Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (752)

Search Parameters:
Keywords = room-temperature sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1717 KiB  
Article
High-Performance Hydrogen Gas Sensor Based on Pd-Doped MoS2/Si Heterojunction
by Enyu Ma, Zihao Xu, Ankai Sun, Shuo Yang and Jianyu Jiang
Sensors 2025, 25(15), 4753; https://doi.org/10.3390/s25154753 (registering DOI) - 1 Aug 2025
Abstract
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. [...] Read more.
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. In this work, Pd-doped MoS2 thin films are deposited on a Si substrate, forming Pd-doped MoS2/Si heterojunctions via magnetron co-sputtering. The incorporation of Pd nanoparticles significantly enhances the catalytic activity for hydrogen adsorption and facilitates more efficient electron transfer. Owing to its distinct structural characteristics and sharp interface properties, the fabricated Pd-doped MoS2/Si heterojunction device exhibits excellent H2 sensing performance under room temperature conditions. The gas sensor device achieves an impressive sensing response of ~6.4 × 103% under 10,000 ppm H2 concentration, representing a 110% improvement compared to pristine MoS2. Furthermore, the fabricated heterojunction device demonstrates rapid response and recovery times (24.6/12.2 s), excellent repeatability, strong humidity resistance, and a ppb-level detection limit. These results demonstrate the promising application prospects of Pd-doped MoS2/Si heterojunctions in the development of advanced gas sensing devices. Full article
(This article belongs to the Special Issue 2D Materials for Advanced Sensing Technology)
Show Figures

Figure 1

29 pages, 3064 KiB  
Review
Inelastic Electron Tunneling Spectroscopy of Molecular Electronic Junctions: Recent Advances and Applications
by Hyunwook Song
Crystals 2025, 15(8), 681; https://doi.org/10.3390/cryst15080681 - 26 Jul 2025
Viewed by 302
Abstract
Inelastic electron tunneling spectroscopy (IETS) has emerged as a powerful vibrational spectroscopy technique for molecular electronic junctions, providing unique insights into molecular vibrations and electron–phonon coupling at the nanoscale. In this review, we present a comprehensive overview of IETS in molecular junctions, tracing [...] Read more.
Inelastic electron tunneling spectroscopy (IETS) has emerged as a powerful vibrational spectroscopy technique for molecular electronic junctions, providing unique insights into molecular vibrations and electron–phonon coupling at the nanoscale. In this review, we present a comprehensive overview of IETS in molecular junctions, tracing its development from foundational principles to the latest advances. We begin with the theoretical background, detailing the mechanisms by which inelastic tunneling processes generate vibrational fingerprints of molecules, and highlighting how IETS complements optical spectroscopies by accessing electrically driven vibrational excitations. We then discuss recent progress in experimental techniques and device architectures that have broadened the applicability of IETS. Central focus is given to emerging applications of IETS over the last decade: molecular sensing (identification of chemical bonds and conformational changes in junctions), thermoelectric energy conversion (probing vibrational contributions to molecular thermopower), molecular switches and functional devices (monitoring bias-driven molecular state changes via vibrational signatures), spintronic molecular junctions (detecting spin excitations and spin–vibration interplay), and advanced data analysis approaches such as machine learning for interpreting complex tunneling spectra. Finally, we discuss current challenges, including sensitivity at room temperature, spectral interpretation, and integration into practical devices. This review aims to serve as a thorough reference for researchers in physics, chemistry, and materials science, consolidating state-of-the-art understanding of IETS in molecular junctions and its growing role in molecular-scale device characterization. Full article
(This article belongs to the Special Issue Advances in Multifunctional Materials and Structures)
Show Figures

