the model more attractive for integration
into construction workflows.
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A further limitation in the literature is the lack of quantification of predictive uncer-
tainty. Most ML studies output deterministic swell estimates without confidence bounds,
making it difficult to assess the reliability of predictions for engineering decisions. Boot-
strap resampling has been successfully applied in related fields to generate empirical
confidence intervals, revealing optimism bias in cross-validated metrics and identifying
outliers [8,48,49]. Yet, bootstrapping remains rare in studies of swell prediction. In stud-
ies where it has been applied, bootstrapping has uncovered instances of overconfidence,
highlighting its potential for improving the realism of model outputs [49].

Alternative methods, such as quantile regression forests (QRF) and conformal predic-
tion, offer frameworks for generating observation-specific prediction intervals without as-
suming data normality [50,51]. Vaysse and Lagacherie [52], for example, applied QRF to soil
property prediction, achieving near-nominal coverage across diverse test sets. These tools
allow prediction intervals to adapt to data density and feature variance, offering substantial
promise for use in swell prediction. However, their adoption in expansive soil studies
remains extremely limited [50]. Adaptive uncertainty estimation could play a pivotal role
in transitioning ML models from academic tools to deployable engineering aids [53,54].

Interpretability is now a prerequisite for the adoption of engineering. Studies increas-
ingly couple SHAP and PDP visualizations with swell-prediction models to expose how
PI, clay fraction, or stress history drives outputs. Yet these tools break down when multi-
collinearity is ignored: redundant variables dilute attributions and can even invert causal
signals [55]. Recent work, therefore, pairs explainable AI with domain-guided feature
pruning, showing that a compact, physically coherent input set yields both more precise
explanations and more stable predictions [55,56].

PDPs provide complementary insights by showing the average response of the model
to changes in individual input variables [57,58]. This is especially helpful in identifying
thresholds and saturation points, such as when swell increases rapidly with PI up to
a specific value and then levels off. These visualizations not only aid in interpreting
predictions but also serve as a validation tool to ensure the model aligns with known
physical behavior. PDPs also enable model developers to assess the plausibility of nonlinear
interactions, providing a semi-quantitative perspective on feature-response relationships
that may vary by site or soil type [54].

The reviewed literature highlights opportunities for advancing ML-based swell pre-
diction by bridging engineering knowledge with statistical rigor. There is strong poten-
tial for integrating mineralogical considerations, uncertainty quantification, and feature
interpretability into a cohesive modeling pipeline that improves both reliability and us-
ability. Practical deployment of such models, particularly in building design and con-
struction workflows, depends on clarity, robustness, and trust. The ability to trace model
behavior to meaningful geotechnical principles is essential for acceptance in real-world
engineering applications.

To support such integration, the present study employs a multi-stage modeling frame-
work grounded in these insights. This includes domain-informed data screening to re-
move implausible records, multicollinearity-aware feature pruning to stabilize model logic,
bootstrap-based uncertainty estimation to quantify prediction confidence, and explain-
able ML methods to ensure transparent decision making. Each of these components is
designed not only to improve predictive performance but also to meet the demands of
building professionals seeking actionable insights for site evaluation and foundation design
in expansive soil environments.
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3. Materials and Methods
The swell-potential dataset analyzed in this study originates from the open-access

compilation published by Onyekpe [59] in Data in Brief (39: 107608). The authors col-
lated 395 one-dimensional oedometer swell-strain records, along with key index and
compaction properties, from over five decades of laboratory investigations on natural and
engineered clays from Asia, Africa, and Europe. The raw workbook is available on GitHub
(https://doi.org/10.1016/j.dib.2021.107608, accessed on 26 April 2025) and organizes the
data into 13 tabs, each corresponding to a consistent experimental protocol (e.g., ASTM
D 4546 [60]) and surcharge level. All 13 tabs were merged into a single master dataset before
any filtering or analysis to ensure methodological consistency. Where additional laboratory
descriptors (e.g., specific gravity) were present in the source file, they were omitted to
maintain alignment with common geotechnical practice and to facilitate direct comparison
with legacy swell-correlation studies. A summary of the variables, units, and derivations
used in the dataset is provided in Table 1. The five input predictors are (LL%), plastic limit
(PL%), plasticity index (PI%), Skempton activity (A = PI/C), and clay fraction (C%). The
model’s output label is swell potential (SP%). The complete research workflow, from raw
data acquisition to engineering deliverables, is summarized schematically in Figure 1.

Table 1. Description of variables used in the dataset.

Symbol Feature Name Definition Unit Source

LL Liquid limit Water at liquid–plastic state % [61]
PL Plastic limit Water at plastic limit % [61]
PI Plasticity index LL minus PL % Computed
C Clay fraction Clay particles < 0.002 mm % [61]
A Activity PI/C - Computed
SP Swell potential Swelling on wetting % Lab test

Figure 1. Research flowchart from data acquisition to engineering deliverables.

Missing-value imputation was deliberately avoided to preserve geotechnical fidelity.
Although fewer than 27% of rows contained missing values, the omissions were confined
to laboratory-derived variables rather than random errors. Inputting such quantities using
statistical methods (e.g., k-nearest neighbors or MICE) would create synthetic laboratory
results, violating fundamental principles of soil mechanics. For example, assigning a
liquid limit of 60% to a kaolinitic sample could mimic montmorillonitic behavior and

https://doi.org/10.1016/j.dib.2021.107608
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severely distort swell predictions. In addition, the missingness exhibited a clear structure,
typically affecting variables that require specialized testing, which invalidates the “missing
at random” (MAR) assumption central to most imputation techniques [62,63]. Where
missing values could be deterministically reconstructed (e.g., PI = LL − PL, or A = PI/C),
they were back-calculated. Specifically, 109 missing values for activity (A) and 19 for clay
content (C) were successfully recovered using these deterministic relationships. Records
that could not be reconstructed were excluded from the analysis. This approach avoided
synthetic noise, ensured physical validity, and preserved methodological control between
the raw and cleaned datasets.

