Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (803)

Search Parameters:
Keywords = road traffic congestion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 772 KB  
Article
Throughput and Capacity Analysis of a Vertiport with Taxing and Parking Levels
by Samiksha Rajkumar Nagrare and Teemu Joonas Lieb
Aerospace 2026, 13(1), 109; https://doi.org/10.3390/aerospace13010109 - 22 Jan 2026
Abstract
Amidst the increasing aerial traffic and road traffic congestion, Urban Air Mobility (UAM) has emerged as a new mode of aerial transport offering less travel time and ease of portability. A critical factor in reducing travel time is the emerging electric Vertical Take-Off [...] Read more.
Amidst the increasing aerial traffic and road traffic congestion, Urban Air Mobility (UAM) has emerged as a new mode of aerial transport offering less travel time and ease of portability. A critical factor in reducing travel time is the emerging electric Vertical Take-Off and Landing (eVTOL) vehicles, which require infrastructure such as vertiports to operate smoothly. However, the dynamics of vertiport operations, particularly the integration of battery charging facilities, remain relatively unexplored. This work aims to bridge this gap by delving into vertiport management by utilizing separate taxing and parking levels. The study also focuses on the time eVTOLs spend at the vertiport to anticipate potential delays. This factor helps optimise arrival and departure times via a scheduling strategy that accounts for hourly demand fluctuations. The simulation results, conducted with hourly demand, underscore the significant impact of battery charging on operational time while also highlighting the role of parking spots in augmenting capacity and facilitating more efficient scheduling. Full article
(This article belongs to the Special Issue Operational Requirements for Urban Air Traffic Management)
24 pages, 3151 KB  
Article
Sustainable Mixed-Traffic Micro-Modeling in Intelligent Connected Environments: Construction and Simulation Analysis
by Yang Zhao, Xiaoqiang Zhang, Haoxing Zhang, Xue Lei, Jianjun Wang and Mei Xiao
Sustainability 2026, 18(2), 960; https://doi.org/10.3390/su18020960 - 17 Jan 2026
Viewed by 167
Abstract
Sustainable urban mobility necessitates traffic regimes that enhance operational efficiency and improve traffic safety and flow stability; the rise in intelligent connected vehicles (ICVs) provides a salient mechanism to meet this imperative. This paper aims to investigate the mixed traffic flow characteristics in [...] Read more.
Sustainable urban mobility necessitates traffic regimes that enhance operational efficiency and improve traffic safety and flow stability; the rise in intelligent connected vehicles (ICVs) provides a salient mechanism to meet this imperative. This paper aims to investigate the mixed traffic flow characteristics in an intelligent connected environment, using one-way single-lane, double-lane, and three-lane straight highways as modeling objects. Combining the different driving characteristics of human-driven vehicles (HDVs) and ICVs, a single-lane mixed traffic flow model and a multi-lane mixed traffic flow model are established based on the intelligent driver model (IDM) and flexible symmetric two-lane cellular automata model (FSTCAM). The mixed traffic flow in the intelligent connected environment is then simulated using MATLAB R2021a. The research results indicate that the integration of ICVs can improve the speed, flow, and critical density of traffic flow. The increase in the proportion of ICVs can reduce the congestion ratio and speed difference between front and rear vehicles at the same density. As the proportion of ICVs increases, the frequency of lane-changing for HDVs gradually increases, while the frequency of lane-changing for ICVs gradually decreases. The overall lane-changing frequency shows a trend of first increasing and then decreasing. In addition, with the continuous infiltration of ICVs, the area of road congestion gradually decreases, and congestion is significantly alleviated. The speed fluctuation of following vehicles gradually decreases. When the infiltration rate reaches a high level, vehicles travel at a stable speed and remain in a relatively steady state. The findings substantiate the potential of ICV-enabled operations to advance efficiency-oriented and stability-enhancing urban mobility and to inform evidence-based traffic management and policy design. Full article
Show Figures