Figure 1

17 pages, 3568 KiB  
Article
Visual Colorimetric Sensing of the Animal-Derived Food Freshness by Juglone-Loaded Agarose Hydrogel
by Lanjing Wang, Weiyi Yan, Aijun Li, Huayin Zhang and Qian Xu
Foods 2025, 14(14), 2505; https://doi.org/10.3390/foods14142505 - 17 Jul 2025
Viewed by 267
Abstract
The visual colorimetric sensing of total volatile basic nitrogen (TVB-N) allows for convenient dynamic monitoring of animal-derived food freshness to ensure food safety. The agarose hydrogel loaded with the natural dye juglone (Jug@AG) prepared in this study exhibits visible multicolor changes from yellow [...] Read more.
The visual colorimetric sensing of total volatile basic nitrogen (TVB-N) allows for convenient dynamic monitoring of animal-derived food freshness to ensure food safety. The agarose hydrogel loaded with the natural dye juglone (Jug@AG) prepared in this study exhibits visible multicolor changes from yellow to grayish-yellow and then to brownish with increasing TVB-N gas concentration, achieving sensitive detection of TVB-N gas at concentrations as low as 0.05 mg/dm3 within 8 min. The minimum observable amounts of TVB-N in spiked pork and fish samples are 8.43 mg/100 g and 8.27 mg/100 g, respectively, indicating that the Jug@AG hydrogel possesses sensitive colorimetric sensing capability in practical applications. The Jug@AG hydrogel also shows significant changes in color difference value (∆C) under both room temperature (25 °C) and cold storage (4 °C) conditions, with the changing trends of ∆C showing consistency with the measured TVB-N and total viable counts (TVC) during the transition of pork and fish samples from freshness to early spoilage and then to spoilage. The results indicate that the Jug@AG hydrogel can be used as a colorimetric sensor to achieve real-time dynamic freshness monitoring of animal-derived food. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

13 pages, 4656 KiB  
Article
High-Speed and Hysteresis-Free Near-Infrared Optical Hydrogen Sensor Based on Ti/Pd Bilayer Thin Films
by Ashwin Thapa Magar, Tu Anh Ngo, Hoang Mai Luong, Thi Thu Trinh Phan, Minh Tuan Trinh, Yiping Zhao and Tho Duc Nguyen
Nanomaterials 2025, 15(14), 1105; https://doi.org/10.3390/nano15141105 - 16 Jul 2025
Viewed by 465
Abstract
Palladium (Pd) and titanium (Ti) exhibit opposite dielectric responses upon hydrogenation, with stronger effects observed in the near-infrared (NIR) region. Leveraging this contrast, we investigated Ti/Pd bilayer thin films as a platform for NIR hydrogen sensing—particularly at telecommunication-relevant wavelengths, where such devices have [...] Read more.
Palladium (Pd) and titanium (Ti) exhibit opposite dielectric responses upon hydrogenation, with stronger effects observed in the near-infrared (NIR) region. Leveraging this contrast, we investigated Ti/Pd bilayer thin films as a platform for NIR hydrogen sensing—particularly at telecommunication-relevant wavelengths, where such devices have remained largely unexplored. Ti/Pd bilayers coated with Teflon AF (TAF) and fabricated via sequential electron-beam and thermal evaporation were characterized using optical transmission measurements under repeated hydrogenation cycles. The Ti (5 nm)/Pd (x = 2.5 nm)/TAF (30 nm) architecture showed a 2.7-fold enhancement in the hydrogen-induced optical contrast at 1550 nm compared to Pd/TAF reference films, attributed to the hydrogen ion exchange between the Ti and Pd layers. The optimized structure, with a Pd thickness of x = 1.9 nm, exhibited hysteresis-free sensing behavior, a rapid response time (t90 < 0.35 s at 4% H2), and a detection limit below 10 ppm. It also demonstrated excellent selectivity with negligible cross-sensitivity to CO2, CH4, and CO, as well as high durability, showing less than 6% signal degradation over 135 hydrogenation cycles. These findings establish a scalable, room-temperature NIR hydrogen sensing platform with strong potential for deployment in automotive, environmental, and industrial applications. Full article
Show Figures

