Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (361)

Search Parameters:
Keywords = rock tunnel excavation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5914 KiB  
Article
Numerical Simulation of Surrounding Rock Vibration and Damage Characteristics Induced by Blasting Construction in Bifurcated Small-Spacing Tunnels
by Mingshe Sun, Yantao Wang, Guangwei Dai, Kezhi Song, Xuyang Xie and Kejia Yu
Buildings 2025, 15(15), 2737; https://doi.org/10.3390/buildings15152737 - 3 Aug 2025
Viewed by 199
Abstract
The stability of the intermediate rock wall in the blasting construction of bifurcated small-spacing tunnels directly affects the construction safety of the tunnel structure. Clarifying the damage characteristics of the intermediate rock wall has significant engineering value for ensuring the safe and efficient [...] Read more.
The stability of the intermediate rock wall in the blasting construction of bifurcated small-spacing tunnels directly affects the construction safety of the tunnel structure. Clarifying the damage characteristics of the intermediate rock wall has significant engineering value for ensuring the safe and efficient construction of bifurcated tunnels. Based on the Tashan North Road Expressway Tunnel Project, this paper investigated the damage characteristics of the intermediate rock wall in bifurcated tunnels under different blasting construction schemes, using numerical simulation methods to account for the combined effects of in situ stress and blasting loads. The results were validated using comparisons with the measured damage depth of the surrounding rock in the ramp tunnels. The results indicate that the closer the location is to the starting point of the bifurcated tunnel, the thinner the intermediate rock wall and the more severe the damage to the surrounding rock. When the thickness of the intermediate rock wall exceeds 4.2 m, the damage zone does not penetrate through the wall. The damage to the intermediate rock wall exhibits an asymmetric “U”-shaped distribution, with greater damage on the side of the trailing tunnel at the section of the haunch and sidewall, while the opposite is true at the section of the springing. During each excavation step of the ramp and main-line tunnels, the damage to the intermediate rock wall is primarily induced by blasting loads. As construction progresses, the damage to the rock wall increases progressively under the combined effects of blasting loads and the excavation space effect. In the construction of bifurcated tunnels, the greater the distance between the headings of the leading and trailing tunnels is, the less damage will be inflicted on the intermediate rock wall. Constructing the tunnel with a larger cross-sectional area first will cause more damage to the intermediate rock wall. When the bench method is employed, an increase in the bench length leads to a reduction in the damage to the intermediate rock wall. The findings provide valuable insights for the selection of construction schemes and the protection of the intermediate rock wall when applying the bench method in the construction of bifurcated small-spacing tunnels. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

21 pages, 3510 KiB  
Article
An Improved Optimal Cloud Entropy Extension Cloud Model for the Risk Assessment of Soft Rock Tunnels in Fault Fracture Zones
by Shuangqing Ma, Yongli Xie, Junling Qiu, Jinxing Lai and Hao Sun
Buildings 2025, 15(15), 2700; https://doi.org/10.3390/buildings15152700 - 31 Jul 2025
Viewed by 196
Abstract
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with [...] Read more.
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with an optimized cloud entropy extension cloud model. Initially, a comprehensive indicator system encompassing geological (surrounding rock grade, groundwater conditions, fault thickness, dip, and strike), design (excavation cross-section shape, excavation span, and tunnel cross-sectional area), and support (support stiffness, support installation timing, and construction step length) parameters is established. Subjective weights obtained via the analytic hierarchy process (AHP) are combined with objective weights calculated using the entropy, coefficient of variation, and CRITIC methods and subsequently balanced through a game theoretic approach to mitigate bias and reconcile expert judgment with data objectivity. Subsequently, the optimized cloud entropy extension cloud algorithm quantifies the fuzzy relationships between indicators and risk levels, yielding a cloud association evaluation matrix for precise classification. A case study of a representative soft rock tunnel in a fault-fractured zone validates this method’s enhanced accuracy, stability, and rationality, offering a robust tool for risk management and design decision making in complex geological settings. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