Figure 1

16 pages, 2463 KB  
Proceeding Paper
Simulating Road Networks for Medium-Size Cities: Aswan City Case Study
by Seham Hemdan, Mahmoud Khames, Abdulmajeed Alsultan and Ayman Othman
Eng. Proc. 2026, 121(1), 22; https://doi.org/10.3390/engproc2025121022 - 16 Jan 2026
Viewed by 172
Abstract
This research simulates Aswan City’s urban transportation dynamics utilizing the Multi-Agent Transport Simulation (MATSim) framework. As a fast-expanding urban center, Aswan has many transportation difficulties that require extensive modeling toward sustainable mobility solutions. MATSim, recognized for its agent-based methodology, offers a detailed portrayal [...] Read more.
This research simulates Aswan City’s urban transportation dynamics utilizing the Multi-Agent Transport Simulation (MATSim) framework. As a fast-expanding urban center, Aswan has many transportation difficulties that require extensive modeling toward sustainable mobility solutions. MATSim, recognized for its agent-based methodology, offers a detailed portrayal and analysis of individual travel behaviors and their interactions within the metropolitan transportation system. This study compiled and combined many databases, including demographic data, road infrastructure, public transit plans, and travel demand trends. These data are altered to produce a realistic digital clone of Aswan’s transportation system. Simulated scenarios analyze the consequences of several actions, such as increased public transit scheduling, traffic flow management, and the adoption of alternative transport modes, on minimizing congestion and boosting accessibility. Pilot findings show that MATSim effectively captures the distinct features of Aswan’s transportation network and offers practical insights for decision-makers. The results identified some opportunities to improve mobility and promote sustainable urban growth in developing cities. This study emphasized the importance of agent-based simulations in designing future transportation systems and urban infrastructure. Full article
Show Figures

Figure 1

36 pages, 9776 KB  
Article
Signal Timing Optimization Method for Intersections Under Mixed Traffic Conditions
by Hongwu Li, Yangsheng Jiang and Bin Zhao
Algorithms 2026, 19(1), 71; https://doi.org/10.3390/a19010071 - 14 Jan 2026
Viewed by 95
Abstract
The increasing proliferation of new energy vehicles and autonomous vehicles has led to the formation of mixed traffic flows characterized by diverse driving behaviors, posing new challenges for intersection signal control. To address this issue, this study proposes a multi-class customer feedback queuing [...] Read more.
The increasing proliferation of new energy vehicles and autonomous vehicles has led to the formation of mixed traffic flows characterized by diverse driving behaviors, posing new challenges for intersection signal control. To address this issue, this study proposes a multi-class customer feedback queuing network (MCFFQN) model that incorporates state-dependent road capacity and congestion propagation mechanisms to accurately capture the stochastic and dynamic nature of mixed traffic flows. An evaluation framework for intersection performance is established based on key indicators such as vehicle delay, the energy consumption of new energy vehicles, and the fuel consumption and emissions of conventional vehicles. A recursive solution algorithm is developed and validated through simulations under various traffic demand scenarios. Building on this model, a signal timing optimization model aimed at minimizing total costs—including delay and environmental impacts—is formulated and solved using the Mesh Adaptive Direct Search (MADS) algorithm. A case study demonstrates that the optimized signal timing scheme significantly enhances intersection performance, reducing vehicle delay, energy consumption, fuel consumption, and emissions by over 20%. The proposed methodology provides a theoretical foundation for sustainable traffic management under mixed traffic conditions. Full article
Show Figures