Figure 1

12 pages, 2279 KiB  
Article
Electrostatic Self-Assembly of Heterostructured In2O3/Ti3C2Tx Nanocomposite for High-Selectivity NO2 Gas Sensing at Room Temperature
by Yongjing Guo, Zhengxin Zhang, Hangshuo Feng, Qingfu Dai, Qiuni Zhao, Zaihua Duan, Shenghui Guo, Li Yang, Ming Hou and Yi Xia
Chemosensors 2025, 13(7), 249; https://doi.org/10.3390/chemosensors13070249 - 10 Jul 2025
Viewed by 349
Abstract
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O [...] Read more.
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O3) decorated on titanium carbide (Ti3C2Tx) nanosheets by electrostatic self-assembly and develop it for high-selectivity NO2 gas sensing at room temperature. Self-assembly formation of multiple heterojunctions in the In2O3/Ti3C2Tx composite provide abundant NO2 gas adsorption sites and high electron transfer activity, which is conducive to improving the gas-sensing response of the In2O3/Ti3C2Tx gas sensor. Assisted by rich adsorption sites and hetero interface, the as-fabricated In2O3/Ti3C2Tx gas sensor exhibits the highest response to NO2 among various interference gases. Meanwhile, a detection limit of 0.3 ppm, and response/recovery time (197.62/93.84 s) is displayed at room temperature. Finally, a NO2 sensing mechanism of In2O3/Ti3C2Tx gas sensor is constructed based on PN heterojunction enhancement and molecular adsorption. This work not only expands the gas-sensing application of MXenes, but also demonstrates an avenue for the rational design and construction of NO2-sensing materials. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

27 pages, 3233 KiB  
Review
Advances in the Fabrication and Magnetic Properties of Heusler Alloy Glass-Coated Microwires with High Curie Temperature
by Mohamed Salaheldeen, Valentina Zhukova, Juan Maria Blanco, Julian Gonzalez and Arcady Zhukov
Metals 2025, 15(7), 718; https://doi.org/10.3390/met15070718 - 27 Jun 2025
Viewed by 473
Abstract
This review article provides an in-depth analysis of recent advancements in the fabrication, structural characterization, and magnetic properties of Heusler alloy glass-coated microwires, focusing on Co2FeSi alloys. These microwires exhibit unique thermal stability, high Curie temperatures, and tunable magnetic properties, making [...] Read more.
This review article provides an in-depth analysis of recent advancements in the fabrication, structural characterization, and magnetic properties of Heusler alloy glass-coated microwires, focusing on Co2FeSi alloys. These microwires exhibit unique thermal stability, high Curie temperatures, and tunable magnetic properties, making them suitable for a wide range of applications in spintronics, magnetic sensing, and biomedical engineering. The review emphasizes the influence of geometric parameters, annealing conditions, and compositional variations on the microstructure and magnetic behavior of these materials. Detailed discussions on the Taylor–Ulitovsky fabrication technique, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) provide insights into the structural properties of the microwires. The magnetic properties, including room-temperature behavior, temperature dependence, and the effects of annealing, are thoroughly examined. The potential applications of these microwires in advanced spintronic devices, magnetic sensors, and biomedical technologies are explored. The review concludes with future research directions, highlighting the potential for further advancements in the field of Heusler alloy microwires. Full article
(This article belongs to the Special Issue Metallic Magnetic Materials: Manufacture, Properties and Applications)
Show Figures

Figure 1

16 pages, 1957 KiB  
Article
Study on Molybdenum–Rhenium Alloy Ultrasonic Resonance Temperature Sensor
by Haijian Liang, Gao Wang, Xiaomei Yang, Yanlong Wei and Hongxin Xue
Appl. Sci. 2025, 15(13), 6965; https://doi.org/10.3390/app15136965 - 20 Jun 2025
Viewed by 266
Abstract
Compared to traditional temperature measurement methods, ultrasonic temperature measurement technology based on the principle of resonance offers advantages such as shorter section lengths, higher signal amplitude, and reduced signal attenuation. First, the type of sensor-sensitive element was determined, with a resonant design chosen [...] Read more.
Compared to traditional temperature measurement methods, ultrasonic temperature measurement technology based on the principle of resonance offers advantages such as shorter section lengths, higher signal amplitude, and reduced signal attenuation. First, the type of sensor-sensitive element was determined, with a resonant design chosen to improve measurement performance; using magnetostrictive and resonant temperature measurement principles, the length, diameter, and resonator dimensions of the waveguide rod were designed, and a molybdenum–rhenium alloy (Mo-5%Re) material suitable for high-temperature environments was selected; COMSOL finite element simulation was used to simulate the propagation characteristics of acoustic signals in the waveguide rod, observing the distribution of sound pressure and energy attenuation, verifying the applicability of the model in high-temperature testing environments. Second, a resonant temperature sensor consistent with the simulation parameters was prepared using a molybdenum–rhenium alloy waveguide rod, and an ultrasonic resonant temperature-sensing system suitable for high-temperature environments up to 1800 °C was constructed using the molybdenum–rhenium alloy waveguide rod. The experiment used a tungsten–rhenium calibration furnace to perform static calibration of the sensor. The temperature range was set from room temperature to 1800 °C, with the temperature increased by 100 °C at a time, and it was maintained at each temperature point for 5 to 10 min to ensure thermal stability. This was conducted to verify the performance of the sensor and obtain the functional relationship between temperature and resonance frequency. Experimental results show that during the heating process, the average resonance frequency of the sensor decreased from 341.8 kHz to 310.37 kHz, with an average sensitivity of 17.66 Hz/°C. During the cooling process, the frequency increased from 309 kHz to 341.8 kHz, with an average sensitivity of 18.43 Hz/°C. After cooling to room temperature, the sensor’s resonant frequency returned to its initial value of 341.8 kHz, demonstrating excellent repeatability and thermal stability. This provides a reliable technical foundation for its application in actual high-temperature environments. Full article
Show Figures

