Study on Molybdenum–Rhenium Alloy Ultrasonic Resonance Temperature Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. IUltrasonic Guided Wave Resonance Measurement Principle
2.2. Material Selection and Parameter Design
- (1)
- Length of waveguide rod
- (2)
- Diameter size
- (3)
- Resonator size
2.3. System Construction
3. Results
3.1. Analysis of Group Velocity Dispersion Characteristics
3.2. Simulation Experiment
3.3. Calibration Experiment
4. Discussion
4.1. Conclusions
4.2. Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, S.; Ma, Y.; Zhou, T.; Sun, Z. Real-time estimation of thermal boundary conditions and internal temperature fields for thermal protection system of aerospace vehicle via temperature sequence. Int. Commun. Heat Mass 2023, 142, 106618. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, Y.-J.; Liu, W.-Y.; Zhang, Y.-J.; Yao, Z.; Zhao, L.-H.; Xiong, J.-J. A liquid level measurement technique outside a sealed metal container based on ultrasonic impedance and echo energy. Sensors 2017, 17, 185. [Google Scholar] [CrossRef] [PubMed]
- Myrick, J.; Keyhani, M.; Frankel, J. Calibration of a plug-type gauge for measurement of surface heat flux and temperature using data from in-depth thermocouples. Exp. Therm. Fluid. Sci. 2019, 104, 302–316. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X. Influence of participating media on the radiation thermometry for surface temperature measurement. J. Therm. Sci. 2005, 14, 368–373. [Google Scholar] [CrossRef]
- Wei, Y.; Gao, Y.; Xiao, Z.; Wang, G.; Tian, M.; Liang, H. Ultrasonic Al2O3 ceramic thermometry in high-temperature oxidation environment. Sensors 2016, 16, 1905. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Yang, L.; Wang, G.; Zhang, N.; Wang, S.; Yin, Y.; Jia, Z.; Tao, X. Antioxidation and High-Resolution Ultrasonic Temperature Sensor Based on Cr3+:MgAl2O4 Single Crystal Fiber. Cryst. Growth Des. 2020, 20, 6763–6768. [Google Scholar] [CrossRef]
- Xin, C.-Y.; Du, X.; Guo, F.-Q.; Shen, S.-L. Radiation thermometry algorithms with emissivity constraint. Spectrosc. Spect. Anal. 2019, 39, 679. [Google Scholar]
- Sun, C.-Z. Ultrasonic Temperature Measurement Technology for Molten Metals. Auto. Instrum. 1994, 05, 37–42. [Google Scholar]
- Zhu, L.; Li, K.; Luo, Y.; Yu, D.; Wang, Z.; Wu, G.; Xie, J.; Tang, Z. Magnetostrictive properties and detection efficiency of TbDyFe/FeCo composite materials for nondestructive testing. J. Rare. Earth 2019, 37, 166–170. [Google Scholar] [CrossRef]
- Zhong, C.H.; Croxford, A.J.; Wilcox, P.D. Investigation of inductively coupled ultrasonic transducer system for NDE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1115–1125. [Google Scholar] [CrossRef]
- John, M.; Walton, K.; Kinder, D.; Dayton, M.A.; Skliar, M. Ultrasonic measurement of temperature distributions in extreme environments: Electrical power plants testing in utility-scale steam generators. Ultrasonics 2024, 138, 107205. [Google Scholar] [CrossRef]