18 pages, 7521 KiB  
Article
Study on Optimization of Construction Parameters and Schemes for Complex Connecting Tunnels of Extra-Long Highway Tunnels Based on Field Monitoring and Numerical Simulation
by Shaohui He, Jiaxuan Liu, Dawei Huang and Jianfei Ma
Infrastructures 2025, 10(8), 197; https://doi.org/10.3390/infrastructures10080197 - 26 Jul 2025
Viewed by 253
Abstract
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, [...] Read more.
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, established an on-site monitoring scheme and a refined numerical simulation model. It systematically analyzed the impact of various construction parameters on the construction process of connecting tunnels and the main tunnel, and on this basis, optimized the construction scheme, improving construction efficiency. The research results show that (1) after the excavation of the connecting tunnel, the confining pressure at the top of the working face decreases rapidly, while the confining pressure on both sides increases rapidly; the extreme point of the confining pressure decrease is located at the central point at the top of the excavated working face. (2) For Class III surrounding rock excavated using the full-face blasting method, the maximum influence range of working face excavation on the stratum along the tunneling direction is approximately 4D (where D represents the excavation step). (3) The larger the excavation step of the connecting tunnel, the more obvious the stress concentration phenomenon at the central point of the working face arch crown, and the excavation step should be optimally controlled within the range of 2–3 m. (4) When explosives in the blast hole adopt decoupled charging, the ratio of borehole diameter to charge diameter can be increased to utilize the air gap to buffer the energy generated by the explosion. Full article
Show Figures

Figure 1

18 pages, 3895 KiB  
Article
Long-Term Mechanical Response of Jinping Ultra-Deep Tunnels Considering Pore Pressure and Engineering Disturbances
by Ersheng Zha, Mingbo Chi, Jianjun Hu, Yan Zhu, Jun Guo, Xinna Chen and Zhixin Liu
Appl. Sci. 2025, 15(15), 8166; https://doi.org/10.3390/app15158166 - 23 Jul 2025
Viewed by 191
Abstract
As the world’s deepest hydraulic tunnels, the Jinping ultra-deep tunnels provide world-class conditions for research on deep rock mechanics under extreme conditions. This study analyzed the time-dependent behavior of different tunneling sections in the Jinping tunnels using the Nishihara creep model implemented in [...] Read more.
As the world’s deepest hydraulic tunnels, the Jinping ultra-deep tunnels provide world-class conditions for research on deep rock mechanics under extreme conditions. This study analyzed the time-dependent behavior of different tunneling sections in the Jinping tunnels using the Nishihara creep model implemented in Abaqus. Validated numerical simulations of representative cross-sections at 1400 m and 2400 m depths in the diversion tunnel reveal that long-term creep deformations (over a 20-year period) substantially exceed instantaneous excavation-induced displacements. The stress concentrations and strain magnitudes exhibit significant depth dependence. The maximum principal stress at a 2400 m depth reaches 1.71 times that at 1400 m, while the vertical strain increases 1.46-fold. Based on this, the long-term mechanical behavior of the surrounding rock during the expansion of the Jinping auxiliary tunnel was further calculated and predicted. It was found that the stress concentration at the top and bottom of the left sidewall increases from 135 MPa to 203 MPa after expansion, identifying these as critical areas requiring focused monitoring and early warnings. The total deformation of the rock mass increases by approximately 5 mm after expansion, with the cumulative deformation reaching 14 mm. Post-expansion deformation converges within 180 days, with creep deformation of 2.5 mm–3.5 mm observed in both sidewalls, accounts for 51.0% of the total deformation during expansion. The surrounding rock reaches overall stability three years after the completion of expansion. These findings establish quantitative relationships between the excavation depth, time-dependent deformation, and stress redistribution and support the stability design, risk management, and infrastructure for ultra-deep tunnels in a stress state at a 2400 m depth. These insights are critical to ensuring the long-term stability of ultra-deep tunnels and operational safety assessments. Full article
Show Figures

