An Arduino-Based, Portable Weather Monitoring System, Remotely Usable Through the Mobile Telephony Network
Abstract
1. Introduction
2. Description of the System
2.1. The DHT11 Sensor
- A total of 8 bits for the integer and 8 bits for the decimal relative humidity value.
- A total of 8 bits for the integer and 8 bits for the decimal temperature value.
- A total of 8 bits for the parity check of the data.
2.2. The BMP180 Sensor
2.3. The MQ7 Sensor
2.4. The Arduino Uno Module
2.5. The GSM SIM900 Module
2.6. The Buzzer
2.7. ThingSpeak
3. The System’s Operation
4. Discussion
- A smartphone application that would enable data supervision. This can be achieved by properly programming the Arduino for the GSM module to transmit an SMS, e.g., every 30 min.
- Incorporation of additional sensors, for, e.g., luminosity, wind speed/direction, soil moisture, etc.
- Use of higher-performance (e.g., industrial) sensors.
- Addition of an LCD for displaying sensors’ data.
- Addition of a camera for receiving live images.
- The use of a printed-circuit board (PCB) instead of a breadboard.
- The development of the system by using integrated sensors and system-on-chip technology.
- Powering of the system by means of rechargeable batteries or solar panels.
- An enhanced set of experimental results that would be thoroughly tested through a relevant statistical analysis. This could also help in upgrading the TRL of the system (e.g., to 6).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Louis, L. Working principle of Arduino and using IT as a tool for study and research. Int. J. Control Autom. Commun. Syst. 2016, 1, 21–29. [Google Scholar] [CrossRef]
- Kondaveti, H.K.; Kumaravelu, N.K.; Vanambathina, S.D.; Mathe, S.E.; Vappani, S. A systematic literature review on prototyping with Arduino. Comput. Sci. Rev. 2021, 40, 2–28. [Google Scholar] [CrossRef]
- Mircea, P.; Catalin, I. Embedded Weather station with remote wireless control. In Proceedings of the 19th Telecommunications Forum (TELFOR), Belgrade, Serbia, 22–24 November 2011. [Google Scholar]
- Hosamani, R.; Sujathakumari, B.A. Wireless Weather Data Logger Using SD Card with ARM Controller; Visvesvaraya Technological University Belgaum: Karnataka, India, 2010. [Google Scholar]
- Ferdoush, S.; Li, X. Wireless Sensor Network System Design using Raspberry Pi and Arduino for Environmental Monitoring Applications. Procedia Comput. Sci. 2014, 34, 103–110. [Google Scholar] [CrossRef]
- Sabharwal, N.; Kumar, R.; Thakur, A.; Sharma, J. A low-cost Zigbee based automatic wireless weather station with GUI and web hosting facility. Int. J. Electr. Electron. Eng. 2014, 1, 258–263. [Google Scholar]
- Krishnamurthi, K.; Thapa, S.; Kothari, L.; Prakash, A. Arduino based weather monitoring system. Int. J. Eng. Res. Gen. Sci. 2015, 3, 452–458. [Google Scholar]
- Chawla, A.; Bangera, T.; Kolwalkar, C.; Bhat, M. Bluetooth-based weather station. Int. J. Eng. Trends Technol. 2015, 2, 98–101. [Google Scholar] [CrossRef]
- Saefullah, A.; Sunarya, A.; Fakhrizal, D. Prototype Weather Station Berbasis Arduino Yun. Creat. Commun. Innov. Technol. J. 2015, 8, 57–65. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.J.; Verdu Santano, D.; Merono, J.E.; Sanchez de la Orden, M.; Garcıa-Ferrer, A. Open source hardware to monitor environmental parameters in precision agriculture. Biosyst. Eng. 2015, 137, 73–83. [Google Scholar] [CrossRef]