Figure 1

9 pages, 2014 KiB  
Article
Pd-Gated N-Polar GaN/AlGaN High-Electron-Mobility Transistor for High-Sensitivity Hydrogen Gas Detection
by Long Ge, Haineng Bai, Yidi Teng and Xifeng Yang
Crystals 2025, 15(6), 578; https://doi.org/10.3390/cryst15060578 - 18 Jun 2025
Viewed by 271
Abstract
Hydrogen gas sensing is critical for energy storage, industrial safety, and environmental monitoring. However, traditional sensors still face challenges in selectivity, sensitivity, and stability. This work introduces an innovative N-polar GaN/AlGaN high-electron-mobility transistor (HEMT) with a 10 nm Pd catalytic layer as a [...] Read more.
Hydrogen gas sensing is critical for energy storage, industrial safety, and environmental monitoring. However, traditional sensors still face challenges in selectivity, sensitivity, and stability. This work introduces an innovative N-polar GaN/AlGaN high-electron-mobility transistor (HEMT) with a 10 nm Pd catalytic layer as a hydrogen sensor. The device achieves ppm-level H2 detection with rapid recovery and reusability, which is comparable to or even exceeds the performance of conventional Ga-polar HEMTs. The N-polar structure enhances sensitivity through its unique polarization-induced 2DEG and intrinsic back barrier, while the Pd layer catalyzes H2 dissociation, forming a dipole layer that can modulate the Schottky barrier height. Experimental results demonstrate superior performance at both room temperature and elevated temperatures. Specifically, at 200 °C, the sensor exhibits a response of 102% toward 200 ppm H2, with response/recovery times of 150 s/17 s. This represents a 96% enhancement in sensitivity and a reduction of 180 s/14 s in response/recovery times compared to room-temperature conditions (23 °C). These findings highlight the potential of N-polar HEMTs for high-performance hydrogen sensing applications. Full article
Show Figures

Figure 1

19 pages, 8053 KiB  
Article
Room-Temperature Environmental Gas Detection: Performance Comparison of Nanoparticle-Based Sensors Fabricated by Electrospray, Drop-Casting, and Dry Printing Based on Spark Ablation
by Carlos Sánchez-Vicente, José Pedro Santos, Isabel Sayago, Vincent Mazzola and Leandro Sacco
Chemosensors 2025, 13(6), 219; https://doi.org/10.3390/chemosensors13060219 - 17 Jun 2025
Viewed by 605
Abstract
Chemical nanosensors based on tin dioxide (SnO2) and zinc oxide (ZnO) nanoparticles (NPs) were developed and characterized for the detection of low concentrations of atmospheric pollutants, such as nitrogen dioxide (NO2) and carbon monoxide (CO). The sensing layers were [...] Read more.
Chemical nanosensors based on tin dioxide (SnO2) and zinc oxide (ZnO) nanoparticles (NPs) were developed and characterized for the detection of low concentrations of atmospheric pollutants, such as nitrogen dioxide (NO2) and carbon monoxide (CO). The sensing layers were prepared using three fabrication methods: drop-casting, electrospray, and spark ablation coupled with an inertial impaction printer, to compare their performance. Multiple surface characterization techniques were carried out to investigate the surface morphology and elemental composition of the deposited layers such as SEM (scanning electron microscopy) and XPS (X-ray photoelectron spectroscopy) analyses. UV light photoactivation enabled the sensors to detect ultra-low concentrations of the target gases at room temperature (100 ppb NO2 and 1 ppm CO). The measurements were conducted at 50% relative humidity to simulate real environmental conditions. All sensors were capable of detecting the target gases. Drop-casting is the simplest and most cost-effective technique, but it is also the least reproducible. In contrast, sensors based on the spark ablation technique achieved more homogeneous sensing layers, with practically no nanoparticle agglomeration, resulting in devices with lower noise and drift in their electrical response. Full article
Show Figures