Figure 1

18 pages, 6753 KiB  
Article
Deformation Analysis of 50 m-Deep Cylindrical Retaining Shaft in Composite Strata
by Peng Tang, Xiaofeng Fan, Wenyong Chai, Yu Liang and Xiaoming Yan
Sustainability 2025, 17(13), 6223; https://doi.org/10.3390/su17136223 - 7 Jul 2025
Viewed by 415
Abstract
Cylindrical retaining structures are widely adopted in intercity railway tunnel engineering due to their exceptional load-bearing performance, no need for internal support, and efficient utilization of concrete compressive strength. Measured deformation data not only comprehensively reflect the influence of construction and hydrogeological conditions [...] Read more.
Cylindrical retaining structures are widely adopted in intercity railway tunnel engineering due to their exceptional load-bearing performance, no need for internal support, and efficient utilization of concrete compressive strength. Measured deformation data not only comprehensively reflect the influence of construction and hydrogeological conditions but also directly and clearly indicate the safety and stability status of structure. Therefore, based on two geometrically similar cylindrical shield tunnel shafts in Shenzhen, the surface deformation, structure deformation, and changes in groundwater outside the shafts during excavation were analyzed, and the deformation characteristics under the soil–rock composite stratum were summarized. Results indicate that the uneven distribution of surface surcharge and groundwater level are key factors causing differential deformations. The maximum horizontal deformation of the shafts wall is less than 0.05% of the current excavation depth (H), occurring primarily in two zones: from H − 20 m to H + 20 m and in the shallow 0–10 m range. Vertical deformations at the wall top are mostly within ±0.2% H. Localized groundwater leakage in joints may lead to groundwater redistribution and seepage-induced fine particle migration, exacerbating uneven deformations. Timely grouting when leakage occurs and selecting joints with superior waterproof sealing performance are essential measures to ensure effective sealing. Compared with general polygonal foundation pits, cylindrical retaining structures can achieve low environmental disturbances while possessing high structural stability. Full article
(This article belongs to the Special Issue Sustainable Development and Analysis of Tunnels and Underground Works)
Show Figures

Figure 1

14 pages, 5151 KiB  
Article
Scale-Model Experiment on the Delayed Failure Mechanism of Deep Tunnels in Brittle Rock
by Ning Zhang and Ziwei Chen
Appl. Sci. 2025, 15(13), 7496; https://doi.org/10.3390/app15137496 - 3 Jul 2025
Viewed by 282
Abstract
Rock bursts usually happen during the hours or days after tunnel excavation, even in an unsupported opening where no collapses occur. To investigate the mechanism of those delayed failures in brittle rock tunnels, this paper showcases the performed scale-model test based upon the [...] Read more.
Rock bursts usually happen during the hours or days after tunnel excavation, even in an unsupported opening where no collapses occur. To investigate the mechanism of those delayed failures in brittle rock tunnels, this paper showcases the performed scale-model test based upon the Jinping II headrace tunnelling project. The model test was conducted in a particularly designed loading apparatus; the scale-model is composed of a similar material for the deep brittle rock. The tunnel in the scale-model is excavated by a specially made drilling tool. The failure mode of the deep circle tunnel under isotropic and anisotropic geostress were obtained; the delay failure time was recorded, and the accompanying stresses and strains changing were monitored. Under isotropic geostress the failure shape has a smooth circle boundary, failure process totally costs 56 h. While under anisotropic geostress a dog-eared breakdown was found, the failure process amounted to 72 h. The time-to-failure was evaluated by delay failure theory, and the evaluation equation was implemented into in FEM code. Numerical simulations have been performed to simulate the failure time and failure mode. The numerical results of failure time and failure mode mainly match the scale-model testing results. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

