Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,785)

Search Parameters:
Keywords = ridges

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2440 KiB  
Article
Real-Time Foreshock–Aftershock–Swarm Discrimination During the 2025 Seismic Crisis near Santorini Volcano, Greece: Earthquake Statistics and Complex Networks
by Ioanna Triantafyllou, Gerassimos A. Papadopoulos, Constantinos Siettos and Konstantinos Spiliotis
Geosciences 2025, 15(8), 300; https://doi.org/10.3390/geosciences15080300 (registering DOI) - 4 Aug 2025
Abstract
The advanced determination of the type (foreshock–aftershock–swarm) of an ongoing seismic cluster is quite challenging; only retrospective solutions have thus far been proposed. In the period of January–March 2025, a seismic cluster, recorded between Santorini volcano and Amorgos Island, South Aegean Sea, caused [...] Read more.
The advanced determination of the type (foreshock–aftershock–swarm) of an ongoing seismic cluster is quite challenging; only retrospective solutions have thus far been proposed. In the period of January–March 2025, a seismic cluster, recorded between Santorini volcano and Amorgos Island, South Aegean Sea, caused considerable social concern. A rapid increase in both the seismicity rate and the earthquake magnitudes was noted until the mainshock of ML = 5.3 on 10 February; afterwards, activity gradually diminished. Fault-plane solutions indicated SW-NE normal faulting. The epicenters moved with a mean velocity of ~0.72 km/day from SW to NE up to the mainshock area at a distance of ~25 km. Crucial questions publicly emerged during the cluster. Was it a foreshock–aftershock activity or a swarm of possibly volcanic origin? We performed real-time discrimination of the cluster type based on a daily re-evaluation of the space–time–magnitude changes and their significance relative to background seismicity using earthquake statistics and the topological metric betweenness centrality. Our findings were periodically documented during the ongoing cluster starting from the fourth cluster day (2 February 2025), at which point we determined that it was a foreshock and not a case of seismic swarm. The third day after the ML = 5.3 mainshock, a typical aftershock decay was detected. The observed foreshock properties favored a cascade mechanism, likely facilitated by non-volcanic material softening and the likely subdiffusion processes in a dense fault network. This mechanism was possibly combined with an aseismic nucleation process if transient geodetic deformation was present. No significant aftershock expansion towards the NE was noted, possibly due to the presence of a geometrical fault barrier east of the Anydros Ridge. The 2025 activity offered an excellent opportunity to investigate deciphering the type of ongoing seismicity cluster for real-time discrimination between foreshocks, aftershocks, and swarms. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Natural Hazards)
20 pages, 23283 KiB  
Article
Titanium–Aluminum–Vanadium Surfaces Generated Using Sequential Nanosecond and Femtosecond Laser Etching Provide Osteogenic Nanotopography on Additively Manufactured Implants
by Jonathan T. Dillon, David J. Cohen, Scott McLean, Haibo Fan, Barbara D. Boyan and Zvi Schwartz
Biomimetics 2025, 10(8), 507; https://doi.org/10.3390/biomimetics10080507 (registering DOI) - 4 Aug 2025
Abstract
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale [...] Read more.
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale structures. Studies indicate that topography with micro/nano features of osteoclast resorption pits causes bone marrow stromal cells (MSCs) and osteoprogenitor cells to favor differentiation into an osteoblastic phenotype. This study examined whether the biological response of human MSCs to Ti6Al4V surfaces is sensitive to laser treatment-controlled micro/nano-topography. First, 15 mm diameter Ti6Al4V discs (Spine Wave Inc., Shelton, CT, USA) were either machined (M) or additively manufactured (AM). Surface treatments included no laser treatment (NT), nanosecond laser (Ns), femtosecond laser (Fs), or nanosecond followed by femtosecond laser (Ns+Fs). Surface wettability, roughness, and surface chemistry were determined using sessile drop contact angle, laser confocal microscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Human MSCs were cultured in growth media on tissue culture polystyrene (TCPS) or test surfaces. On day 7, the levels of osteocalcin (OCN), osteopontin (OPN), osteoprotegerin (OPG), and vascular endothelial growth factor 165 (VEGF) in the conditioned media were measured. M NT, Fs, and Ns+Fs surfaces were hydrophilic; Ns was hydrophobic. AM NT and Fs surfaces were hydrophilic; AM Ns and Ns+Fs were hydrophobic. Roughness (Sa and Sz) increased after Ns and Ns+Fs treatment for both M and AM disks. All surfaces primarily consisted of oxygen, titanium, and carbon; Fs had increased levels of aluminum for both M and AM. SEM images showed that M NT discs had a smooth surface, whereas AM surfaces appeared rough at a higher magnification. Fs surfaces had a similar morphology to their respective NT disc at low magnification, but higher magnification revealed nano-scale bumps not seen on NT surfaces. AM Fs surfaces also had regular interval ridges that were not seen on non-femto laser-ablated surfaces. Surface roughness was increased on M and AM Ns and Ns+Fs disks compared to NT and Fs disks. OCN was enhanced, and DNA was reduced on Ns and Ns+Fs, with no difference between them. OPN, OPG, and VEGF levels for laser-treated M surfaces were unchanged compared to NT, apart from an increase in OPG on Fs. MSCs grown on AM Ns and Ns+Fs surfaces had increased levels of OCN per DNA. These results indicate that MSCs cultured on AM Ns and AM Ns+Fs surfaces, which exhibited unique roughness at the microscale and nanoscale, had enhanced differentiation to an osteoblastic phenotype. The laser treatments of the surface mediated this enhancement of MSC differentiation and warrant further clinical investigation. Full article
Show Figures