Figure 1

18 pages, 15384 KB  
Article
Electric Vehicle Route Optimization: An End-to-End Learning Approach with Multi-Objective Planning
by Rodrigo Gutiérrez-Moreno, Ángel Llamazares, Pedro Revenga, Manuel Ocaña and Miguel Antunes-García
World Electr. Veh. J. 2026, 17(1), 41; https://doi.org/10.3390/wevj17010041 - 13 Jan 2026
Viewed by 107
Abstract
Traditional routing algorithms optimizing for distance or travel time are inadequate for electric vehicles (EVs), which require energy-aware planning considering battery constraints and charging infrastructure. This work presents an energy-optimal routing system for EVs that integrates personalized consumption modeling with real-time environmental data. [...] Read more.
Traditional routing algorithms optimizing for distance or travel time are inadequate for electric vehicles (EVs), which require energy-aware planning considering battery constraints and charging infrastructure. This work presents an energy-optimal routing system for EVs that integrates personalized consumption modeling with real-time environmental data. The system employs a Long Short-Term Memory (LSTM) neural network to predict State-of-Charge (SoC) consumption from real-world driving data, learning directly from spatiotemporal features including velocity, temperature, road inclination, and traveled distance. Unlike physics-based models requiring difficult-to-obtain parameters, this approach captures nonlinear dependencies and temporal patterns in energy consumption. The routing framework integrates static map data, dynamic traffic conditions, weather information, and charging station locations into a weighted graph representation. Edge costs reflect predicted SoC drops, while node penalties account for traffic congestion and charging opportunities. An enhanced A* algorithm finds optimal routes minimizing energy consumption. Experimental validation on a Nissan Leaf shows that the proposed end-to-end SoC estimator significantly outperforms traditional approaches. The model achieves an RMSE of 36.83 and an R2 of 0.9374, corresponding to a 59.91% reduction in error compared to physics-based formulas. Real-world testing on various routes further confirms its accuracy, with a Mean Absolute Error in the total route SoC estimation of 2%, improving upon the 3.5% observed for commercial solutions. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

20 pages, 1916 KB  
Article
Impacts of Human Drivers’ Keep Right Rule Noncompliance on Sustainable Freeway Operations in Mixed Traffic
by Dajeong Han and Junhyung Lee
Sustainability 2026, 18(2), 672; https://doi.org/10.3390/su18020672 - 8 Jan 2026
Viewed by 220
Abstract
This study analyzed the impact of human drivers’ Keep Right Rule noncompliance on sustainable freeway operations in mixed traffic. Using the microscopic traffic simulation tool, a total of 36 scenarios were examined based on variations in driving behavior, presence of slow vehicles in [...] Read more.
This study analyzed the impact of human drivers’ Keep Right Rule noncompliance on sustainable freeway operations in mixed traffic. Using the microscopic traffic simulation tool, a total of 36 scenarios were examined based on variations in driving behavior, presence of slow vehicles in the passing lane, desired speed, and number of lanes. The Wiedemann-99 car-following model and autonomous driving logic were applied for simulation. Simulation results revealed that the occupation of the passing lane by a human-driven slow vehicle increased the recovery time and variability in right-side rule compared to free lane selection. Also, 20 km/h was a threshold desired speed gap that activated the bottleneck by the slow vehicle in a passing lane. Lastly, as the number of lanes increased, bottleneck formation was diminished. The findings point to a mixed traffic systemic paradox. Human drivers can alleviate bottleneck formation by flexibly performing right-side overtaking even though it is illegal, whereas autonomous vehicles cannot perform right-side overtaking, which unintentionally activates a bottleneck under strict rule compliance. These results show that in mixed traffic conditions, even minor violations of traffic rules by human drivers can lead to congestion. Therefore, to achieve sustainable and safe road traffic by harmonizing mixed traffic, institutional improvements are necessary alongside advances in autonomous driving technology. Full article
Show Figures

Figure 1

30 pages, 13098 KB  
Article
Achieving Isobenefit Urbanism in the Central Urban Area of Megacities, Taking Beijing as a Case Study: The Core Area of the Capital
by Changming Yu, Yuqing Zhang, Zhaoyang Li, Xinyu Wang, Qiuyue Hai and Stephen Siu Yu Lau
Sustainability 2026, 18(1), 542; https://doi.org/10.3390/su18010542 - 5 Jan 2026
Viewed by 279
Abstract
Rapid development and scale expansion of cities are the core characteristics of the urbanization process, which effectively promote the formation of agglomeration economies, infrastructure sharing, and social mobility improvement. However, it also brings various negative effects such as unequal public services, traffic congestion, [...] Read more.
Rapid development and scale expansion of cities are the core characteristics of the urbanization process, which effectively promote the formation of agglomeration economies, infrastructure sharing, and social mobility improvement. However, it also brings various negative effects such as unequal public services, traffic congestion, and environmental pollution. The principle of isobenefit urbanism proposes that walking accessibility of various service facilities is an important indicator for measuring whether a city is livable, fair, and sustainable. This study specifically examines the impacts of environmental factors on the implementation of isobenefit urbanism in the central urban area of Beijing, a megacity. By obtaining open-source data and performing ArcGIS (10.8.1) analysis, using 183 blocks in Beijing’s core area, we normalized Strava pedestrian heat by road area and regressed it on 12 built environment indicators. The final model (R = 0.650, R2 = 0.422, and adjusted R2 = 0.381) identifies five significant predictors: block area (β = 0.215, p = 0.001) and average building height (β = 0.299, p = 0.012) are positively associated with walking heat, while building density (β = −0.235, p = 0.003), intersection density (β = −0.321, p < 0.001), and average distance to bus stop (β = −0.196, p = 0.003) are negatively associated. Land use mix and facility supply show positive but nonsignificant effects after controls. These estimates provide actionable levers for isobenefit urbanism in megacity cores. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