19 pages, 2774 KiB  
Article
Numerical Modeling on the Damage Behavior of Concrete Subjected to Abrasive Waterjet Cutting
by Xueqin Hu, Chao Chen, Gang Wang and Jenisha Singh
Buildings 2025, 15(13), 2279; https://doi.org/10.3390/buildings15132279 - 28 Jun 2025
Viewed by 291
Abstract
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical [...] Read more.
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical framework based on a coupled Smoothed Particle Hydrodynamics (SPH)–Finite Element Method (FEM) algorithm incorporating the Riedel–Hiermaier–Thoma (RHT) constitutive model is proposed to investigate the damage mechanism of concrete subjected to abrasive waterjet. Numerical simulation results show a stratified damage observation in the concrete, consisting of a crushing zone (plastic damage), crack formation zone (plastic and brittle damage), and crack propagation zone (brittle damage). Furthermore, concrete undergoes plastic failure when the shear stress on an element exceeds 5 MPa. Brittle failure due to tensile stress occurs only when both the maximum principal stress (σ1) and the minimum principal stress (σ3) are greater than zero at the same time. The damage degree (χ) of the concrete is observed to increase with jet diameter, concentration of abrasive particles, and velocity of jet. A series of orthogonal tests are performed to analyze the influence of velocity of jet, concentration of abrasive particles, and jet diameter on the damage degree and impact depth (h). The parametric numerical studies indicates that jet diameter has the most significant influence on damage degree, followed by abrasive concentration and jet velocity, respectively, whereas the primary determinant of impact depth is the abrasive concentration followed by jet velocity and jet diameter. Based on the parametric analysis, two optimized abrasive waterjet configurations are proposed: one tailored for rock fragmentation in tunnel boring machine (TBM) operations; and another for cutting reinforced concrete piles in shield tunneling applications. These configurations aim to enhance the efficiency and sustainability of excavation and tunneling processes through improved material removal performance and reduced mechanical wear. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 11913 KiB  
Article
Research on the Mechanical Behavior and Rockburst Risk of the Deep-Buried Roadway at the Stratigraphical Boundary of Different Lithologies
by Chaoqun Chu, Lei Xia, Shunchuan Wu, Shun Han and Guang Zhang
Appl. Sci. 2025, 15(13), 7026; https://doi.org/10.3390/app15137026 - 22 Jun 2025
Viewed by 481
Abstract
It has been found in engineering practice that the degree of rockburst risk increases when roadway excavation occurs near the stratigraphical boundary of different lithologies. This study uses the 1276 m deep-buried roadway of a lead–zinc mine in Yunnan, China, as its engineering [...] Read more.
It has been found in engineering practice that the degree of rockburst risk increases when roadway excavation occurs near the stratigraphical boundary of different lithologies. This study uses the 1276 m deep-buried roadway of a lead–zinc mine in Yunnan, China, as its engineering background. Based on a numerical analysis of this case, it investigates the mechanical behavior of surrounding rocks in different lithological formations and explores the causes of excavation-induced rockburst. Additionally, by changing the excavation strategy in a numerical simulation, the influence of the direction of roadway excavation on the degree of rockburst risk in the construction of different lithological formations is assessed. The results are summarized as follows: (1) When the tunnel passes from the C1b stratum (limestone) to the D3zg stratum (dolomite), an abnormal stress zone forms in the roof rock strata of the D3zg stratum (the lower plate of the stratum boundary). The rockburst risk level was evaluated by introducing the numerical rockburst index in this abnormal stress zone, which aligns closely with on-site rockburst investigation results. The rockburst risk is the greatest in the abnormal stress zone, which provides an external energy storage environment for the development of rockburst disasters. (2) Near the stratum boundary, the rockburst risk level when excavating from the D3zg stratum to the C1b stratum is greater than that when excavating from the C1b stratum to the D3zg stratum. The direction of tunnel excavation significantly affects the rockburst risk level during construction that crosses different lithological strata. These findings can provide a theoretical basis for the construction design of similar underground projects. Full article
Show Figures

Figure 1

26 pages, 21454 KiB  
Article
Numerical Study of Surrounding Rock Damage in Deep-Buried Tunnels for Building-Integrated Underground Structures
by Penglin Zhang, Chong Zhang, Weitao Chen, Chunhui He, Yang Liu and Zhaofei Chu
Buildings 2025, 15(13), 2168; https://doi.org/10.3390/buildings15132168 - 21 Jun 2025
Viewed by 347
Abstract
When deep-buried tunnels are excavated using the drill-and-blast method, the surrounding rock is subjected to combined cyclic blasting loads and excavation-induced stress unloading. Understanding the distribution characteristics of rock damage zones under these conditions is crucial for the design and safety of building-integrated [...] Read more.
When deep-buried tunnels are excavated using the drill-and-blast method, the surrounding rock is subjected to combined cyclic blasting loads and excavation-induced stress unloading. Understanding the distribution characteristics of rock damage zones under these conditions is crucial for the design and safety of building-integrated underground structures. This study investigates the relationship between surrounding rock damage and in situ stress conditions through numerical simulation methods. A constitutive model suitable for simulating rock mass damage was developed and implemented in the LS-DYNA (version R12) code via a user-defined material model, with parameters determined using the Hoek–Brown failure criterion. A finite element model was established to analyze surrounding rock damage under cyclic blasting loads, and the model was validated using field data. Simulations were then carried out to explore the evolution of the damage zone under various stress conditions. The results show that with increasing hydrostatic pressure, the extent of the damage zone first decreases and then increases, with blasting-induced damage dominating under lower pressure and unloading-induced shear failure prevailing at higher pressure. When the hydrostatic pressure is less than 20 MPa, the surrounding rock stabilizes at a distance greater than 12.6 m from the tunnel face, whereas at hydrostatic pressures of 30 MPa and 40 MPa, this distance increases to 29.4 m. When the lateral pressure coefficient is low, tensile failure occurs mainly at the vault and floor, while shear failure dominates at the arch waist. As the lateral pressure coefficient increases, the failure mode at the vault shifts from tensile to shear. Additionally, when the horizontal stress perpendicular to the tunnel axis (σH) is less than the vertical stress (σv), variations in the axial horizontal stress (σh) have a significant effect on shear failure. Conversely, when σH exceeds σv, changes in σh have little impact on the extent of rock damage. Full article
Show Figures