Graphical abstract

19 pages, 1400 KiB  
Article
A Comparative Study of Statistical and Machine Learning Methods for Solar Irradiance Forecasting Using the Folsom PLC Dataset
by Oscar Trull, Juan Carlos García-Díaz and Angel Peiró-Signes
Energies 2025, 18(15), 4122; https://doi.org/10.3390/en18154122 (registering DOI) - 3 Aug 2025
Abstract
The increasing penetration of photovoltaic solar energy has intensified the need for accurate production forecasting to ensure efficient grid operation. This study presents a critical comparison of traditional statistical methods and machine learning approaches for forecasting solar irradiance using the benchmark Folsom PLC [...] Read more.
The increasing penetration of photovoltaic solar energy has intensified the need for accurate production forecasting to ensure efficient grid operation. This study presents a critical comparison of traditional statistical methods and machine learning approaches for forecasting solar irradiance using the benchmark Folsom PLC dataset. Two primary research questions are addressed: whether machine learning models outperform traditional techniques, and whether time series modelling improves prediction accuracy. The analysis includes an evaluation of a range of models, including statistical regressions (OLS, LASSO, ridge), regression trees, neural networks, LSTM, and random forests, which are applied to physical modelling and time series approaches. The results reveal that although machine learning methods can outperform statistical models, particularly with the inclusion of exogenous weather features, they are not universally superior across all forecasting horizons. Furthermore, pure time series approach models yield lower performance. However, a hybrid approach in which physical models are integrated with machine learning demonstrates significantly improved accuracy. These findings highlight the value of hybrid models for photovoltaic forecasting and suggest strategic directions for operational implementation. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

12 pages, 2807 KiB  
Article
Evaluation of Hydroxyapatite–β-Tricalcium Phosphate Collagen Composites for Socket Preservation in a Canine Model
by Dong Woo Kim, Donghyun Lee, Jaeyoung Ryu, Min-Suk Kook, Hong-Ju Park and Seunggon Jung
J. Funct. Biomater. 2025, 16(8), 286; https://doi.org/10.3390/jfb16080286 - 3 Aug 2025
Abstract
This study aimed to compare the performance of three hydroxyapatite–β-tricalcium phosphate (HA–β-TCP) collagen composite grafts in a canine model for extraction socket preservation. Eight mongrel dogs underwent atraumatic bilateral mandibular premolar extraction, and sockets were randomly grafted with HBC28 (20% high-crystalline HA, 80% [...] Read more.
This study aimed to compare the performance of three hydroxyapatite–β-tricalcium phosphate (HA–β-TCP) collagen composite grafts in a canine model for extraction socket preservation. Eight mongrel dogs underwent atraumatic bilateral mandibular premolar extraction, and sockets were randomly grafted with HBC28 (20% high-crystalline HA, 80% β-TCP bovine collagen), HBC37 (30% HA, 70% β-TCP, bovine collagen), or HPC64 (60% HA, 40% β-TCP, porcine collagen). Grafts differed in their HA–β-TCP ratio and collagen origin and content. Animals were sacrificed at 4 and 12 weeks, and the healing sites were evaluated using micro-computed tomography (micro-CT) and histological analysis. At 12 weeks, all groups showed good socket maintenance with comparable new bone formation. However, histological analysis revealed that HBC28 had significantly higher residual graft volume, while HPC64 demonstrated more extensive graft resorption. Histomorphometric analysis confirmed these findings, with statistically significant differences in residual graft area and bone volume fraction. No inflammatory response or adverse tissue reactions were observed in any group. These results suggest that all three HA–β-TCP collagen composites are biocompatible and suitable for socket preservation, with varying resorption kinetics influenced by graft composition. Selection of graft material may thus be guided by the desired rate of replacement by new bone. Full article
(This article belongs to the Special Issue Biomechanical Studies and Biomaterials in Dentistry)
Show Figures