Descriptive statistics for the Model 1 dataset are summarized in Table 2. Swell potential
(SP) spans a wide range, from 0.26% to 168.57%, with a standard deviation of 23.52% and
strong right skew (2.68), reflecting the presence of high-swell cases and distributional
imbalance. Liquid limit (LL) ranges from 19% to 255%, and plasticity index (PI) reaches
an implausible maximum of 225%, indicating likely data-entry errors and confirming PI’s
deterministic dependence on LL and PL. Activity (A), computed as PI divided by clay
content, shows the highest variability, with a standard deviation of 9.61 and extreme right
skew (6.95). Most notably, A reaches a maximum value of 90, which far exceeds the range
associated with any natural clay mineral. For reference, even highly active montmorillonitic
clays typically exhibit A values between 5.6 and 13.9 [64]. Such an outlier is physically
implausible and suggests a unit mismatch or transcription error. This further motivates the
need for domain-guided data cleaning.

Table 2. Descriptive statistics dataset used in Model 1.

Statistic SP LL PL PI A C

Mean 22.49 69.32 26.25 43.07 2.44 44.07
Std. Dev. 23.52 27.17 6.59 25.68 9.61 16.24

Min 0.26 19 4 7.1 0.24 2.5
25% 8.50 54 21 26.2 0.64 30

Median 15.55 68.5 26 40 0.85 50
75% 25.63 78 28 54 1.03 53.34
Max 168.57 255 66 225 90 93

Skewness 2.68 2.37 1.26 2.89 6.95 −0.15

3.1. Baseline Model

The baseline configuration (Model 1) represents an “as-received” treatment, commonly
adopted in early-stage applications of ML to geotechnical datasets. This model utilizes
the original, unprocessed file, comprising 310 observations, each characterized by five
numerical predictors: liquid limit (LL %), plastic limit (PL %), plasticity index (PI %),
Skempton activity (A = PI/C), and clay fraction (C %), with swell potential (SP %) as the
response variable. No preprocessing steps were applied to this dataset. Specifically, no hard-
limit filtering, categorical validation, or duplicate removal procedures were performed,
and fundamental deterministic relationships, such as PI = LL − PL, were not enforced.
As a result, potential transcription errors (e.g., PI > LL), statistical outliers, and duplicate
records remain within the modeling matrix. Diagnostic inspection revealed that the dataset
contains several exact duplicate rows as well as extreme values in key geotechnical indices,
most notably abnormally high PI, LL, and A values, suggesting either entry errors or the
absence of threshold-based screening. Moreover, full multicollinearity among LL, PL, PI,
and A is preserved, and no effort was made to identify or mitigate redundant predictors.

Model 1 is deliberately structured to expose the methodological risks associated with
disregarding geotechnical domain knowledge and statistical best practices. These risks
include artificially inflated variance-explanation statistics, elevated sensitivity to extreme
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residuals, and impaired model interpretability due to overlapping and collinear features.
The evaluation metrics derived from this configuration thus serve as a benchmark against
which the performance of the domain-informed, multicollinearity-aware alternative is
later assessed.

3.2. Domain-Guided Cleaning Pipeline (DG-DCP)

The cleaning process incorporated a series of domain-specific rules designed to enforce
geotechnical plausibility, consistency with classification systems, and basic physical realism.
These checks were applied sequentially, and rows were either flagged for review or removed
outright, depending on the severity and nature of the violation.

Initial hard limits were imposed to discard values falling outside physically meaning-
ful ranges, such as negative Atterberg indices or swell potential, or clay contents exceeding
100%. Beyond these bounds, plausibility bands were defined to identify extreme but po-
tentially valid entries such as LL > 200%, PI > 70%, or A > 10 that warrant manual review
rather than automatic exclusion. To ensure internal numerical consistency, computed
activity values (PI divided by clay fraction) were compared to reported ones, and rows
with discrepancies beyond a small tolerance were flagged. Cases where swell potential
exceeded 40% while plasticity index remained below 10% were also considered anomalous,
as they suggest an unrealistic decoupling of plasticity from swelling behavior.

Further validation was carried out by comparing each sample’s position on the
Casagrande plasticity chart with the expectations implied by its USCS code [65]. Soils
classified as coarse-grained (e.g., GW, GP, SW, SP) were expected to exhibit clay contents
below 5%, while fine-grained groups (e.g., ML, CL, MH, CH) were expected to exceed
15% clay. Any mismatch between textural classification and clay content was flagged as a
potential indication of mislabeling or sampling inconsistency. The complete set of applied
conditions is summarized in Table 3. The combined application of these rules ensured
that the dataset used for modeling conformed to geotechnical reasoning and empirical
expectations while still preserving edge cases for manual review when needed.

Table 3. Geotechnical validation checks.

Check Description Condition

Hard limits Drop if: LL < 0, PL < 0, PI < 0, SP < 0, Clay > 100
Plausibility band Flag if: LL > 200, PI > 70, PL > 80, A > 10, SP > 100

Activity consistency Flag if: |A − (PI/(Clay/100))| > 0.2
Swell–plasticity inconsistency Flag if: SP > 40 and PI < 10
Casagrande vs. USCS check (LL, PI) point must fall in USCS-implied zone

USCS–clay content sanity GW, GP, SW, SP → Clay < 5
USCS–clay content sanity ML, CL, MH, CH → Clay > 15

3.3. Collinearity and Feature Selection

Before finalizing the predictive model, a collinearity assessment was performed to
ensure that the selected input features supported both statistical reliability and geotechnical
interpretability. Although ensemble models, such as random forests, are generally robust to
collinearity in terms of prediction accuracy, the presence of redundant or highly correlated
predictors can distort feature importance rankings and obscure the underlying physical
relationships that the model is meant to capture. Therefore, feature selection in this study
was guided not only by predictive performance but also by collinearity structure and
geotechnical reasoning.