25 pages, 4574 KB  
Article
Clustering Based Approach for Enhanced Characterization of Anomalies in Traffic Flows
by Mohammed Khasawneh and Anjali Awasthi
Future Transp. 2026, 6(1), 11; https://doi.org/10.3390/futuretransp6010011 - 4 Jan 2026
Viewed by 196
Abstract
Traffic flow anomalies represent significant deviations from normal traffic behavior and disrupt the smooth operation of transportation systems. These may appear as unusually high or low traffic volumes compared to historical trends. Unexpectedly high volume can lead to congestion exceeding usual capacity, while [...] Read more.
Traffic flow anomalies represent significant deviations from normal traffic behavior and disrupt the smooth operation of transportation systems. These may appear as unusually high or low traffic volumes compared to historical trends. Unexpectedly high volume can lead to congestion exceeding usual capacity, while unusually low volume might indicate incidents like road closures, or malfunctioning traffic signals. Identifying and understanding both types of anomalies is crucial for effective traffic management. This paper presents a clustering based approach for enhanced characterization of anamolies in traffic flows. Anomalies in traffic patterns are determined using three anomaly detection techniques: Elliptic Envelope, Isolation Forest, and Local Outlier Factor. These anomalies were newly detected in this work on the Montréal dataset after preprocessing, rather than directly reused from earlier studies. These methods were applied to a dataset that had been pre-processed using windowing techniques with different configuration settings to enhance the detection process. Then, to leverage the detected anomalies, we utilized clustering algorithms, specifically k-means and hierarchical clustering, to segment these anomalies. Each clustering algorithm was used to determine the optimal number of clusters. Subsequently, we characterized these clusters through detailed visualization and mapped them according to their unique characteristics. This approach not only identifies traffic anomalies effectively but also provides a comprehensive understanding of their spatial and temporal distributions, which is crucial for traffic management and urban planning. Full article
Show Figures

Figure 1

16 pages, 1561 KB  
Article
TSAformer: A Traffic Flow Prediction Model Based on Cross-Dimensional Dependency Capture
by Haoning Lv, Xi Chen and Weijie Xiu
Electronics 2026, 15(1), 231; https://doi.org/10.3390/electronics15010231 - 4 Jan 2026
Viewed by 175
Abstract
Accurate multivariate traffic flow forecasting is critical for intelligent transportation systems yet remains challenging due to the complex interplay of temporal dynamics and spatial interactions. While Transformer-based models have shown promise in capturing long-range temporal dependencies, most existing approaches compress multidimensional observations into [...] Read more.
Accurate multivariate traffic flow forecasting is critical for intelligent transportation systems yet remains challenging due to the complex interplay of temporal dynamics and spatial interactions. While Transformer-based models have shown promise in capturing long-range temporal dependencies, most existing approaches compress multidimensional observations into flattened sequences—thereby neglecting explicit modeling of cross-dimensional (i.e., spatial or inter-variable) relationships, which are essential for capturing traffic propagation, network-wide congestion, and node-specific behaviors. To address this limitation, we propose TSAformer, a novel Transformer architecture that explicitly preserves and jointly models time and dimension as dual structural axes. TSAformer begins with a multimodal input embedding layer that encodes raw traffic values alongside temporal context (time-of-day and day-of-week) and node-specific positional features, ensuring rich semantic representation. The core of TSAformer is the Two-Stage Attention (TSA) module, which first models intra-dimensional temporal evolution via time-axis self-attention then captures inter-dimensional spatial interactions through a lightweight routing mechanism—avoiding quadratic complexity while enabling all-to-all cross-node communication. Built upon TSA, a hierarchical encoder–decoder (HED) structure further enhances forecasting by modeling traffic patterns across multiple temporal scales, from fine-grained fluctuations to macroscopic trends, and fusing predictions via cross-scale attention. Extensive experiments on three real-world traffic datasets—including urban road networks and highway systems—demonstrate that TSAformer consistently outperforms state-of-the-art baselines across short-term and long-term forecasting horizons. Notably, it achieves top-ranked performance in 36 out of 58 critical evaluation scenarios, including peak-hour and event-driven congestion prediction. By explicitly modeling both temporal and dimensional dependencies without structural compromise, TSAformer provides a scalable, interpretable, and high-performance solution for spatiotemporal traffic forecasting. Full article
(This article belongs to the Special Issue Artificial Intelligence for Traffic Understanding and Control)
Show Figures