Figure 1

24 pages, 5566 KiB  
Article
Response Mechanisms of Vegetation Productivity to Water Variability in Arid and Semi-Arid Areas of China: A Decoupling Analysis of Soil Moisture and Precipitation
by Zijian Liu, Hao Lin, Hongrui Li, Mengyang Li, Peng Zhou, Ziyu Wang and Jiqiang Niu
Atmosphere 2025, 16(8), 933; https://doi.org/10.3390/atmos16080933 (registering DOI) - 3 Aug 2025
Abstract
Arid and semi-arid areas serve a critical regulatory function within the global carbon cycle. Understanding the response mechanisms of vegetation productivity to variations in moisture availability represents a fundamental scientific challenge in elucidating terrestrial carbon dynamics. This study systematically disentangled the respective influences [...] Read more.
Arid and semi-arid areas serve a critical regulatory function within the global carbon cycle. Understanding the response mechanisms of vegetation productivity to variations in moisture availability represents a fundamental scientific challenge in elucidating terrestrial carbon dynamics. This study systematically disentangled the respective influences of summer surface soil moisture (RSM) and precipitation (PRE) on gross primary productivity (GPP) across arid and semi-arid regions of China from 2000 to 2022. Utilizing GPP datasets alongside correlation analysis, ridge regression, and data binning techniques, the investigation yielded several key findings: (1) Both GPP and RSM exhibited significant upward trends within the study area, whereas precipitation showed no statistically significant trend; notably, GPP demonstrated the highest rate of increase at 0.455 Cg m−2 a−1. (2) Decoupling analysis indicated a coupled relationship between RSM and PRE; however, their individual effects on GPP were not merely a consequence of this coupling. Controlling for evapotranspiration and root-zone soil moisture interference, the analysis revealed that under conditions of elevated RSM, the average increase in summer–autumn GPP (SAGPP) was 0.249, significantly surpassing the increase observed under high-PRE conditions (−0.088). Areas dominated by RSM accounted for 62.13% of the total study region. Furthermore, examination of the aridity gradient demonstrated that the predominance of RSM intensified with increasing aridity, reaching its peak influence in extremely arid zones. This research provides a quantitative assessment of the differential impacts of RSM and PRE on vegetation productivity in China’s arid and semi-arid areas, thereby offering a vital theoretical foundation for improving predictions of terrestrial carbon sink dynamics under future climate change scenarios. Full article
Show Figures

Figure 1

22 pages, 13770 KiB  
Article
Prediction Model of Powdery Mildew Disease Index in Rubber Trees Based on Machine Learning
by Jiazheng Zhu, Xize Huang, Xiaoyu Liang, Meng Wang and Yu Zhang
Plants 2025, 14(15), 2402; https://doi.org/10.3390/plants14152402 - 3 Aug 2025
Abstract
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into [...] Read more.
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into an epidemic under favorable environmental conditions. Accurate prediction and determination of the prevention and control period represent both a critical challenge and key focus area in managing rubber-tree powdery mildew. This study investigates the effects of spore concentration, environmental factors, and infection time on the progression of powdery mildew in rubber trees. By employing six distinct machine learning model construction methods, with the disease index of powdery mildew in rubber trees as the response variable and spore concentration, temperature, humidity, and infection time as predictive variables, a preliminary predictive model for the disease index of rubber-tree powdery mildew was developed. Results from indoor inoculation experiments indicate that spore concentration directly influences disease progression and severity. Higher spore concentrations lead to faster disease development and increased severity. The optimal relative humidity for powdery mildew development in rubber trees is 80% RH. At varying temperatures, the influence of humidity on the disease index differs across spore concentration, exhibiting distinct trends. Each model effectively simulates the progression of powdery mildew in rubber trees, with predicted values closely aligning with observed data. Among the models, the Kernel Ridge Regression (KRR) model demonstrates the highest accuracy, the R2 values for the training set and test set were 0.978 and 0.964, respectively, while the RMSE values were 4.037 and 4.926, respectively. This research provides a robust technical foundation for reducing the labor intensity of traditional prediction methods and offers valuable insights for forecasting airborne forest diseases. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