- Manogharan, P.; Rajagopal, P.; Balasubramaniam, K. Longitudinal guided waves confined in radius filler regions of composite joints. J. Acoust. Soc. Am. 2016, 140, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Fu, X. A micro resonant gas sensor with adjustable natural frequency. IEEE Trans. Ind. Electron. 2020, 68, 5337–5345. [Google Scholar] [CrossRef]
- Qi, Q.; Li, J.; Mu, X.; Tang, Z.; Bao, X.; Zhang, P.; Gao, X.; Ding, Z. Microstructure evolution and magnetic properties of annealed magnetostrictive Fe81Al19 coatings and their ultrasonic guided wave transducing performance. Surf. Coat. Tech. 2019, 367, 19–29. [Google Scholar] [CrossRef]
- Shang, J.; Ma, J.; Zhu, X.; Song, H.; Zhou, P.; Hu, J.; Yuan, Z.; Huang, H.; Zhang, M. Finite element analysis of the zero-crossing temperature of a long Fabry–Perot cavity. Indian J. Phys. 2023, 97, 2523–2529. [Google Scholar] [CrossRef]
- Chen, A.; Yang, Z.; Zhao, X.; Anderson, S.; Zhang, X. Composite Acoustic Metamaterial for Broadband Low-Frequency Acoustic Attenuation. Phys. Rev. Appl. 2023, 20, 014011. [Google Scholar] [CrossRef]
- Foudzi, M.F.; Ihara, I. Development of Polygonal Buffer Rods for Ultrasonic Pulse-Echo Measurements. J. Phys. Conf. Ser. 2014, 520, 012025. [Google Scholar] [CrossRef]
- Álvarez-Arenas, G.T.; Camacho, J. Air-Coupled and Resonant Pulse-Echo Ultrasonic Technique. Sensors 2019, 19, 2221. [Google Scholar] [CrossRef]
- Liang, H.-J.; Wei, Y.-L.; Liu, L.; Xue, H.; Wang, G. Exploring Acoustic-Temperature Response Characteristics of Al2O3 Crystals in High-Temperature Electromagnetic Environments. IEEE Sens. J. 2025, 25, 4211–4217. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.; Zhang, J.; Lin, N.; Wang, G.; Jia, Z.; Zhao, X.; Tao, X. Design and Directional Growth of (Mg1-xZnx)(Al1-yCry)2O4 Single-Crystal Fibers for High-Sensitivity and High-Temperature Sensing Based on Lattice Doping Engineering and Acoustic Anisotropy. Adv. Funct. Mater. 2021, 31, 2103224. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Yang, L.; Wang, G.; Wang, H.; Zhang, N.; Wang, S.; Yin, Y.; Jia, Z.; Tao, X. Fabrication and sensitivity optimization of garnet crystal-fiber ultrasonic temperature sensor. J. Mater. Chem. C 2020, 8, 3830–3837. [Google Scholar] [CrossRef]
- Yang, W.; Ye, J.; Bi, P.; Huang, B.; Chen, L.; Yi, Y. Mechanical properties of Mo-Re alloy based on first-principles and machine learning potential function. Mater. Today Commun. 2024, 38, 107796. [Google Scholar] [CrossRef]
- Chen, H.-X.; Lin, S.-Y. Nonlinear propagation and anomalous absorption of ultrasound in liquid. Acta. Phys. Sin. 2020, 69, 134301. [Google Scholar] [CrossRef]
- Chen, H.P.; Zhang, G.; Hu, W.; Nie, B.; Zhou, H.; Luo, W.; Li, H. Nondestructive determination of longitudinal rail stress from guided wave dispersion properties. Constr. Build. Mater. 2023, 408, 133618. [Google Scholar] [CrossRef]
- Seco, F.; Jimenez, R.A. Modal Analysis of the Piezoelectric Generation of Ultrasonic Guided Waves for Nondestructive Testing of Cylindrical Structures. Russ. J. Nondestruct. Test. 2007, 43, 683–691. [Google Scholar] [CrossRef]