Figure 1

21 pages, 4686 KB  
Article
Network-Wide Deployment of Connected and Autonomous Vehicle Dedicated Lanes Through Integrated Modeling of Endogenous Demand and Dynamic Capacity
by Yuxin Wang, Lili Lu and Xiaoying Wu
Sustainability 2026, 18(1), 292; https://doi.org/10.3390/su18010292 - 27 Dec 2025
Viewed by 331
Abstract
Integrating connected and autonomous vehicle dedicated lanes (CAVDLs) into existing road networks under mixed traffic conditions presents a complex challenge, often requiring a balance of multiple conflicting objectives. This study develops a dynamic multi-objective optimization framework, formulated as a mixed-integer nonlinear programming problem, [...] Read more.
Integrating connected and autonomous vehicle dedicated lanes (CAVDLs) into existing road networks under mixed traffic conditions presents a complex challenge, often requiring a balance of multiple conflicting objectives. This study develops a dynamic multi-objective optimization framework, formulated as a mixed-integer nonlinear programming problem, to determine the optimal network-wide deployment of CAVDLs. The framework integrates three core components: an endogenous demand model capturing connected and autonomous vehicle (CAV)/human-driven vehicle (HDV) mode choice, a multi-class dynamic traffic assignment model that adjusts lane capacity based on CAV-HDV interactions, and an NSGA-III algorithm that minimizes total system travel time, total emissions, and construction costs. Results of a case study indicate the following: (i) sensitivity analysis confirms that user value of time is the most critical factor affecting CAV adoption; the model’s endogenous consideration of this variable ensures alignment between CAVDL layouts and actual demand; (ii) the proposed Pareto-optimal solution reduces total travel time and emissions by approximately 31% compared to a no-CAVDL scenario, while cutting construction costs by 23.5% against a single-objective optimization; (iii) CAVDLs alleviate congestion by reducing bottleneck duration and peak density by 36.4% and 16.3%, respectively. The developed framework provides a novel and practical decision-support tool that explicitly quantifies the trade-offs among traffic efficiency, environmental impact, and infrastructure cost for sustainable transportation planning. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