17 pages, 3785 KiB  
Article
The Role of Stable Anatomical Landmarks in Automated 3D Model Superimposition: A Closer Look
by Tommaso Castroflorio, Samuele Avolese, Fabrizio Sanna and Simone Parrini
Bioengineering 2025, 12(8), 839; https://doi.org/10.3390/bioengineering12080839 (registering DOI) - 3 Aug 2025
Abstract
Objective: To evaluate the concordance of automated 3D superimposition methods applied to digital models, with a focus on methods that consider stable palatal regions as geometric reference landmarks versus those that do not. Design and setting: This was a prospective, cross-sectional study using [...] Read more.
Objective: To evaluate the concordance of automated 3D superimposition methods applied to digital models, with a focus on methods that consider stable palatal regions as geometric reference landmarks versus those that do not. Design and setting: This was a prospective, cross-sectional study using digital model files of patients undergoing orthodontic treatment in a university clinical setting. Participants: Sixty-one patients were prospectively enrolled and divided into three groups based on the type of orthodontic treatment they received: (20) non-extractive orthodontic treatment without intermaxillary elastics, (21) intermaxillary elastics, and (20) control subjects with no orthodontic movement. The inclusion criteria included the availability of complete pre- and post-treatment digital casts and the absence of significant craniofacial anomalies. Methods: Three superimposition methods were tested: (1) superimposition according to palate and palatal ridges, (2) best-fit superimposition of arches in occlusion, and (3) best-fit superimposition of individual arches. Discrepancies were identified by comparing the spatial positions derived from each method. Within three spatial axes, deviations of ±0.5 mm and ±1.15° were not considered significant. Bland–Altman plots were used to quantify palatal rugae based and non-based spatial differences between methods. Differences in the superimposition results between the three patient groups were evaluated using ANOVA tests. Results: Differences in spatial position between the superimposition methods often exceeded the acceptable range. The results were compared between the three patient groups with a statistical significance of α = 0.05. In the present study, the high reliability of the superimposition method based on the palate and palatal ridges was observed. Conclusion: Superimposition methods based on the palate and palatal rugae provide superior accuracy in determining treatment-related changes in upper arch digital models. These findings illustrate the need for appropriate selection of superimposition techniques based on the study objective of using clinically relevant techniques. Full article
(This article belongs to the Special Issue Contemporary Trends and Future Perspectives in Orthodontic Treatment)
Show Figures

Figure 1

15 pages, 2903 KiB  
Article
Electrophysiological Substrate and Pulmonary Vein Reconnection Patterns in Recurrent Atrial Fibrillation: Comparing Thermal Strategies in Patients Undergoing Redo Ablation
by Krisztian Istvan Kassa, Adwity Shakya, Zoltan Som, Csaba Foldesi and Attila Kardos
J. Cardiovasc. Dev. Dis. 2025, 12(8), 298; https://doi.org/10.3390/jcdd12080298 - 2 Aug 2025
Viewed by 64
Abstract
Background: The influence of the initial ablation modality on pulmonary vein (PV) reconnection and substrate characteristics in redo procedures for recurrent atrial fibrillation (AF) remains unclear. We assessed how different thermal strategies—ablation index (AI)-guided radiofrequency (RF) versus cryoballoon (CB) ablation—affect remapping findings during [...] Read more.
Background: The influence of the initial ablation modality on pulmonary vein (PV) reconnection and substrate characteristics in redo procedures for recurrent atrial fibrillation (AF) remains unclear. We assessed how different thermal strategies—ablation index (AI)-guided radiofrequency (RF) versus cryoballoon (CB) ablation—affect remapping findings during redo pulmonary vein isolation (PVI). Methods: We included patients undergoing redo ablation between 2015 and 2024 with high-density electroanatomic mapping. Initial PVI modalities were retrospectively classified as low-power, long-duration (LPLD) RF; high-power, short-duration (HPSD) RF; or second-/third-generation CB. Reconnection sites were mapped using multielectrode catheters. Redo PVI was performed using AI-guided RF. Segments showing PV reconnection were reisolated; if all PVs remained isolated and AF persisted, posterior wall isolation was performed. Results: Among 195 patients (LPLD: 63; HPSD: 30; CB: 102), complete PVI at redo was observed in 0% (LPLD), 23.3% (HPSD), and 10.1% (CB) (p < 0.01 for LPLD vs. HPSD). Reconnection patterns varied by technique; LPLD primarily affected the right carina, while HPSD and CB showed reconnections at the LSPV ridge. Organized atrial tachycardia was least frequent after CB (12.7%, p < 0.002). Conclusion: Initial ablation strategy significantly influences PV reconnection and post-PVI arrhythmia patterns, with implications for redo procedure planning. Full article
(This article belongs to the Special Issue Atrial Fibrillation: New Insights and Perspectives)
Show Figures