Figure 2 illustrates, in two side-by-side heat-map panels, how domain-guided feature
pruning transforms a highly collinear five-variable space into an orthogonal two-variable
set. In panel (a), “Before Feature Pruning,” the 5 × 5 matrix depicts Pearson correlation
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coefficients among liquid limit (LL), plastic limit (PL), plasticity index (PI), Skempton
activity (A = PI/C), and clay fraction (C). The color scale, ranging from deep blue (r = +1)
through white (r ≈ 0) to deep red (r = −0.42), highlights very strong collinearity between
LL and PI (r = 0.97) as well as moderate association of LL with activity (r = 0.698) and
negligible association with clay fraction (r = 0.061). The single red cell (activity versus
C, r = −0.415) reflects the mathematical definition of activity. At the same time, all other
off-diagonal correlations remain small (|r| ≤ 0.17), indicating minimal shared variance
among the remaining variable pairs.

Figure 2. Pearson correlation heatmaps before (a) and after (b) feature pruning.

In panel (b), “After Feature Pruning,” LL, PL, and activity have been removed, leaving
only PI and clay fraction. The resulting 2 × 2 matrix, plotted with the same color scale,
exhibits an off-diagonal correlation of r = 0.0228, which is effectively zero and is rendered
as a neutral hue. The disappearance of saturated blues underscores the successful elim-
ination of redundant information. Together, the two panels confirm (1) the exact linear
dependence among LL, PL, and PI; (2) the derived nature of activity, and (3) the statistical
independence of the retained predictors, PI and C, conditions that underpin the stability
and interpretability of the final random forest model.

Table 4 presents the corresponding variance inflation factors: LL%, PL%, and PI%. All
three return infinite values due to exact linear dependence (PI = LL − PL), while activity
records a VIF of 3.65, indicating problematic redundancy. Only the clay fraction maintains
an acceptable VIF of 1.71. On statistical grounds, LL, PL, and activity were therefore
excluded from the final feature set.

Table 4. Variance-inflation factors (VIF) before and after feature pruning.

Predictor
Before After

5 Features 2 Features

LL ∞ -
PL ∞ -
PI ∞ 1.00
A 3.65 -
C 1.71 1.00

The rationale for this exclusion is supported by domain logic. The plasticity index
already encapsulates the essential difference between LL and PL and is widely recognized
in geotechnical engineering as a primary indicator of swell potential. Similarly, activity
is derived by normalizing PI concerning the clay fraction, making it mathematically de-
pendent on the retained variables. By keeping PI (representing the quality of expansive
minerals) and clay content (representing their quantity), the model preserves two orthogo-
nal drivers of swelling behavior while avoiding multicollinearity. The refined feature set



Buildings 2025, 15, 2530 10 of 24

exhibits a near-zero Pearson correlation (r = 0.02) and VIF values of 1.00 for both predictors,
confirming statistical independence.

3.4. Model Training and Evaluation

Using the raw dataset described in Section 3.2 (310 records; five index properties), we
trained Model 1 as follows: because high-swell cases are sparse, SP values were binned
into quintiles, and an 80:20 stratified shuffle split (seed = 42) was created so that each
subset preserved the same proportion of low-, medium-, and high-swell samples found
in the complete raw dataset. This approach was further justified by the strong right skew
observed in SP (skewness = 2.68), which indicated a concentration of samples in the low-
swell range and a long tail of high-swell outliers. Stratified binning ensured balanced
representation of all ranges across both the training and test sets, thereby improving the
robustness of performance evaluation. This split served as the primary hold-out strategy,
providing a fixed test set against which all model predictions were evaluated.

Random forests were selected for their strong alignment with the geotechnical, statisti-
cal, and interpretability needs of this study. Swell potential involves non-linear, threshold-
driven behavior, such as rapid increases beyond PI ≈ 50%, which tree-based models capture
naturally without assuming specific functional forms or requiring kernel tuning [18]. Given
the modest dataset size (n = 310–291), random forests offer better stability than GBMs
or neural networks, which often overfit in small-sample contexts [66]. They also require
minimal preprocessing, preserving the physical meaning of geotechnical indices without
normalization. Their interpretability is a further strength: split frequencies yield intuitive
feature rankings, TreeSHAP produces auditable attributions, and known relationships,
such as that between PI and swell, are transparently reflected [18]. Finally, forests enable
empirical prediction intervals via tree variance, supporting bootstrap-based uncertainty
estimation without distributional assumptions [67,68].

A random-forest regressor (200 trees, unlimited depth, random_state = 42) was trained
for each dataset. Hyperparameter tuning was deliberately omitted to isolate the impact of
data-quality interventions. Model accuracy on a fixed 20% hold-out set was summarized
using R2, MAE, RMSE, and the most significant residual. Generalization and uncertainty
were quantified with a 10 × 3 stratified cross-validation and a 1000-rep bootstrap (complete
metric definitions in Table S1, Supplementary Information).