- Saini, H.; Thakur, A.; Ahuja, S.; Sabharwal, N.; Kumar, N. Arduino based automatic wireless weather station with remote graphical applications and alerts. In Proceedings of the 3rd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 11–12 February 2016. [Google Scholar]
- Rao, B.S.; Rao, K.S.; Ome, N. Internet of Things (IoT) based weather monitoring system. Int. J. Adv. Res. Comput. Commun. Eng. 2016, 5, 312–319. [Google Scholar]
- Mahmood, S.N.; Hasan, F.F. Design of weather monitoring system using Arduino-based database implementation. J. Multidiscip. Eng. Sci. Technol. 2017, 4, 7109–7117. [Google Scholar]
- Girija, C.; Shires, A.G.; Harsalatha, H.; Pushpalatha, H.P. Internet of Things (IoT) based weather monitoring system. Int. J. Eng. Res. Technol. 2018, 6, 1–4. [Google Scholar]
- Sidqi, R.; Rynaldo, B.R.; Suroso, S.H.; Firmansyah, R. Arduino based weather monitoring telemetry system using NRF24L01+. IOP Conf. Ser. Mater. Sci. Eng. 2018, 336, 012024. [Google Scholar] [CrossRef]
- Holovatyy, A. Development of IOT weather monitoring system based on Arduino and ESP8266 Wi-Fi Module. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1, 012014. [Google Scholar] [CrossRef]
- Liyakat, K.S.S.; Liyakat, K.K.S. Arduino based weather monitoring system. J. Health Syst. Res. 2023, 8, 24–29. [Google Scholar]
- Mouser Electronics, Munich, Germany. DHT11 Humidity & Temperature Sensor. Available online: https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf?srsltid=AfmBOoqBzEvf7Kjxa6huTH5bRzOyYxn6rCvpGPspNJnf-PtrZhrwZpmG (accessed on 17 December 2024).
- Bosch GmbH. BMP180 Digital Pressure Sensor. BMP180 Datasheet (2/29 Pages) BOSCH|Digital Pressure Sensor. Available online: https://www.alldatasheet.com/html-pdf/1132068/BOSCH/BMP180/353/2/BMP180.html (accessed on 17 December 2024).
- Hanwei Electronics Co. Ltd., Zhengzhou, China. MQ-7. Available online: http://www.hwsensor.com (accessed on 17 December 2024).
- UNO R3. Arduino UNO Rev3 with Long Pins|Arduino Documentation. Available online: https://docs.arduino.cc/retired/boards/arduino-uno-rev3-with-long-pins/ (accessed on 17 December 2024).
- Arduino IDE 2.3.4. Available online: www.arduino.cc/en/software (accessed on 17 December 2024).
- Grobotronics, Athens, Greece. GSM SIM900. GSM/GPRS Shield for Arduino SIM900. Available online: https://grobotronics.com/gsm-gprs-shield-for-arduino-sim900.html?srsltid=AfmBOor6xLlkolNLYSfNa9j8UEDzgDh8pVctlNtQ_SoZZQ_g73-TTxzt (accessed on 17 December 2024).
- Learn More About Thingspeak. Available online: https://thingspeak.com/pages/learn_more (accessed on 17 December 2024).
- Heder, M. From NASA to EU: The evolution of the TRL scale in Public Sector Innovation. Innov. J. 2017, 22, 3. [Google Scholar]
- Mishra, P.; Kohler, M.J. Technological pedagogical content knowledge: A framework for integrating technology in teacher knowledge. Teach. Coll. Rec. 2006, 108, 1017–1054. [Google Scholar] [CrossRef]
- Armstrong, P. Bloom’s taxonomy. Vanterbilt University Center for Teaching. Available online: https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy (accessed on 12 September 2023).