Figure 1

17 pages, 4024 KiB  
Article
Experimental Investigation of Impact Mechanisms of Seeding Quality for Ridge-Clearing No-Till Seeder Under Strip Tillage
by Yuanyuan Gao, Yongyue Hu, Shuo Yang, Xueguan Zhao, Shengwei Lu, Hanjie Dou, Qingzhen Zhu, Peiying Li and Yongyun Zhu
Agronomy 2025, 15(8), 1875; https://doi.org/10.3390/agronomy15081875 - 1 Aug 2025
Viewed by 175
Abstract
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the [...] Read more.
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the inadequate understanding of the seeder’s operational performance and governing mechanisms under varying field conditions hinders its high-quality and efficient implementation. To address this issue, this study selected the stubble height, forward speed, and stubble knife rotational speed (PTO speed) as experimental factors. Employing a three-factor quasi-level orthogonal experimental design, coupled with response surface regression analysis, this research systematically elucidated the interaction mechanisms among these factors concerning the seeding depth consistency and seed spacing uniformity of the seeder. An optimized parameter-matching model was subsequently derived through equation system solving. Field trials demonstrated that a lower forward speed improved the seed spacing uniformity and seeding depth consistency, whereas high speeds increased the missing rates and spacing deviations. An appropriate stubble height enhanced the seed spacing accuracy, but an excessive height compromised depth precision. Higher PTO speeds reduced multiple indices but impaired depth accuracy. Response surface analysis based on the regression models demonstrated that the peak value of the seed spacing qualification index occurred within the forward speed range of 8–9 km/h and the stubble height range of 280–330 mm, with the stubble height being the dominant factor. Similarly, the peak value of the seeding depth qualification index occurred within the stubble height range of 300–350 mm and the forward speed range of 7.5–9 km/h, with the forward speed as the primary factor. Validation confirmed that combining stubble heights of 300−330 mm, forward speeds of 8−9 km/h, and PTO speeds of 540 r/min optimized both metrics. This research reveals nonlinear coupling relationships between operational parameters and seeding quality metrics, establishes a stubble–speed dynamic matching model, and provides a theoretical foundation for the intelligent control of seeders in conservation tillage systems. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

15 pages, 2172 KiB  
Article
Quantifying Macropore Variability in Terraced Paddy Fields Using X-Ray Computed Tomography
by Rong Ma, Linlin Chu, Lidong Bi, Dan Chen and Zhaohui Luo
Agronomy 2025, 15(8), 1873; https://doi.org/10.3390/agronomy15081873 - 1 Aug 2025
Viewed by 161
Abstract
Large soil pores critically influence water and solute transport in soils. The presence of preferential flow paths created by soil macropores can profoundly impact water quality, underscoring the necessity of accurately assessing the characteristics of these macropores. However, it remains unclear whether variations [...] Read more.
Large soil pores critically influence water and solute transport in soils. The presence of preferential flow paths created by soil macropores can profoundly impact water quality, underscoring the necessity of accurately assessing the characteristics of these macropores. However, it remains unclear whether variations in macropore structure exist between different altitudes and positions of terraced paddy fields. The primary objective of this research was to utilize X-ray computed tomography (CT) and image analysis techniques to characterize the soil pore structure at both the inner field and ridge positions across different altitude levels (high, medium, and low altitude) within terraced paddy fields. The results indicate that there are significant differences in the distribution of large soil pores at different altitudes, with large pores concentrated in the surface layer (0–10 cm) in low-altitude areas, while in high-altitude areas, the distribution of large pores is more uniform. Additionally, as altitude increases, the porosity of large pores shows an increasing trend. The three-dimensional equivalent diameter and large pore volume are primarily characterized by large pores ranging from 1 to 2 mm and 0 to 5 mm3, respectively, with their morphology predominantly appearing spherical or ellipsoidal. The connectivity of large pores in the surface layer of paddy soil is stronger than that in the bunds. However, this connectivity gradually weakens with increasing soil depth. The findings from this study provide valuable quantitative insights into the unique characteristics of soil macropores that vary according to the altitude and position in terraced paddy fields. Moreover, this study emphasizes the necessity for future research that encompasses a broader range of soil types, altitudes, and terraced paddy locations to validate and further explore the identified relationships between altitude and macropore characteristics. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