Graphical abstract

22 pages, 2918 KiB  
Article
Design and Development of a Low-Power IoT System for Continuous Temperature Monitoring
by Luis Miguel Pires, João Figueiredo, Ricardo Martins, João Nascimento and José Martins
Designs 2025, 9(3), 73; https://doi.org/10.3390/designs9030073 - 12 Jun 2025
Viewed by 930
Abstract
This article presents the development of a compact, high-precision, and energy-efficient temperature monitoring system designed for tracking applications where continuous and accurate thermal monitoring is essential. Built around the HY0020 System-on-Chip (SoC), the system integrates two bandgap-based temperature sensors—one internal to the SoC [...] Read more.
This article presents the development of a compact, high-precision, and energy-efficient temperature monitoring system designed for tracking applications where continuous and accurate thermal monitoring is essential. Built around the HY0020 System-on-Chip (SoC), the system integrates two bandgap-based temperature sensors—one internal to the SoC and one external (Si7020-A20)—mounted on a custom PCB and powered by a coin cell battery. A distinctive feature of the system is its support for real-time parameterization of the internal sensor, which enables advanced capabilities such as thermal profiling, cross-validation, and onboard diagnostics. The system was evaluated under both room temperature and refrigeration conditions, demonstrating high accuracy with the internal sensor showing an average error of 0.041 °C and −0.36 °C, respectively, and absolute errors below ±0.5 °C. With an average current draw of just 0.01727 mA, the system achieves an estimated autonomy of 6.6 years on a 1000 mAh battery. Data are transmitted via Bluetooth Low Energy (BLE) to a Raspberry Pi 4 gateway and forwarded to an IoT cloud platform for remote access and analysis. With a total cost of approximately EUR 20 and built entirely from commercially available components, this system offers a scalable and cost-effective solution for a wide range of temperature-sensitive applications. Its combination of precision, long-term autonomy, and advanced diagnostic capabilities make it suitable for deployment in diverse fields such as supply chain monitoring, environmental sensing, biomedical storage, and smart infrastructure—where reliable, low-maintenance thermal tracking is essential. Full article
Show Figures

Figure 1

9 pages, 1252 KiB  
Communication
Dual Effects of Ag Doping and S Vacancies on H2 Detection Using SnS2-Based Photo-Induced Gas Sensor at Room Temperature
by Shaoling Wang, Xianju Shi, Na Fang, Haoran Ma and Jichao Wang
Materials 2025, 18(12), 2687; https://doi.org/10.3390/ma18122687 - 6 Jun 2025
Viewed by 474
Abstract
Hydrogen (H2) monitoring demonstrates significant practical importance for safety assurance in industrial production and daily life, driving the demand for gas-sensing devices with enhanced performance and reduced power consumption. This study developed a room-temperature (RT) hydrogen-sensing platform utilizing two-dimensional (2D) Ag-doped [...] Read more.
Hydrogen (H2) monitoring demonstrates significant practical importance for safety assurance in industrial production and daily life, driving the demand for gas-sensing devices with enhanced performance and reduced power consumption. This study developed a room-temperature (RT) hydrogen-sensing platform utilizing two-dimensional (2D) Ag-doped SnS2 nanomaterials activated by light illumination. The Ag-SnS2 nanosheets, synthesized through hydrothermal methods, exhibited exceptional H2 detection capabilities under blue LED light activation. The synergistic interaction between silver dopants and photo-activation enabled remarkable gas sensitivity across a broad concentration range (5.0–2500 ppm), achieving rapid response/recovery times (4 s/18 s) at 2500 ppm under RT. Material characterization revealed that Ag doping induced S vacancies, enhancing oxygen adsorption, while simultaneously facilitating photo-induced hole transfer for surface hydrogen activation. The optimized sensor maintained good response stability after five-week ambient storage, demonstrating excellent operational durability. Experimental results further demonstrated that Ag dopants enhanced hydrogen adsorption–activation, while S vacancies improved the surface oxygen affinity. This work provides fundamental insights into defect engineering strategies for the development of optically modulated gas sensors, proposing a viable pathway for the construction of energy-efficient environmental monitoring systems. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