Model 2, which retains 291 rows after hard-limit filtering, USCS [65] validation, and
duplicate removal. Multicollinearity diagnostics leave only two predictors, PI% and clay
fraction C%, in the matrix X3. Because the row count changed, a fresh 80–20 stratified
shuffle split was drawn, but the same quintile-based rule and the same random seed of 42
were used, resulting in a partition whose class proportions mirror those within the reduced
dataset. This again served as the fixed hold-out test set for evaluating all downstream
metrics. The identical random-forest hyperparameters were applied. The entire evaluation
pipeline, single-split metrics and plots, repeated stratified cross-validation, 1000-rep boot-
strap, and prediction-interval tally, was repeated without alteration. A comparison of the
modeling configurations and training pipelines is summarized in Table 5.

For interpretability, TreeSHAP values were calculated on the hold-out set, and a mean
|SHAP| bar chart and a beeswarm plot were generated. Partial dependence curves for
PI% and C% provided a clear view of the marginal responses. By maintaining the same
stratification logic, resampling schedule, bootstrap procedure, and model hyperparameters
while only varying the data-quality interventions, this design isolates the impact of sys-
tematic cleaning and multicollinearity-aware feature pruning on predictive accuracy, error
robustness, and geotechnical interpretability.
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Table 5. Modeling workflow summary for Model 1 and Model 2.

Aspect Model 1 Model 2

Dataset size 310 records 291 records
Cleaning steps None Geotechnical validation
Predictors (x) LL, PL, PI, A, C PI, C

Target (y) Swell potential (SP) Swell potential (SP)
Stratified split 80:20 (SP quintiles) 80:20 (SP quintiles)
Random seed 42 42
Model type Random forest regressor Random forest regressor

Hyper-parameters 200 trees, unrestricted depth 200 trees, unrestricted depth
Hold-out test Yes Yes

Cross-validation 10 × 3 StratifiedKFold 10 × 3 StratifiedKFold
Bootstrapping 1000 reps, fixed test 1000 reps, fixed test

Diagnostic plots Residual and fitted plots Residual and fitted plots
Interpretability tools SHAP plots, PDPs SHAP plots, PDPs

4. Results
4.1. Dataset Refinement via DG-DCP

The DG-DCP, as described in Section 3.3, was applied to the original dataset of
310 records to ensure geotechnical plausibility and internal consistency. As a result,
19 records (representing 6.1 percent of the dataset) were excluded, yielding a refined dataset
of 291 entries suitable for subsequent modeling.

Nine of the excluded records exhibited extremely high Skempton activity values,
calculated as the ratio of plasticity index (PI) to clay content (C). Reported values ranged
from approximately 20 to 90, even though activity in natural soils generally does not
exceed 4 [69]. Even highly active montmorillonitic clays rarely surpass 2.5 [70], and the
highest documented values in the literature approach 13.9 [71]. Moreover, these samples
had exceptionally low clay contents, approximately 2.5 percent, rendering such high
activity values physically implausible. These anomalies strongly suggest transcription
errors, improper unit scaling, or data entry issues and were therefore removed.

Seven additional records were identified as exact duplicates, identical across all
recorded variables. These corresponded to a specimen with a PI of 38 percent, a clay
content of 52 percent, and a swell potential of between 12 and 14 percent. In the context
of geotechnical laboratory testing, it is highly improbable for multiple independent sam-
ples to produce perfectly matching values due to the inherent heterogeneity of soils and
measurement variability [72]. Retaining these duplicates would have disproportionately
weighted a single test result, potentially distorting model training and residual analysis.
Consequently, they were excluded.

The remaining three records were removed due to internal inconsistencies between
index properties and textural composition. Although their Atterberg limits placed them
within the fine-grained region of the Casagrande plasticity chart (e.g., PI between 9%
and 18%; LL between 21% and 33%), their reported clay contents were all below 15%.
This violates expectations under the USCS [65], which requires coherence between plastic
behavior and fines content [65]. Furthermore, these samples presented additional red
flags. Each of these samples exhibited unusually high swell potential (17–19%), despite
having low plasticity index (PI) and liquid limit (LL) values, as well as activity ratios
(A = PI/clay fraction) below 1.3. Such a combination contradicts well-established geotech-
nical understanding, where expansive behavior is typically associated with high plasticity,
significant clay content, and moderate to high activity values. These mismatches between
swell behavior, plasticity, and clay fraction suggest data inconsistencies that could not
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be reconciled through mineralogical or procedural explanations [73]. As such, they were
deemed unreliable and removed under the DG-DCP.

The elimination of these 19 anomalous records effectively truncated the extreme tails
of key variables while preserving the integrity of their central distributions. Maximum
PI decreased from 225 percent to 110.5 percent, and maximum swell potential declined
from 168.6 percent to 92.8 percent. The means and medians of PI, clay content, and swell
potential remained broadly stable. Additionally, skewness for swell potential declined from
2.68 to 1.89, and for PI from 2.89 to 0.53, as summarized in Table 6. The resulting dataset
retains the intrinsic variability of expansive soils while excluding physically implausible
values, redundant observations, and classification conflicts, thereby providing a robust and
defensible foundation for model development and interpretability analysis.

Table 6. Summary statistics before and after DG-DCP.

Feature Metric Model 1 (n = 310) Model 2 (n = 291)

SP (%)

Mean 22.49 20.45
Std. Dev. 23.52 18.19
Min–Max 0.26–168.57 0.26–92.78
Skewness 2.68 1.89

PI (%)

Mean 43.07 40.64
Std. Dev. 25.68 18.15
Min–Max 7.10–225.00 7.10–110.50
Skewness 2.89 0.53

C (%)

Mean 44.07 45.56
Std. Dev. 16.24 14.63
Min–Max 2.50–93.00 17.00–93.00
Skewness −0.15 0.28

4.2. Comparative Model Performance

Quantitative outcomes for both experiments are summarized in Table 7 and visualized
in Figure 3.