12 pages, 2302 KiB  
Article
Edentulous Mandibles Restored with Fiber-Reinforced Composite Prostheses Supported by 5.0 mm Ultra-Short Implants: Ten-Year Follow-Up
by Giulia Petroni, Fabrizio Zaccheo, Cosimo Rupe and Andrea Cicconetti
Prosthesis 2025, 7(4), 94; https://doi.org/10.3390/prosthesis7040094 (registering DOI) - 1 Aug 2025
Viewed by 187
Abstract
Background/Objectives: This study aimed to assess the long-term clinical performance of full-arch fixed restorations made of fiber-reinforced composite (FRC) supported by four ultra-short implants (4.0 × 5.0 mm) in patients with edentulous, atrophic mandibles. Methods: Ten patients were treated at Sapienza University of [...] Read more.
Background/Objectives: This study aimed to assess the long-term clinical performance of full-arch fixed restorations made of fiber-reinforced composite (FRC) supported by four ultra-short implants (4.0 × 5.0 mm) in patients with edentulous, atrophic mandibles. Methods: Ten patients were treated at Sapienza University of Rome and monitored over a 10-year period. Each case involved the placement of four plateau-design implants with a pure conometric connection and a calcium phosphate-treated surface. The final prostheses were fabricated using CAD/CAM-milled Trinia® fiber-reinforced composite frameworks. Clinical parameters included implant and prosthesis survival, marginal bone level (MBL), peri-implant probing depth (PPD), and patient-reported outcome measures (PROMs). Results: Implant and prosthesis survival reached 100% over the 10-year follow-up. MBL data showed a minor bone gain of approximately 0.11 mm per 5 years (p < 0.0001). PPD remained stable under 3 mm, with a minimal increase of 0.16 mm over the same period (p < 0.0001). PROMs reflected sustained high patient satisfaction. No technical complications, such as chipping or framework fracture, were observed. Conclusions: Rehabilitation of the edentulous mandible with ultra-short implants and metal-free FRC prostheses proved to be a minimally invasive and long-lasting treatment option. The 10-year follow-up confirmed excellent implant and prosthetic outcomes, favorable peri-implant tissue health, and strong patient satisfaction. Nonetheless, further studies with larger sample sizes are needed to confirm these encouraging results and strengthen the clinical evidence. Full article
Show Figures

Figure 1

25 pages, 4407 KiB  
Article
A Reproducible Pipeline for Leveraging Operational Data Through Machine Learning in Digitally Emerging Urban Bus Fleets
by Bernardo Tormos, Vicente Bermudez, Ramón Sánchez-Márquez and Jorge Alvis
Appl. Sci. 2025, 15(15), 8395; https://doi.org/10.3390/app15158395 - 29 Jul 2025
Viewed by 212
Abstract
The adoption of predictive maintenance in public transportation has gained increasing attention in the context of Industry 4.0. However, many urban bus fleets remain in early digital transformation stages, with limited historical data and fragmented infrastructures that hinder the implementation of data-driven strategies. [...] Read more.
The adoption of predictive maintenance in public transportation has gained increasing attention in the context of Industry 4.0. However, many urban bus fleets remain in early digital transformation stages, with limited historical data and fragmented infrastructures that hinder the implementation of data-driven strategies. This study proposes a reproducible Machine Learning pipeline tailored to such data-scarce conditions, integrating domain-informed feature engineering, lightweight and interpretable models (Linear Regression, Ridge Regression, Decision Trees, KNN), SMOGN for imbalance handling, and Leave-One-Out Cross-Validation for robust evaluation. A scheduled batch retraining strategy is incorporated to adapt the model as new data becomes available. The pipeline is validated using real-world data from hybrid diesel buses, focusing on the prediction of time spent in critical soot accumulation zones of the Diesel Particulate Filter (DPF). In Zone 4, the model continued to outperform the baseline during the production test, indicating its validity for an additional operational period. In contrast, model performance in Zone 3 deteriorated over time, triggering retraining. These results confirm the pipeline’s ability to detect performance drift and support predictive maintenance decisions under evolving operational constraints. The proposed framework offers a scalable solution for digitally emerging fleets. Full article
(This article belongs to the Special Issue Big-Data-Driven Advances in Smart Maintenance and Industry 4.0)
Show Figures