24 pages, 11726 KB  
Article
Towards Sustainable Intelligent Transportation Systems: A Hierarchical Spatiotemporal Graph–Hypergraph Network for Urban Traffic Flow Prediction
by Xin Jiao and Xinsheng Zhang
Sustainability 2026, 18(1), 180; https://doi.org/10.3390/su18010180 - 23 Dec 2025
Viewed by 356
Abstract
Spatiotemporal traffic flow prediction is a fundamental task in intelligent transportation systems and is crucial for promoting efficient and sustainable urban mobility, especially under increasingly complex and rapidly evolving traffic conditions. To overcome the challenges of modeling high-order spatial dependencies and heterogeneous temporal [...] Read more.
Spatiotemporal traffic flow prediction is a fundamental task in intelligent transportation systems and is crucial for promoting efficient and sustainable urban mobility, especially under increasingly complex and rapidly evolving traffic conditions. To overcome the challenges of modeling high-order spatial dependencies and heterogeneous temporal patterns, this study develops a novel Hierarchical Spatiotemporal Graph–Hypergraph Network (HSTGHN). For spatial representation learning, a hypergraph neural module is employed to capture high-order interactions across the road network, while a hypernode mechanism is designed to characterize complex correlations among multiple road segments. Furthermore, an adaptive adjacency matrix is constructed in a data-driven manner and enriched with prior knowledge of bidirectional traffic flows, thereby enhancing the robustness and accuracy of graph structural representations. For temporal modeling, HSTGHN integrates the complementary strengths of Gated Recurrent Units (GRUs) and Transformers: GRUs effectively capture local sequential dependencies, whereas Transformers excel at modeling global dynamic patterns. This joint mechanism enables comprehensive learning of both short-term and long-term temporal dependencies. Extensive experiments on multiple benchmark datasets demonstrate that HSTGHN consistently outperforms state-of-the-art baselines in terms of prediction accuracy and stability, with particularly significant improvements in long-term forecasting and highly dynamic traffic scenarios. These improvements provide more reliable decision support for intelligent transportation systems, contributing to enhanced traffic efficiency, reduced congestion, and ultimately more sustainable urban mobility. Full article
Show Figures

Figure 1

33 pages, 894 KB  
Review
Impacts of Connected and Automated Driving: From Personal Acceptance to the Effects in Society: A Multi-Factor Review
by Nuria Herrero García, Nicoletta Matera, Michela Longo and Felipe Jiménez
Electronics 2026, 15(1), 27; https://doi.org/10.3390/electronics15010027 - 21 Dec 2025
Viewed by 337
Abstract
This systematic literature review explores the impacts of autonomous and connected mobility systems on sustainable road transportation. The evaluation process involves a multifaceted analysis, encompassing the assessment of their capacity to mitigate accidents, energy consumption, emissions, and urban traffic congestion. As a novel [...] Read more.
This systematic literature review explores the impacts of autonomous and connected mobility systems on sustainable road transportation. The evaluation process involves a multifaceted analysis, encompassing the assessment of their capacity to mitigate accidents, energy consumption, emissions, and urban traffic congestion. As a novel approach, this paper analyses the parameters of user acceptance of technology and how these are reflected in the overall impacts of automated and connected driving. Thus, based on a behavioral intention to use the new technology model, we aim to analyze the state of the art of the overall impacts that may be correlated with individual interests. To this end, a multi-factor approach is applied and potential interactions between factors that may arise are studied in a holistic and quantitative assessment of their combined effects on transportation systems. This impact assessment is a significant challenge, as numerous factors come into play, leading to conflicting effects. Since there is no significant penetration of vehicles with medium or high levels of automation, conclusions are often obtained through simulations or estimates based on hypotheses that must be considered when analyzing the results and can lead to significant dispersion. The results confirm that these technologies can substantially improve road safety, traffic efficiency, and environmental performance. However, their large-scale deployment will critically depend on the establishment of coherent regulatory frameworks, infrastructural readiness, and societal acceptance. Comprehensive stakeholder collaboration, incorporating industry, regulatory authorities, and society, is essential to successfully address existing concerns, facilitate technological integration, and maximize the societal benefits of these transformative mobility systems. Full article
(This article belongs to the Section Electrical and Autonomous Vehicles)
Show Figures

Figure 1

24 pages, 9423 KB  
Article
Operator Learning with Branch–Trunk Factorization for Macroscopic Short-Term Speed Forecasting
by Bin Yu, Yong Chen, Dawei Luo and Joonsoo Bae
Data 2025, 10(12), 207; https://doi.org/10.3390/data10120207 - 12 Dec 2025
Viewed by 524
Abstract
Logistics operations demand real-time visibility and rapid response, yet minute-level traffic speed forecasting remains challenging due to heterogeneous data sources and frequent distribution shifts. This paper proposes a Deep Operator Network (DeepONet)-based framework that treats traffic prediction as learning a mapping from historical [...] Read more.
Logistics operations demand real-time visibility and rapid response, yet minute-level traffic speed forecasting remains challenging due to heterogeneous data sources and frequent distribution shifts. This paper proposes a Deep Operator Network (DeepONet)-based framework that treats traffic prediction as learning a mapping from historical states and boundary conditions to future speed states, enabling robust forecasting under changing scenarios. We project logistics demand onto a road network to generate diverse congestion scenarios and employ a branch–trunk architecture to decouple historical dynamics from exogenous contexts. Experiments on both a controlled simulation dataset and the real-world Metropolitan Los Angeles (METR-LA) benchmark demonstrate that the proposed method outperforms classical regression and deep learning baselines in cross-scenario generalization. Specifically, the operator learning approach effectively adapts to unseen boundary conditions without retraining, establishing a promising direction for resilient and adaptive logistics forecasting. Full article
Show Figures