Ref | Microcontroller | Monitored Parameters and Sensors (*) | Data Transmission Mode | Cost (**) |
---|---|---|---|---|
[3] | ATmega328 | T (STH15), P (SHP1000), L (TEMT6000) | GSM | n/a |
[4] | ARM | T/RH (LM35) | RF (2.4 GHz) | n/a |
[5] | Arduino-Uno | T/RH (RHT03) | ZigBee + Internet | n/a |
[6] | Arduino-Uno | T/RH (SHT21), P (BMP085), wind | ZigBee + Internet | n/a |
[7] | Arduino-Uno | T (LM35), P (DHT11), L (LDR) | No component | n/a |
[8] | Arduino-Uno | T (DHT11) | Bluetooth | n/a |
[9] | Arduino Yun | T/RH (DHT11), P (BMP180), L (LDR) | WiFi + Internet | n/a |
[10] | Arduino-Mega | T (LM35, DS18B20), RH (KEYS, DHT22), L (EDC-307792) | Bluetooth | 100 € |
[11] | Arduino-Uno | T (SHT25), P (BMP180), wind | ZigBee + Internet | n/a |
[12] | Arduino-Uno | T (LM35), L (LDR), CO (MQ7) | ZigBee + Internet | n/a |
[13] | Arduino-Uno | T/RH (DHT), wind | WiFi | n/a |
[14] | ESP8266 | T/RH (DHT11), CO (MQ6) | WiFi + IoT | n/a |
[15] | Arduino-Mega | T/RH (DHT11), P (BMP180), L (LDR) | RF (2.4 GHz) | n/a |
[16] | Arduino-Mega | T/RH/P (BME280) | WiFi | n/a |
[17] | Arduino-Uno | T (DHT11) | RF (2.4 GHz) | n/a |
Module | Role |
---|---|
DHT11 sensor | Monitoring of temperature and relative humidity. |
BMP180 sensor | Monitoring of atmospheric pressure. It also includes a temperature compensation. |
MQ7 sensor | Monitoring of the CO concentration. |
Arduino Uno board | Gathering of the sensors’ data. |
GSM SIM900 module | Transmission of the collected data to the Cloud through the mobile network. |
Buzzer | To be activated when the temperature exceeds 35 °C. |
Parameter | Relative Humidity | Temperature |
---|---|---|
Sensing element | Resistive-type component | Thermistor |
Power supply voltage | 3.5–5.5 V | |
Current | 0.3 mA (measuring), 0.06 mA (standing) | |
Sampling frequency | 1 Hz | |
Interface | Digital | |
Output | Serial data | |
Range | 20–90% (at 25 °C) | 0–50 °C |
Accuracy | 4–5% | ±1 to ±2 °C |
Response time | 6–15 s | 6–30 s |
Size | 15 mm × 12 mm × 5.5 mm |
Parameter | Value |
---|---|
Power-supply voltage | +5 V |
Pressure range | 300–1100 hPa (0.3–1.1 bar) |
Accuracy | 0.12 hPa |
Response time | 5 ms |
Parameter | Value |
---|---|
Processor | ATmega-328 |
Frequency | 16 MHz |
Analog inputs/outputs | 6 |
Digital inputs/outputs | 14 |
Memory size | 32 KB + 1 KB EEPROM + 2 KB RAM |
Voltage | 5 V |
Dimensions | 69 × 54 mm |
Weight | 25 g |
Parameter | Value |
---|---|
Frequency band | 850/900/1800/1900 MHz |
Technology | 2 G |
Supply voltage | 5–12 VDC |
Maximum supply current | 2 A |
Idle state current | 30 mA |
Temperature of operation | −40 °C to 80 °C |
Interface | UART (default: 115,200 bps at 3.3/5 V) |
Component | Cost (€) 1 |
---|---|
DHT11 sensor | 3.00 |
BMP180 sensor | 5.00 |
MQ7 sensor | 3.00 |
Arduino Uno | 26.0 |
GSM SIM900 module | 30.00 |
Data package | 20.00 |
Buzzer | 1.00 |
Breadboard | 4.00 |
Cables | 6.00 |
TOTAL COST | 98.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michailidis, I.; Mountzouris, P.; Triantis, P.; Pagiatakis, G.; Papadakis, A.; Dritsas, L. An Arduino-Based, Portable Weather Monitoring System, Remotely Usable Through the Mobile Telephony Network. Electronics 2025, 14, 2330. https://doi.org/10.3390/electronics14122330
Michailidis I, Mountzouris P, Triantis P, Pagiatakis G, Papadakis A, Dritsas L. An Arduino-Based, Portable Weather Monitoring System, Remotely Usable Through the Mobile Telephony Network. Electronics. 2025; 14(12):2330. https://doi.org/10.3390/electronics14122330
Chicago/Turabian StyleMichailidis, Ioannis, Petros Mountzouris, Panagiotis Triantis, Gerasimos Pagiatakis, Andreas Papadakis, and Leonidas Dritsas. 2025. "An Arduino-Based, Portable Weather Monitoring System, Remotely Usable Through the Mobile Telephony Network" Electronics 14, no. 12: 2330. https://doi.org/10.3390/electronics14122330
APA StyleMichailidis, I., Mountzouris, P., Triantis, P., Pagiatakis, G., Papadakis, A., & Dritsas, L. (2025). An Arduino-Based, Portable Weather Monitoring System, Remotely Usable Through the Mobile Telephony Network. Electronics, 14(12), 2330. https://doi.org/10.3390/electronics14122330