15 pages, 1742 KiB  
Article
An Arduino-Based, Portable Weather Monitoring System, Remotely Usable Through the Mobile Telephony Network
by Ioannis Michailidis, Petros Mountzouris, Panagiotis Triantis, Gerasimos Pagiatakis, Andreas Papadakis and Leonidas Dritsas
Electronics 2025, 14(12), 2330; https://doi.org/10.3390/electronics14122330 - 6 Jun 2025
Viewed by 858
Abstract
The article describes an Arduino-based, portable, remotely usable weather monitoring station capable of measuring temperature, relative humidity, pressure, and carbon monoxide (CO) concentration and transmitting the collected data to the Cloud through the mobile telephony network. The main modules of the station are [...] Read more.
The article describes an Arduino-based, portable, remotely usable weather monitoring station capable of measuring temperature, relative humidity, pressure, and carbon monoxide (CO) concentration and transmitting the collected data to the Cloud through the mobile telephony network. The main modules of the station are as follows: a DHT11 sensor for temperature and relative humidity sensing, a BMP180 sensor for pressure monitoring (with temperature compensation), a MQ7 sensor for the monitoring of the CO concentration, an Arduino Uno board, a GSM SIM900 module, and a buzzer, which is activated when the temperature exceeds 35 °C. The station operates as follows: the Arduino Uno board gathers the data collected by the sensors and, by means of the GSM SIM900 module, it transmits the data to the Cloud by using the mobile telephony network as well as the ThingSpeak software which is an open-code IoT application that, among others, enables saving and recovering of sensing and monitoring data. The main novelty of this work is the combined use of the GSM network and the Cloud which enhances the portability and usability of the proposed system and enables remote collection of data in a straightforward way. Additional merits of the system are the easiness and the low cost of its development (owing to the easily available, low-cost hardware combined with an open-code software) as well as its modularity and scalability which allows its customization depending on specific application it is intended for. The system could be used for real-time, remote monitoring of essential environmental parameters in spaces such as farms, warehouses, rooms etc. Full article
Show Figures

Figure 1

24 pages, 16360 KiB  
Article
Excellent Room-Temperature NO2 Gas-Sensing Properties of TiO2-SnO2 Composite Thin Films Under Light Activation
by Victor V. Petrov, Aleksandra P. Starnikova, Maria G. Volkova, Soslan A. Khubezhov, Ilya V. Pankov and Ekaterina M. Bayan
Nanomaterials 2025, 15(11), 871; https://doi.org/10.3390/nano15110871 - 5 Jun 2025
Viewed by 548
Abstract
Thin TiO2–SnO2 nanocomposite films with high gas sensitivity to NO2 were synthesized by oxidative pyrolysis and comprehensively studied. The composite structure and quantitative composition of the obtained film nanomaterials have been confirmed by X-ray photoelectron spectroscopy, high-resolution transmission electron [...] Read more.
Thin TiO2–SnO2 nanocomposite films with high gas sensitivity to NO2 were synthesized by oxidative pyrolysis and comprehensively studied. The composite structure and quantitative composition of the obtained film nanomaterials have been confirmed by X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy, which causes the presence of n-n heterojunctions and provides improved gas-sensitive properties. The sensor based on the 3TiO2–97SnO2 film has the maximum responses, which is explained by the existence of a strong surface electric field formed by large surface potentials in the region of TiO2–SnO2 heterojunctions detected by the Kelvin probe force microscopy method. Exposure to low-intensity radiation (no higher than 0.2 mW/cm2, radiation wavelength—400 nm) leads to a 30% increase in the sensor response relative to 7.7 ppm NO2 at an operating temperature of 200 °C and a humidity of 60% RH. At room temperature (20 °C), under humidity conditions, the response is 1.8 when exposed to 0.2 ppm NO2 and 85 when exposed to 7.7 ppm. The lower sensitivity limit is 0.2 ppm NO2. The temporal stability of the proposed sensors has been experimentally confirmed. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