- Miller, J.M.L.; Ansari, A.; Heinz, D.B.; Chen, Y.; Flader, I.B.; Shin, D.D.; Villanueva, L.G.; Kenny, T.W. Effective quality factor tuning mechanisms in micromechanical resonators. Appl. Phys. Rev. 2018, 5, 041307. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, Z.; Wei, S.; Qi, G.; Li, Y.; Luan, Y. Three-dimensional finite element analysis for temperature filed of composite materials during the cure. Multidiscip. Model. Mater. Struct. 2022, 18, 43–53. [Google Scholar] [CrossRef]
- Veit, G.; Belanger, P. An ultrasonic guided wave excitation method at constant phase velocity using ultrasonic phased array probes. Ultrasonics 2020, 102, 106039. [Google Scholar] [CrossRef]
- Yang, X.; Wang, C.; Sun, A.; Ju, B.F. Multi-mode ultrasonic waves focusing in a variable focus technique for simultaneous sound-velocity and thickness measurement. Appl. Acoust. 2020, 159, 107090. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Hao, X.; Yin, W. A measurement system for time constant of thermocouple sensor based on high temperature furnace. Appl. Sci. 2018, 8, 2585. [Google Scholar] [CrossRef]
- Wang, G.; Liang, H.-J.; Wei, Y.-L.; Wang, X.-H.; Zhao, J.; Li, X. Research progress of ultrasonic temperature measurement technology in ultra-high temperature extreme environments. Metrol. Meas. Technol. 2024, 44, 1–13. [Google Scholar]
- Sivaprakasam, T.B.; Krishnamurthy, C.V.; Arunachalam, K. Non-contact in situ microwave material measurements for high temperature process monitoring. Rev. Sci. Instrum. 2019, 90, 034702. [Google Scholar] [CrossRef] [PubMed]
- Lyu, F.; Zhou, X.; Ding, Z.; Qiao, X.; Song, D. Application Research of Ultrasonic-Guided Wave Technology in Pipeline Corrosion Defect Detection: A Review. Coatings 2024, 14, 358. [Google Scholar] [CrossRef]
Materials | Density/(g/cm3) | Melting Point/°C | Young’s Modulus/GPa | Poisson’s Ratio | Thermal Conductivity W/(m·K) | Thermal Expansion Coefficient/K |
---|---|---|---|---|---|---|
Molybdenum-Rhenium | 10.4 | 2620 | 320 | 0.28 | 130 | 5.3 × 10−6 |
Sapphire | 3.98 | 2053 | 400 | 0.28 | 45 | 5.8 × 10−6 |
Spinel | 3.58 | 2135 | 280 | 0.26 | 15 | 8.5 × 10−6 |
Sensor Structures | Length L | Cone Face Diameter d1 | Diameter d2 | Cone Length L1 | Resonator Length L2 |
---|---|---|---|---|---|
Parameters/mm | 1000 | 0.83 | 2 | 9.5 | 19 |
Type | Stability | Difficulty of Preparation | Sensitivity | Signal Processing |
---|---|---|---|---|
Resonant | Good | Normal | Good | Normal |
Zonal | Normal | Easy | Normal | Normal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Wang, G.; Yang, X.; Wei, Y.; Xue, H. Study on Molybdenum–Rhenium Alloy Ultrasonic Resonance Temperature Sensor. Appl. Sci. 2025, 15, 6965. https://doi.org/10.3390/app15136965
Liang H, Wang G, Yang X, Wei Y, Xue H. Study on Molybdenum–Rhenium Alloy Ultrasonic Resonance Temperature Sensor. Applied Sciences. 2025; 15(13):6965. https://doi.org/10.3390/app15136965
Chicago/Turabian StyleLiang, Haijian, Gao Wang, Xiaomei Yang, Yanlong Wei, and Hongxin Xue. 2025. "Study on Molybdenum–Rhenium Alloy Ultrasonic Resonance Temperature Sensor" Applied Sciences 15, no. 13: 6965. https://doi.org/10.3390/app15136965
APA StyleLiang, H., Wang, G., Yang, X., Wei, Y., & Xue, H. (2025). Study on Molybdenum–Rhenium Alloy Ultrasonic Resonance Temperature Sensor. Applied Sciences, 15(13), 6965. https://doi.org/10.3390/app15136965