Figure 1

23 pages, 5055 KiB  
Article
Assessing the Impact of Concurrent Tunnel Excavations on Rock Mass Deformation Around Existing Structures
by Maoyi Liu, Qiang Ou, Xuanxuan Ren and Xuanming Ding
Appl. Sci. 2025, 15(12), 6875; https://doi.org/10.3390/app15126875 - 18 Jun 2025
Viewed by 252
Abstract
Due to the complexity of planning and constructing underground lines, construction challenges—such as close proximity and multi-line interactions—are increasingly being recognized, along with their associated safety hazards. The visual observation of tunnel deformation and changes in the surrounding strata is difficult. In this [...] Read more.
Due to the complexity of planning and constructing underground lines, construction challenges—such as close proximity and multi-line interactions—are increasingly being recognized, along with their associated safety hazards. The visual observation of tunnel deformation and changes in the surrounding strata is difficult. In this study, laboratory model experiments were conducted using a mixture of liquid paraffin, n-tridecane, and silica gel powder, combined in specific proportions to create a transparent material that simulates natural soft rock. The new tunnel was designed to simultaneously cross over and under two existing tunnels. The impact of the new tunnel on the existing tunnels was examined, with excavation length and soil layer thickness considered as the primary influencing factors. The results indicate that excavating the new tunnel causes settlement deformation in the tunnels above and heave deformation in the tunnels below. The magnitude of deformation increases as excavation progresses but decreases with the greater thickness of the soil interlayer. For an existing tunnel, variations in the thickness of the soil interlayer not only affect its own deformation but also disturb the tunnel on the opposite side. Therefore, to ensure safer and orderly urban tunnel construction and to address the “black box” effect, it is essential to study the deformation characteristics of existing tunnels and their surrounding rock during the construction of new tunnels. Full article
Show Figures

Figure 1

18 pages, 4797 KiB  
Article
A Practical Quantitative Tool Based on the EXCASS System for the Use of Hoek-Brown’s Disturbance Factor in Slope Excavations
by Gulseren Dagdelenler and Harun Sonmez
Appl. Sci. 2025, 15(12), 6714; https://doi.org/10.3390/app15126714 - 15 Jun 2025
Viewed by 419
Abstract
The disturbance factor (D) in the Hoek–Brown criterion quantifies excavation-induced rock mass disturbance. Although D is conceptually defined as a continuous parameter ranging from 0 to 1, the most recent Hoek–Brown guidelines provide descriptions only for boundary conditions related to slopes [...] Read more.
The disturbance factor (D) in the Hoek–Brown criterion quantifies excavation-induced rock mass disturbance. Although D is conceptually defined as a continuous parameter ranging from 0 to 1, the most recent Hoek–Brown guidelines provide descriptions only for boundary conditions related to slopes and tunnels. In slope excavations, the degree of disturbance is governed not only by the excavation method but also by the thickness of the removed overburden, with its influence becoming particularly significant in deep excavations. In recent years, the concept of a transitional disturbance factor, varying with depth from the excavation surface, has gained increasing attention. To address this need, the EXCASS system, an empirical method for selecting appropriate excavation techniques based on the Geological Strength Index (GSI) and point load strength (Is50) values, was integrated into the transitional disturbance factor framework in this study. EXCASS allows for the selection of stronger or weaker excavation methods, offering flexibility to control the degree of disturbance induced in the rock mass. Moreover, the disturbance factor at the excavation surface was determined by incorporating both the operational excavation power index and the thickness of the removed overburden. This integrated approach enables a more realistic evaluation of excavation-induced damage in slope stability analyses. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