15 pages, 5863 KiB  
Article
Microsystem for Improving Energy Efficiency by Minimizing Room-Level Greenhouse Effects in Homes
by Shuza Binzaid and Abhitej Divi
Micro 2025, 5(2), 28; https://doi.org/10.3390/micro5020028 - 3 Jun 2025
Viewed by 2959
Abstract
The greenhouse effect, responsible for trapping heat in Earth’s atmosphere, has a parallel thermal phenomenon at the indoor scale known as the Room-Level Greenhouse Effect (RGHE), where solar radiation elevates room temperatures and increases energy consumption. The RGHE contributes to indoor temperature increases [...] Read more.
The greenhouse effect, responsible for trapping heat in Earth’s atmosphere, has a parallel thermal phenomenon at the indoor scale known as the Room-Level Greenhouse Effect (RGHE), where solar radiation elevates room temperatures and increases energy consumption. The RGHE contributes to indoor temperature increases of 4–10 °C and elevates energy demands by 15–30% in high solar exposure zones, the effect being even worse in tropical zones. To address this problem, an innovative analog microarchitecture is proposed for real-time RGHE detection by sensing the sunlight intensity radiation factor (SIR). A compact analog system is introduced, comprising three stages: a Sensing Circuit Stage (SCS) that isolates the dynamic sunlight signal f (r) from static room condition factors (RCFs), an Amplification Stage (AS) that shifts and boosts the signal, and a Stabilized Peak Detection Stage (SPDS) that captures the peak solar intensity. The microsystem was tested across fixed f (m) levels of 0.75 V, 1.0 V, and 1.5 V, and varying f (r) values of 3 mV, 4 mV, and 5 mV. It successfully detects peak voltages ranging from 1.69 V to 1.92 V, with stabilization achieved within 60 µs, enabling accurate detection of the f (r) signal. The proposed microarchitecture offers a scalable approach to localized thermal monitoring in smart building environments using fully analog circuitry, designed and simulated in Cadence Virtuoso using the TSMC 180 nm technology library. Full article
(This article belongs to the Section Microscale Engineering)
Show Figures

Figure 1

11 pages, 2748 KiB  
Article
Time-Dependent Growth of Sputtered MoS2 Films on ZnO Nanorods for Enhanced NO2 Sensing Performance
by Rishi Ranjan Kumar, Shivam Gupta, Aswin kumar Anbalagan, Afzal Khan, Nyan-Hwa Tai, Chih-Hao Lee and Heh-Nan Lin
Micromachines 2025, 16(6), 659; https://doi.org/10.3390/mi16060659 - 30 May 2025
Cited by 1 | Viewed by 588
Abstract
Molybdenum disulfide (MoS2) has gained attention for its promising gas-sensing capabilities due to its high surface area and tunable electronic properties. In this study, we investigate the time-dependent growth (under constant conditions) of sputtered MoS2 films on ZnO nanorods and [...] Read more.
Molybdenum disulfide (MoS2) has gained attention for its promising gas-sensing capabilities due to its high surface area and tunable electronic properties. In this study, we investigate the time-dependent growth (under constant conditions) of sputtered MoS2 films on ZnO nanorods and their impact on NO2 sensing performance. ZnO nanorods, synthesized via a hydrothermal method, provide a high-surface-area template to enhance charge transport and gas adsorption. Gas-sensing experiments revealed a strong correlation between MoS2 thickness and NO2 response, with the 25-min-sputtered MoS2 film exhibiting the highest response of 20.9%. The synergistic interaction between MoS2 and ZnO nanorods facilitated charge transfer and enhanced adsorption sites for NO2 molecules. These findings emphasize the critical role of time-dependent growth of MoS2 film in modulating gas-sensing performance and provide insights into designing high-sensitivity NO2 sensors at room temperature. This study contributes to the development of hybrid MoS2/ZnO nanostructures for next-generation environmental monitoring applications. Full article
Show Figures

Figure 1

Back to TopTop