Figure 1

24 pages, 3204 KiB  
Article
Host Shaping Associated Microbiota in Hydrothermal Vent Snails from the Indian Ocean Ridge
by Xiang Zeng, Jianwei Chen, Guilin Liu, Yadong Zhou, Liping Wang, Yaolei Zhang, Shanshan Liu and Zongze Shao
Biology 2025, 14(8), 954; https://doi.org/10.3390/biology14080954 - 29 Jul 2025
Viewed by 204
Abstract
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon [...] Read more.
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon squamiferum and Gigantopelta aegis. Using microscopic, phylogenetic, and metagenomic analyses, this study examines bacterial communities inhabiting the foot and gland tissues of these snails. G. aegis exhibited exceptionally low bacterial diversity (Shannon index 0.14–0.18), primarily Gammaproteobacteria (99.9%), including chemosynthetic sulfur-oxidizing Chromatiales using Calvin–Benson–Bassham cycle and methane-oxidizing Methylococcales in the glands. C. squamiferum hosted significantly more diverse symbionts (Shannon indices 1.32–4.60). Its black variety scales were dominated by Campylobacterota (67.01–80.98%), such as Sulfurovum, which perform sulfur/hydrogen oxidation via the reductive tricarboxylic acid cycle, with both Campylobacterota and Gammaproteobacteria prevalent in the glands. The white-scaled variety of C. squamiferum had less Campylobacterota but a higher diversity of heterotrophic bacteria, including Delta-/Alpha-Proteobacteria, Bacteroidetes, and Firmicutes (classified as Desulfobacterota, Pseudomomonadota, Bacteroidota, and Bacillota in GTDB taxonomy). In C. squamiferum, Gammaproteobacteria, including Chromatiales, Thiotrichales, and a novel order “Endothiobacterales,” were chemosynthetic, capable of oxidizing sulfur, hydrogen, or iron, and utilizing the Calvin–Benson–Bassham cycle for carbon fixation. Heterotrophic Delta- and Alpha-Proteobacteria, Bacteroidetes, and Firmicutes potentially utilize organic matter from protein, starch, collagen, amino acids, thereby contributing to the holobiont community and host nutrition accessibility. The results indicate that host species and intra-species variation, rather than the immediate habitat, might shape the symbiotic microbial communities, crucial for the snails’ adaptation to vent ecosystems. Full article
Show Figures