Table 7. Performance comparison of Model 1 and Model 2 across all evaluation schemes.

Metric Model 1
(5 Predictors)

Model 2
(2 Predictors) ∆ % †

Single hold-out split

R2 0.8628 0.8432 −2.3
MAE (%) 5.95 5.352 −10.0
RMSE (%) 8.967 6.784 −24.3

Worst residual (%) 41.87 15.88 −62.0

10 × 3 stratified CV (mean ± SD)

R2 0.815 ± 0.105 0.741 ± 0.186 −9.1
MAE (%) 6.337 ± 1.264 6.032 ± 1.046 −4.8
RMSE (%) 9.029 ± 2.716 8.390 ± 2.095 −7.1

1000-rep bootstrap

Median RMSE (%) 10.066 7.497 −25.5
95% RMSE CI (%) 7.836–13.158 6.556–10.085 -

95% PI coverage (%) 51.8 54.3 +2.5 pp
† Percentage difference: (Model 1 − Model 2)/Model 1 × 100.
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Figure 3. Hold-out errors for Model 1 (red) vs. Model 2 (blue).

On the fixed 20% hold-out set, Model 2 (domain-cleaned, two inputs) lowered RMSE
from 8.97% to 6.78% (−24%) and cut the worst residual from 41.9% to 15.9% (−62%) relative
to Model 1 (Table 7). That sharp reduction in the error tail is critical for reliability-based
design, where extreme under-predictions control safety margins.

In 10 × 3 stratified cross-validation, RMSE fell from 9.03% ± 2.72% to 8.39% ± 2.10%,
while bootstrap analysis (1000 reps) showed median RMSE dropping from 10.07% to 7.50%
and a narrower 95% interval (6.56–10.09%). Prediction-interval coverage improved slightly
to 54%. Overall, the domain-guided, two-feature model trades a slight decrease in R2 for
markedly tighter and safer error bounds.

To ensure that these performance gains generalize beyond a single split, three com-
plementary validation schemes were employed. First, the 80:20 stratified hold-out test
preserved the skewed SP distribution and provided a fixed reference for direct comparison.
Second, a 10 × 3 stratified cross-validation, repeated over different folds, quantified both
mean performance and its variability across random partitions, revealing the model’s stabil-
ity under data shifts. Third, a 1000-rep bootstrap of the entire pipeline produced empirical
confidence intervals for RMSE and achieved 95% coverage, thereby capturing sampling
uncertainty and the model’s error distribution tail. Together, these schemes confirm that
the domain-pruned model’s improvements in RMSE and extreme-residual reduction are
robust, reliable, and not artifacts of a single random split. As visualized in Figure 3, the
blue bars representing Model 2 are uniformly shorter than the blue bars for Model 1 across
all error metrics, confirming the trends reported in Table 7.

4.3. Residual Diagnostics

Figures 4 and 5 convey complementary diagnostic information on model behavior
after the domain-guided cleaning procedure. Figure 4 plots the signed residuals (observed-
predicted swell potential) against the model’s predictions. This residual-versus-prediction
view is designed to reveal heteroscedasticity and scale-dependent bias. Model 1 (Figure 4a)
exhibits a pronounced funnel, with error variance increasing steadily and individual
underpredictions reaching −42% at the highest swell levels. By contrast, Model 2 (Figure 4b)
collapses the funnel; 96% of residuals fall within ±15%, and the largest error is limited to
−16%. The horizontal axis here is the predicted value, so any curvature or spreading pattern
directly signals where the model loses stability as the magnitude of the estimate grows.
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Figure 4. Residuals vs. predicted SP for (a) Model 1 and (b) Model 2. Dashed line = zero error.

 
Figure 5. Actual vs. predicted SP for (a) Model 1 and (b) Model 2. The red line shows y = x.

Figure 5 is an observed-versus-predicted plot. Both axes carry the swell value itself,
and the red 1:1 line represents perfect calibration. Departures from this diagonal highlight
systematic over- or under-estimation across the entire response range rather than variance
at a given scale. Model 1 (Figure 5a) overshoots virtually every specimen above 60% swell,
confirming the bias hinted at in Figure 4. Model 2 (Figure 5b) tracks the diagonal from 0%
to 90%, indicating that the two-variable specification not only reduces error magnitude but
also restores global calibration.

Taken together, the figures serve different analytical purposes: Figure 4 diagnoses
error dispersion and outlier leverage, whereas Figure 5 evaluates the absolute agreement
between measurements and predictions. Demonstrating improvements in both views
establishes that the domain-informed cleaning and feature pruning enhance the model’s
reliability in terms of variance control and bias removal.

Table 8 provides a more detailed examination of the error distribution. The median
absolute error stays about the same (4.54% in Model 1 vs. 4.64% in Model 2). Still, the
larger errors are significantly reduced: the 90th percentile error drops from 13.8% to
11.0%, the 95th percentile from 16.1% to 13.0%, and the 99th percentile is cut in half, from
28.2% to 15.1%. This significant reduction in extreme errors lowers the risk of serious
underpredictions in engineering design [72]. There is a slight increase in the 25th-percentile
error (from 1.33% to 2.02%), which suggests that some of the low-error sharpness in the
raw model resulted from overfitting simple cases, a phenomenon that model 2 avoids by
removing unnecessary predictors [74]. Overall, these diagnostics confirm that Model 2
maintains the same overall accuracy while significantly reducing high-impact errors.
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Table 8. Error quantiles (|residual|%) for Model 1 vs. Model 2.