24 pages, 9899 KiB  
Article
Analysis of Tunnel Deformation Using Elastoplastic Stillinger Weber (SW) Potential Embedded Discretized Virtual Internal Bond (DVIB) Method
by Dina Kon, Shu Jisen, Alphonse Kakanda and Dave Mbako
Appl. Sci. 2025, 15(12), 6595; https://doi.org/10.3390/app15126595 - 11 Jun 2025
Viewed by 1306
Abstract
Tunnel deformation induced by excavation in brittle and quasi-brittle rock masses involves complex interactions among stress redistribution, plastic deformation, and fracture evolution. Existing numerical approaches often struggle to capture these coupled mechanisms, particularly under varying material properties such as Poisson’s ratio. This study [...] Read more.
Tunnel deformation induced by excavation in brittle and quasi-brittle rock masses involves complex interactions among stress redistribution, plastic deformation, and fracture evolution. Existing numerical approaches often struggle to capture these coupled mechanisms, particularly under varying material properties such as Poisson’s ratio. This study aims to analyze tunnel deformation using an elastoplastic Discretized Virtual Internal Bond (DVIB) method embedded in a modified Stillinger–Weber (SW) potential. In this framework, plastic deformation is introduced through the two-body component, whereas the three-body angular potential governs Poisson’s ratio. A fracture-energy-based regularization strategy was implemented to reduce the mesh sensitivity and ensure energy consistency during bond failure. The model was evaluated through numerical simulations, including pre-cracked plates, center-split circular Brazilian discs, and tunnel models, under various in situ stress conditions and Poisson ratios. The findings indicate that higher Poisson’s ratios lead to increased deformation, with tunnel wall displacements rising from 0.45 mm at ν=0.17 to 1.32 mm at ν=0.35. The deformation patterns and failure zones are consistent with theoretical expectations, confirming the applicability of the model to tunnel stability analysis in brittle geomaterials. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

16 pages, 5631 KiB  
Article
Dynamic Damage Characteristics of Red Sandstone: An Investigation of Experiments and Numerical Simulations
by Yelin Qian, Ying Su, Ruicai Han, Changchun Li and Ran An
Buildings 2025, 15(11), 1845; https://doi.org/10.3390/buildings15111845 - 27 May 2025
Viewed by 375
Abstract
This study investigates damage characteristics of red sandstone under dynamic loads to clarify the effects of construction disturbances and blasting on the stability of surrounding rock during mountain tunnel construction in water-rich strata. Dynamic impact experiments at various loads were conducted using the [...] Read more.
This study investigates damage characteristics of red sandstone under dynamic loads to clarify the effects of construction disturbances and blasting on the stability of surrounding rock during mountain tunnel construction in water-rich strata. Dynamic impact experiments at various loads were conducted using the Split Hopkinson Pressure Bar (SHPB) instrument, complemented by simulations of the fracturing process in saturated sandstone using finite element software. This analysis systematically examines the post-fracture granularity mass fraction, stress-strain curves, peak stress-average strain rate relationship, and fracture patterns. The dynamic response mechanism of red sandstone during the process of tunnel blasting construction was thoroughly investigated. Experimental results reveal that the peak stress and failure strain exhibit strain rate dependency, increasing from 45.65 MPa to 115.34 MPa and 0.95% to 5.23%, respectively, as strain rate elevates from 35.53 s−1 to 118.71 s−1. The failure process of red sandstone is divided into four stages: crack closure, nearly elastic phase, rapid crack development, and rapid unloading. Dynamic peak stress and average strain rate in sandstone demonstrate an approximately linear relationship, with the correlation coefficient being 0.962. Under different impact loads, fractures in specimens typically expand from the edges to the center and evolve from internal squeezing fractures to external development. Peak stress, degree of specimen breakage, and energy dissipation during fracturing are significantly influenced by the strain rate. The numerical simulations confirmed experimental findings while elucidating the failure mechanism in surrounding rocks under varying strain rates. This work pioneers a multiscale analysis framework bridging numerical simulation with a blasting construction site, addressing the critical gap in time-dependent deformation during tunnel excavation. Full article
Show Figures