Figure 1

33 pages, 5657 KB  
Article
LiDAR-Based Urban Traffic Flow and Safety Assessment Using AI-Driven Surrogate Indicators
by Dohun Kim, Hongjin Kim and Wonjong Kim
Remote Sens. 2025, 17(24), 3989; https://doi.org/10.3390/rs17243989 - 10 Dec 2025
Viewed by 660
Abstract
Urban mobility systems increasingly depend on remote sensing and artificial intelligence to enhance traffic monitoring and safety management. This study presents a LiDAR-based framework for urban road condition analysis and risk evaluation using vehicle-mounted sensors as dynamic remote sensing platforms. The framework integrates [...] Read more.
Urban mobility systems increasingly depend on remote sensing and artificial intelligence to enhance traffic monitoring and safety management. This study presents a LiDAR-based framework for urban road condition analysis and risk evaluation using vehicle-mounted sensors as dynamic remote sensing platforms. The framework integrates deep learning based object detection with mathematically defined surrogate safety indicators to quantify collision risk and evaluate evasive maneuverability in real traffic environments. Two indicators, Hazardous Modified Time to Collision (HMTTC) and Searching for Safety Space (SSS), are introduced to assess lane-level safety and spatial availability of avoidance zones. LiDAR point cloud data are processed using a Voxel RCNN architecture and converted into parameters such as density, speed, and spacing. Field experiments conducted on highways and urban corridors in South Korea reveal strong correlations between HMTTC occurrences, congestion, and geometric road features. The results demonstrate that AI-driven analysis of LiDAR data enables continuous, infrastructure-independent urban traffic safety monitoring, thereby supporting data-driven, resilient transportation systems. Full article
(This article belongs to the Special Issue Applications of AI and Remote Sensing in Urban Systems II)
Show Figures

Figure 1

7 pages, 2033 KB  
Proceeding Paper
Leveraging AI in Mitigating Road Accidents and Alleviating Traffic Congestion: A South African Perspective
by Siyabonga Nxumalo
Eng. Proc. 2025, 113(1), 79; https://doi.org/10.3390/engproc2025113079 - 4 Dec 2025
Viewed by 417
Abstract
This study aims to achieve its objectives in two folds: firstly, by examining the current challenges in South Africa’s traffic ecosystem, which lead to excessive road accidents and traffic congestion, and finally, by proposing an AI-driven model to be incorporated in South Africa’s [...] Read more.
This study aims to achieve its objectives in two folds: firstly, by examining the current challenges in South Africa’s traffic ecosystem, which lead to excessive road accidents and traffic congestion, and finally, by proposing an AI-driven model to be incorporated in South Africa’s Traffic Management System to enhance road safety and reduce traffic congestion. As a literature-based study, secondary data was collected and critically analyzed to comprehend the key factors that precipitate road accidents and yield sluggish traffic congestion in South Africa’s big cities, and thereafter, we developed a suitable AI model (ITTE) that would assist in mitigating road accidents and alleviate traffic congestion. This study found that leveraging AI in the transportation ecosystem would identify issues like infrastructural weaknesses, unsafe driving, and environmental risks. This would allow for proactive or automated corrective actions such as adjusting traffic signals or urgently alerting stakeholders such as drivers, pedestrians, and authorities with real-time updates, fostering a culture of being well-informed and responsive. Full article
(This article belongs to the Proceedings of The Sustainable Mobility and Transportation Symposium 2025)
Show Figures

Figure 1

Back to TopTop