Quantile Model 1 Model 2

10% 0.54 0.19
25% 1.33 2.02

50% (median) 4.54 4.64
75% 8.47 8.29
90% 13.84 10.95
95% 16.13 12.97
99% 28.18 15.13

4.4. Interpretability via SHAP and PDP

To assess the internal reasoning of the random forest models and ensure consis-
tency with established soil behavior, interpretability analyses were conducted using SHAP
and PDPs. These methods quantify the contribution of individual features to predicted
outcomes, enabling a transparent evaluation of how the model learns geotechnically
relevant patterns.

Figure 6 presents the SHAP feature importance summary for both models. In Model
1, where five predictors were used, feature attributions are diffused across several highly
collinear variables: PI, LL, and activity, each receiving substantial weight. This redundancy
reflects the underlying multicollinearity in the raw dataset, where PI is mathematically
dependent on LL and PL, and activity is derived from PI and clay content. Such overlap
complicates interpretation and risks overstating the influence of a single geotechnical
property across multiple redundant representations [75]. In contrast, Model 2 presents a
cleaner attribution structure. PI accounts for approximately 75% of the explanatory power,
and clay content (C) contributes the remaining 25%. This split aligns well with domain
knowledge, where PI reflects the mineralogical reactivity of the soil [70], and clay content
demonstrates the abundance of expansive materials [64].

 

Figure 6. SHAP feature importance comparison: (a) Model 1 vs. (b) Model 2.

Figure 7 presents a comparative analysis of the SHAP beeswarm summaries for the
full five-variable random forest (Model 1) and its reduced two-variable counterpart (Model
2). In each plot, the horizontal axis reports the SHAP contribution in percent swell potential,
with samples to the right of the vertical zero line exerting a positive uplift on the predicted
swell relative to the global mean. In contrast, those to the left have a suppressive effect,
and the color gradient from deep blue to deep red encodes the raw feature magnitude. By
plotting every hold-out specimen, these beeswarm diagrams simultaneously reveal both
the directionality and magnitude of each predictor’s influence across the entire dataset.
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Figure 7. SHAP beeswarm plot for (a) Model 1 and (b) Model 2.

In Figure 7a, Model 1’s plasticity-index subplot shows that, while specimens with PI
below 30 percent remain clustered near zero, higher-PI observations scatter indiscriminately
on both sides of the zero line. This dispersion suggests that the model’s interpretation of PI
is confounded by its correlation with three additional predictors, resulting in inconsistent
SHAP values for high-plasticity soils. Likewise, the clay-fraction subplot for Model 1
displays numerous high-clay samples registering negative SHAP contributions. This result
contradicts the well-established geotechnical principle that increasing clay content tends to
augment swell potential. These erratic patterns arise because multicollinearity among the
five features forces SHAP to partition influence arbitrarily among redundant predictors,
thereby obscuring the actual physical effect of each variable.

By contrast, Figure 7b demonstrates that Model 2, retaining only plasticity index and
clay fraction after domain-guided feature pruning, restores clear, monotonic relationships
aligned with soil mechanics theory. In the PI plot, low-plasticity specimens consistently
yield negative SHAP values, while high-plasticity specimens shift uniformly toward posi-
tive contributions, resulting in a coherent left-to-right gradient of blue through red points.
The clay-fraction subplot exhibits a similarly smooth progression of SHAP contributions
with increasing clay content, mirroring the classical saturation behavior of expansive miner-
als. Eliminating the redundant collinear predictors not only sharpens the individual SHAP
distributions but also enhances interpretability, confirming that the two-variable model
delivers a more parsimonious and geotechnically plausible depiction of how soil index
properties govern swell potential.

Figure 8a,b compares the partial dependence of the plasticity index (PI) for the com-
plete five-variable model (Model 1) and the reduced two-variable model (Model 2). In
Figure 8a, the PI curve for Model 1 rises from about 20.6% at PI ≈ 15% to a local max-
imum of 23.2% at PI ≈ 27%, then unexpectedly declines to 22.2% by PI ≈ 33% before
climbing again and flattening. This nonmonotonic behavior, with multiple inflection points,
lacks a clear mechanistic rationale and reflects the confounding influence of redundant
predictors. By contrast, Figure 8b shows that Model 2 remains essentially invariant for
PI below 45% and then exhibits a marked threshold-type increase, with swell potential
accelerating sharply beyond this critical plasticity level. Such a threshold response aligns
with classic empirical swell charts and reinforces the central role of PI once extraneous
variables are removed.

Figure 8c,d presents the analogous comparison for the clay fraction (C). The Model 1
curve in Figure 8c displays erratic kinks and abrupt jumps that do not correspond to any
known mineral-saturation process but rather to competing signals from collinear features.
In Figure 8d, the Model 2 curve follows a smooth, concave-up trajectory: predicted swell
potential declines slightly through intermediate clay contents and then rises steadily at high
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clay fraction, reflecting progressive saturation of expansive minerals. It should be noted
that clay fraction alone is not determinative of swelling unless the clay mineralogy includes
expansive phases; soils dominated by non-expansive minerals such as kaolinite or illite
may exhibit lower swell even at high clay content. By pruning out redundant predictors,
the two-variable model restores a geotechnically plausible and interpretable relationship
between clay content and swell potential.

Figure 8. PDPs: (a) PI, Model 1; (b) PI, Model 2; (c) clay fraction Model 1; (d) clay fraction Model 2.

Together, these interpretability results confirm that Model 2’s simplified predictor
set, refined through domain-guided cleaning and collinearity pruning, retains both pre-
dictive power and mechanistic transparency. The feature attributions align with physical
expectations, respond appropriately to key thresholds, and differentiate between miner-
alogically distinct soil types. For practical geotechnical applications, where model trust and
explainability are essential, such behavior significantly enhances the model’s credibility
and usability [76].

