Abstract
Traditional routing algorithms optimizing for distance or travel time are inadequate for electric vehicles (EVs), which require energy-aware planning considering battery constraints and charging infrastructure. This work presents an energy-optimal routing system for EVs that integrates personalized consumption modeling with real-time environmental data. The system employs a Long Short-Term Memory (LSTM) neural network to predict State-of-Charge (SoC) consumption from real-world driving data, learning directly from spatiotemporal features including velocity, temperature, road inclination, and traveled distance. Unlike physics-based models requiring difficult-to-obtain parameters, this approach captures nonlinear dependencies and temporal patterns in energy consumption. The routing framework integrates static map data, dynamic traffic conditions, weather information, and charging station locations into a weighted graph representation. Edge costs reflect predicted SoC drops, while node penalties account for traffic congestion and charging opportunities. An enhanced A* algorithm finds optimal routes minimizing energy consumption. Experimental validation on a Nissan Leaf shows that the proposed end-to-end SoC estimator significantly outperforms traditional approaches. The model achieves an RMSE of 36.83 and an of 0.9374, corresponding to a 59.91% reduction in error compared to physics-based formulas. Real-world testing on various routes further confirms its accuracy, with a Mean Absolute Error in the total route SoC estimation of 2%, improving upon the 3.5% observed for commercial solutions.