Figure 1

17 pages, 5337 KiB  
Article
Characteristics and Deformation Mechanisms of Neogene Red-Bed Soft Rock Tunnel Surrounding Rock: Insights from Field Monitoring and Experimental Analysis
by Jin Wu, Geng Cheng, Zhiyi Jin, Zhize Han, Feng Peng and Jiaxin Jia
Buildings 2025, 15(11), 1820; https://doi.org/10.3390/buildings15111820 - 26 May 2025
Viewed by 370
Abstract
This study focuses on Neogene red-bed soft rock tunnels in the Huicheng Basin, China. Through engineering geological investigation, remote wireless monitoring systems, and total station multi-parameter monitoring, the deformation characteristics of red-bed soft rock surrounding rock under high in situ stress environments and [...] Read more.
This study focuses on Neogene red-bed soft rock tunnels in the Huicheng Basin, China. Through engineering geological investigation, remote wireless monitoring systems, and total station multi-parameter monitoring, the deformation characteristics of red-bed soft rock surrounding rock under high in situ stress environments and their influencing factors were systematically analyzed. The findings reveal that the surrounding rock deformation follows a three-stage evolutionary pattern of “rapid, slow, and stable”. Construction disturbances can disrupt the stable state, leading to “deep V-shaped” anomalies or double-step responses in deformation curves. Spatially, the deformation exhibits significant anisotropy, with the haunch area showing the maximum deformation (95 mm) and the vault the minimum (65–73 mm). Deformation stabilization requires 30–42 days, and a reserved deformation of 10 cm is recommended based on specifications. Mechanical behavior analysis indicates that the stress–strain curves of red-bed argillaceous sandstone are stepped, with increased confining pressure enhancing both peak and residual strengths, validating the necessity of timely support. The study elucidates a multi-factor coupling mechanism: rock mass classification, temporal–spatial effects (excavation face constraints and rheological properties), construction methods, in situ stress levels, and support timing (timely support during the rapid phase inhibits strength degradation) significantly influence deformation evolution. The spatiotemporal distribution of surrounding rock pressure shows that invert pressure increases most rapidly, while vault pressure reaches the highest magnitude, with construction disturbances triggering stress redistribution. This research provides theoretical and practical guidance for the design, construction optimization, and disaster prevention of red-bed soft rock tunnels. Full article
Show Figures

Figure 1

23 pages, 7094 KiB  
Article
Parametric Analysis and Control of Bedding-Inclined Asymmetric Stress in Double-Arch Tunnels: A 3DEC-Based Study on Jointed Rock Masses
by Pai Zhang, Wangrong Li, Liqiang Xu, Fengwei Wu, Zaihong Li, Pei Tai and Leilei Liu
Buildings 2025, 15(11), 1816; https://doi.org/10.3390/buildings15111816 - 25 May 2025
Viewed by 505
Abstract
Double-arch tunnels in inclined layered jointed rock masses face risks of lining cracking and collapse under bedding-inclined asymmetric stress (BIAS); however, related studies remain limited. Based on a case study of an expressway tunnel case in Zhejiang Province, a three-dimensional discrete element model [...] Read more.
Double-arch tunnels in inclined layered jointed rock masses face risks of lining cracking and collapse under bedding-inclined asymmetric stress (BIAS); however, related studies remain limited. Based on a case study of an expressway tunnel case in Zhejiang Province, a three-dimensional discrete element model of a double-arch tunnel was developed using Three-Dimensional Distinct Element Code (3DEC) (version 7.0, Itasca Consulting Group, Inc., Minneapolis, MN, USA). The impacts of joint dip angle (0–90°) and spacing (0.5–6.5 m) on deformation, BIAS evolution, and middle partition wall stability were analyzed. Key findings reveal that joint presence significantly amplifies surrounding rock deformation, with pronounced displacement increases observed on the counter-dip side. The BIAS intensity follows a unimodal distribution with joint dip angles, peaking within the 30–60° range. Increasing joint spacing reduces BIAS effects, with a 57.1% decrease in asymmetric deformation observed when spacing increases from 0.5 m to 6.5 m. The implementation of dip-side pilot excavation with the main tunnel full-face method, combined with an optimized support strategy (installing dip-side bolts perpendicular to joints and extending counter-dip side bolt lengths from 4 m to 6 m), achieved a near-unity stress ratio between tunnel sides under equivalent overburden depths compared to conventional methods. These findings offer theoretical and technical insights for optimizing excavation and reinforcement in similar tunnel engineering contexts. Full article
(This article belongs to the Special Issue Advances in Building Foundation Engineering)
Show Figures

Figure 1

Back to TopTop