5. Discussion
5.1. Effect of Data Cleaning

The application of the DG-DCP resulted in meaningful structural improvements
in both the dataset and model behavior, surpassing what traditional preprocessing or
statistical cleaning methods could offer [58]. This cleaning process involved the removal
of duplicate records, geotechnically implausible values (e.g., extreme activity ratios), and
multicollinear features derived from deterministic relationships (e.g., PI vs. LL and PL) [74].
These steps were not merely statistical conveniences; they were informed by domain
knowledge and rooted in the physical constraints of expansive soil behavior. As such, the
effect of DG-DCP can be understood along three axes: data integrity, predictive reliability,
and interpretability.
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From a data perspective, the removal of just 19 problematic records (6.1%) resulted in
a substantial improvement in dataset quality. Key variables such as PI and SP saw their
extreme outliers removed (PI max reduced from 225% to 110.5%, SP from 168.6% to 92.8%),
and their skewness values declined by more than 30%, resulting in a more statistically and
geotechnically balanced dataset. Importantly, the central tendencies of these features were
preserved, suggesting that DG-DCP eliminated anomalies without distorting the overall
distribution of soil behaviors. This preservation of structural validity is essential when
modeling nonlinear targets, such as swell potential, which are sensitive to both the presence
and balance of high-variance cases [18].

Model 1’s residuals displayed a pronounced funneling effect; errors increased in mag-
nitude as predicted SP increased, and several points exceeded −40%. Model 2 eliminated
this funnel shape. In this model, 96 percent of residuals fell within ±15 percent, with the
worst error only −16%. Quantile-based error analysis revealed that Model 2 substantially
reduced high-end error percentiles. For example, the 99th percentile decreased from 28.2%
to 15.1%, and the 95th percentile declined from 16.1% to 13.0%, while the median perfor-
mance remained nearly unchanged. Although the 25th percentile error slightly increased,
this likely reflects the reduction of mild overfitting in Model 1, where redundant predictors
may have artificially sharpened predictions on simpler samples. In short, DG-DCP replaced
marginal overfitting with consistent reliability across the entire prediction range [74,77].

Finally, model interpretability saw a marked improvement. In Model 1, SHAP analysis
revealed diffuse feature attributions across PI, LL, and activity, all of which were highly
correlated. This redundancy complicated causal reasoning, as influence was spread across
mathematically dependent features. In contrast, Model 2’s SHAP summary attributed 75%
of predictive power to PI and the remaining 25% to clay content, aligning with known
geotechnical principles [18,41]. The SHAP beeswarm plot revealed PI’s nonlinear and
threshold-like behavior, particularly beyond 50%, consistent with expansive montmoril-
lonitic clays [64,78]. Partial dependence plots revealed smooth, monotonic relationships
between predictors and SP, indicating that the model’s behavior was not only accurate
but also physically plausible [77]. In practice, this clarity is critical: geotechnical engineers
require not only performance but also transparency, particularly when predictive models
are to inform design or mitigation strategies [79].

5.2. Role of PI and Clay Content

As demonstrated by the SHAP and PDP analyses in Section 4.4, model behavior
is driven almost exclusively by two orthogonal factors: the plasticity index (accounting
for roughly 75% of the feature influence) and the clay fraction (about 25%). Once the
plasticity index surpasses approximately 50–55%, it triggers a pronounced swell response,
whereas the clay content contributes a steady yet saturating effect. This elegant two-variable
partition encapsulates the classic quality-versus-quantity paradigm in expansive soils: the
plasticity index gauges the reactivity of the clay minerals present. In contrast, the clay
fraction quantifies the volume of that reactive material [18,80].

From a design standpoint, this distinction allows engineers to triage sites swiftly. A
soil sample with 60% clay but a plasticity index of 20% (typical of kaolinite) poses minimal
risk. In contrast, one exhibiting only 35% clay yet a plasticity index of 70% (indicative of
montmorillonite dominance) warrants immediate mitigation, even though its clay content
is lower. Consequently, routine plasticity index determinations and hydrometer tests
provide sufficient insight for an initial go/no-go decision, obviating the need for costly
oedometer swell tests on clearly benign samples.

Moreover, the two-variable model integrates seamlessly into digital workflows. Be-
cause plasticity index and clay fraction are routinely recorded in borehole databases, the
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model can be embedded directly into GIS layers, BIM plug-ins, or mobile field applications
with virtually no additional data overhead. Users then obtain an interpretable risk index
complete with bootstrap-derived uncertainty bounds without wrestling with collinear
indices or specialized mineralogical inputs, enabling faster, more defensible decisions in
foundation design and site zoning.

5.3. Engineering Applications

For building engineers, a swell-prediction model is valuable only if it improves judg-
ment and lowers risk on real projects. The domain-guided Model 2 meets that test. By
cutting the worst-case error from 41.9% to 15.9%, it significantly reduces the chance of
underestimating heave, which can crack slabs, tilt walls, or distress pavements. Because
the model requires only plasticity index and clay fraction, two indices already recorded
in routine USCS [65] or American Association of State Highway and Transportation Offi-
cials (AASHTO) investigations, it integrates easily into existing workflows. This includes
low-budget sites where oedometer or X-ray tests are impractical. Practitioners can use
its outputs to prioritize mitigation strategies such as lime treatment and moisture control,
determine whether further testing is needed, or flag high-risk borings for design review.

Interpretability further boosts adoption. Partial-dependence and SHAP plots reveal a
clear warning threshold at PI ≈ 55%, echoing classical empirical charts; this transparency
enables engineers to communicate risk to clients and regulators without the “black-box”
stigma. At larger scales, the two-input form is lightweight enough for GIS layers, BIM
plug-ins, or mobile field apps, enabling the rapid mapping of swell hazard zones and the
more intelligent allocation of lab budgets.