Figure 1

18 pages, 1044 KiB  
Systematic Review
Patient-Reported Outcomes in Intraoral Bone Block Augmentation Compared to GBR Procedures Prior to Implant Placement: A Systematic Review
by Sepehr Salahi, Mohamad Kamal Shaar, Jeremy Pitman, Stijn Vervaeke, Jan Cosyn, Faris Younes and Thomas De Bruyckere
J. Clin. Med. 2025, 14(15), 5331; https://doi.org/10.3390/jcm14155331 (registering DOI) - 28 Jul 2025
Viewed by 281
Abstract
Objective: To compare the effect of different bone augmentation procedures, namely, autogenous bone blocks (ABBs) versus guided bone regeneration (GBR), on patient-reported outcomes (PROMs). Methods: This systematic review was conducted according to the PRISMA guidelines. A MEDLINE, Embase, and Web of [...] Read more.
Objective: To compare the effect of different bone augmentation procedures, namely, autogenous bone blocks (ABBs) versus guided bone regeneration (GBR), on patient-reported outcomes (PROMs). Methods: This systematic review was conducted according to the PRISMA guidelines. A MEDLINE, Embase, and Web of Science search was conducted by two independent reviewers in combination with a free-hand search in relevant journals until June 2025. Outcomes were PROMs to enhance our understanding of the evolution of these procedures. Results: The electronic search yielded 6291 articles. After title screening, 67 articles were further analyzed for abstract review, which resulted in 14 articles eligible for full-text reading. Six articles were finally included based on the exclusion and inclusion criteria with a total of 295 patients. The overall study quality was low, since only two RCTs could be included. One study demonstrated a high risk of bias. Different PROMs were examined and compared such as pain, edema, neurosensory disturbance, Patient-Reported Predominant Symptom, OHIP-14, postoperative analgesic usage, willingness to repeat, and likelihood to recommend. Meta-analysis was not achievable due to a lack of direct comparisons and heterogeneity in terms of PROMs. Evaluation points varied between pretreatment and up to nearly 10-years of follow-up. Conclusions: Despite significant heterogeneity and reporting, this systematic review concluded that ABB and GBR are well-tolerated procedures. Trends such as transient postoperative pain and swelling with a minor occurring of neurosensory disturbances were reported in a few studies. Overall, a good perception of postoperative recovery was reported for both treatment modalities. Good quality of life was noted related to GBR procedures. Patient-reported outcomes were only analyzed for patients who completed the entire follow-up period. This may introduce bias, as patients who dropped out and were more likely to experience complications were not represented, potentially resulting in a more favorable portrayal of the outcomes. Further well-conducted prospective studies with a long follow-up are needed for an evidence-based evaluation and comparison of PROMs for these procedures. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

17 pages, 36180 KiB  
Article
Geomorphological Features and Formation Process of Abyssal Hills and Oceanic Core Complexes Linked to the Magma Supply in the Parece Vela Basin, Philippine Sea: Insights from Multibeam Bathymetry Analysis
by Xiaoxiao Ding, Junjiang Zhu, Yuhan Jiao, Xinran Li, Zhengyuan Liu, Xiang Ao, Yihuan Huang and Sanzhong Li
J. Mar. Sci. Eng. 2025, 13(8), 1426; https://doi.org/10.3390/jmse13081426 - 26 Jul 2025
Viewed by 283
Abstract
Based on the new high-resolution multibeam bathymetry data collected by the “Dongfanghong 3” vessel in 2023 in the Parece Vela Basin (PVB) and previous magnetic anomaly data, we systematically analyze the seafloor topographical changes of abyssal hills and oceanic core complexes (OCCs) in [...] Read more.
Based on the new high-resolution multibeam bathymetry data collected by the “Dongfanghong 3” vessel in 2023 in the Parece Vela Basin (PVB) and previous magnetic anomaly data, we systematically analyze the seafloor topographical changes of abyssal hills and oceanic core complexes (OCCs) in the “Chaotic Terrain” region, and the revised seafloor spreading model is constructed in the PVB. Using detailed analysis of the seafloor topography, we identify typical geomorphological features associated with seafloor spreading, such as regularly aligned abyssal hills and OCCs in the PVB. The direction variations of seafloor spreading in the PVB are closely related to mid-ocean ridge rotation and propagation. The formation of OCCs in the “Chaotic Terrain” can be explained by links to the continuous and persistent activity of detachment faults and dynamic adjustments controlled by variations of deep magma supply in the different segments in the PVB. We use 2D discrete Fourier image analysis of the seafloor topography to calculate the aspect ratio (AR) values of abyssal hills in the western part of the PVB. The AR value variations reveal a distinct imbalance in magma supply across various regions during the basin spreading process. Compared to the “Chaotic Terrain” area, the region with abyssal hills indicates a higher magma supply and greater linearity on seafloor topography. AR values fluctuated between 2.1 and 1.7 of abyssal hills in the western segment, while in the “Chaotic Terrain”, they dropped to 1.3 due to the lower magma supply. After the formation of the OCC-1, AR values increased to 1.9 in the eastern segment, and this shows the increase in magma supply. Based on changes in seafloor topography and variations in magma supply across different segments of the PVB, we propose that the seafloor spreading process in the magnetic anomaly linear strip 9-6A of the PVB mainly underwent four formation stages: ridge rotation, rift propagation, magma-poor supply, and the maturation period of OCCs. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

Back to TopTop