In sum, Model 2 combines accuracy, simplicity, and explainability, making it a practical
tool for risk-aware foundation design and site classification in both urban and remote
settings. Its success illustrates how domain-pruned machine-learning models can extend
geotechnical judgment rather than replace it, paving the way for broader use of data-driven
methods in building engineering.

Beyond the technical benefits, the two-variable model offers a clear cost advantage.
A one-dimensional oedometer swell test (ASTM D4546 [60]) typically costs between USD
350 and USD 400 per specimen and requires up to one week for setup, loading, and
moisture equilibration [81]. In contrast, the only laboratory inputs required were the
Atterberg limits and a hydrometer-based determination of the clay fraction. These are
routine classification tests that together cost approximately USD 120 per specimen and
can be completed within 24–48 h [81]. Substituting the model for swell testing during
preliminary site investigations therefore reduces direct laboratory expenditure by ap-
proximately 65–70% and delivers results several days earlier. For a moderate project
(e.g., 20 boreholes × 3 samples = 60 specimens), this translates to a budget saving on the
order of USD 16,000 while still flagging the minority of high-risk samples that warrant
confirmatory swell tests. Used as a triage tool, the model thus complements, not replaces,
conventional testing by focusing resources where they provide the most significant engi-
neering value.

5.4. Limitations and Future Work

Although the two-variable model outperforms a fuller baseline, it nonetheless inherits
several constraints. First, relying solely on plasticity index and clay fraction omits other
physical drivers of swelling: mineralogical composition, soil suction, fabric, and moisture
history. Their absence leaves appreciable unexplained variance and results in under-
calibrated prediction intervals: empirical coverage reaches only 54% where 95% is desired.
Second, the model’s generalization stability remains imperfect. The cross-validation R2
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dropped from 0.82 in the five-feature case to 0.74 after pruning, indicating sensitivity to
shifts in local data distribution. Third, the cleaning pipeline, although necessary, reduced
the working sample from 395 to 291 records, trimming many high-PI and high-swell
observations and limiting geographic diversity. Moreover, the model’s transferability to
regions with different clay mineralogies and climatic or geological conditions remains
untested. Evaluating its performance across such diverse settings would be a valuable
direction for future investigation.

Further research should therefore broaden both data and methods. Introducing causal
variables, such as bentonite or kaolinite percentages obtained by X-ray diffraction, or suc-
tion and climate indicators, would capture mechanisms now missing and should tighten
prediction intervals. Complementing random forests with quantile-based or conformal
techniques offers a path to calibrated, site-specific uncertainty bounds. Adding spatial
context (sampling depth, climate zone, moisture history) would, in turn, enable location-
aware risk maps and BIM integrations. Finally, releasing the cleaned dataset, code, and
interpretability notebooks via platforms like GitHub or Zenodo will promote external
validation and adaptation to related geotechnical problems, pushing data-centric geome-
chanics toward models that are both statistically reliable and practically deployable in
building-design workflows.

6. Conclusions
This study demonstrates that integrating geotechnical domain knowledge at the outset

can produce more streamlined, reliable, and interpretable ML tools for expansive-soil
design. Beginning with 395 laboratory swell records, a rule-based data cleaning pipeline
was applied to eliminate implausible entries and exact duplicates, resulting in a refined
dataset of 291 trustworthy cases. The DG-DCP removed nine samples with implausible
activity values, seven exact duplicates, and three USCS-inconsistent records, yielding
a geotechnically coherent dataset of 291 entries. Subsequent multicollinearity analysis
reduced five overlapping index properties to the two most practically significant predictors:
plasticity index (PI) and clay fraction (C).

A random forest trained on this pared-down dataset (Model 2) reduced the hold-out
RMSE by 24% and lowered the worst residual from 42% to 16%, compared to a five-feature
baseline model, despite a modest decrease in R2. This slight R2 reduction (from 0.863 to
0.843, a 2.3% decrease) reflects the removal of collinear predictors that contributed little
unique variance. Its minimal magnitude has a negligible effect on explanatory power,
especially given the model’s substantially tighter error bounds and improved reliability.
SHAP and PDP diagnostics indicate that the swell risk increases sharply when the plasticity
index (PI) exceeds approximately 55%, while the clay content (C) contributes a secondary,
saturating influence. This behavior aligns closely with the known response of montmo-
rillonitic clays. Since PI and C are routinely measured in standard site investigations, the
model is readily deployable for early foundation screening, GIS-based hazard mapping,
and integration into BIM plug-ins, particularly in contexts where oedometer testing is
unavailable or cost-prohibitive.

Limitations remain. Missing mineralogical, suction, and fabric data cap predictive
certainty, and tree-based prediction intervals still under-cover high-swell outliers. Future
work should pair the same domain-guided philosophy with richer datasets, quantile or
conformal forests, and external validation on new regions.

These findings underscore the value of geotechnically informed, parsimonious ML
models in improving the reliability and transparency of swell potential forecasts. By lever-
aging only two routinely available inputs (plasticity index and clay fraction), this approach
supports faster and more risk-aware decision making in the planning and structural design
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of low- to mid-rise buildings on expansive soils, particularly in regions where advanced
testing is limited. Moreover, by replacing costly oedometer swell tests with routine Atter-
berg limit and clay fraction measurements, this two-variable model can reduce preliminary
site investigation costs by roughly 65–70% while proactively flagging high-risk borings to
prevent subsidence- and swell-related structural damage.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/buildings15142530/s1, Table S1: Metrics used to assess Model 1 and
Model 2.
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