Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,184)

Search Parameters:
Keywords = ribosomal genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2610 KiB  
Article
Quorum-Sensing C12-HSL Drives Antibiotic Resistance Plasmid Transfer via Membrane Remodeling, Oxidative Stress, and RpoS-RMF Crosstalk
by Yang Yang, Ziyan Wu, Li’e Zhu, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microorganisms 2025, 13(8), 1837; https://doi.org/10.3390/microorganisms13081837 - 6 Aug 2025
Abstract
Antibiotic misuse accelerates resistance dissemination via plasmid conjugation, but quorum sensing (QS) regulatory mechanisms remain undefined. Using Escherichia coli (E. coli) MG1655 conjugation models (RP4-7/EC600 plasmids), we demonstrate that long-chain acyl-homoserine lactones (C10/C12-HSL) enhance transfer frequency by up to 7.7-fold (200μM [...] Read more.
Antibiotic misuse accelerates resistance dissemination via plasmid conjugation, but quorum sensing (QS) regulatory mechanisms remain undefined. Using Escherichia coli (E. coli) MG1655 conjugation models (RP4-7/EC600 plasmids), we demonstrate that long-chain acyl-homoserine lactones (C10/C12-HSL) enhance transfer frequency by up to 7.7-fold (200μM C12-HSL; p < 0.001), while quorum-quenching by sub-inhibitory vanillin suppressed this effect by 95% (p < 0.0001). C12-HSL compromised membrane integrity via ompF upregulation (4-fold; p < 0.01) and conjugative pore assembly (trbBp upregulated by 1.38-fold; p < 0.05), coinciding with ROS accumulation (1.5-fold; p < 0.0001) and SOS response activation (recA upregulated by 1.68-fold; p < 0.001). Crucially, rpoS and rmf deletion mutants reduced conjugation by 65.5% and 55.8%, respectively (p < 0.001), exhibiting attenuated membrane permeability (≤65.5% reduced NPN influx; p < 0.0001), suppressed ROS (≤54% downregulated; p < 0.0001), and abolished transcriptional induction of conjugation/stress genes. Reciprocal RpoS–RMF (ribosomal hibernation factor) crosstalk was essential for AHL responsiveness, with deletions mutually suppressing expression (≤65.9% downregulated; p < 0.05). We establish a hierarchical mechanism wherein long-chain AHLs drive resistance dissemination through integrated membrane restructuring, stress adaptation, and RpoS–RMF-mediated genetic plasticity, positioning QS signaling as a viable target for curbing resistance spread. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
29 pages, 6672 KiB  
Article
Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway
by Nuttapon Songnaka, Adisorn Ratanaphan, Namfa Sermkaew, Somchai Sawatdee, Sucheewin Krobthong, Chanat Aonbangkhen, Yodying Yingchutrakul and Apichart Atipairin
Antibiotics 2025, 14(8), 805; https://doi.org/10.3390/antibiotics14080805 - 6 Aug 2025
Abstract
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial activity of an AMP from a soil-derived bacterial isolate against Gram-negative bacteria. Method: Soil bacteria were isolated and screened for antimicrobial activity. The bioactive peptide was purified and determined its structure and antimicrobial efficacy. Genomic analysis was conducted to predict the biosynthetic gene clusters (BGCs) responsible for AMP production. Results: Genomic analysis identified the isolate as Paenibacillus sp. Na14, which exhibited low genomic similarity (61.0%) to other known Paenibacillus species, suggesting it may represent a novel species. The AMP from the Na14 strain exhibited heat stability up to 90 °C for 3 h and retained its activity across a broad pH range from 3 to 11. Structural analysis revealed that the Na14 peptide consisted of 14 amino acid residues, adopting an α-helical structure. This peptide exhibited bactericidal activity at concentrations of 2–4 µg/mL within 6–12 h, and its killing rate was concentration-dependent. The peptide was found to disrupt the bacterial membranes. The Na14 peptide shared 64.29% sequence similarity with brevibacillin 2V, an AMP from Brevibacillus sp., which also belongs to the Paenibacillaceae family. Genomic annotation identified BGCs associated with secondary metabolism, with a particular focus on non-ribosomal peptide synthetase (NRPS) gene clusters. Structural modeling of the predicted NRPS enzymes showed high similarity to known NRPS modules in Brevibacillus species. These genomic findings provide evidence supporting the similarity between the Na14 peptide and brevibacillin 2V. Conclusions: This study highlights the discovery of a novel AMP with potent activity against Gram-negative pathogens and provides new insight into conserved AMP biosynthetic enzymes within the Paenibacillaceae family. Full article
Show Figures

Graphical abstract

18 pages, 2164 KiB  
Article
The Fanconi Anemia Pathway Inhibits mTOR Signaling and Prevents Accelerated Translation in Head and Neck Cancer Cells
by Bianca Ruffolo, Sara Vicente-Muñoz, Khyati Y. Mehta, Cosette M. Rivera-Cruz, Xueheng Zhao, Lindsey Romick, Kenneth D. R. Setchell, Adam Lane and Susanne I. Wells
Cancers 2025, 17(15), 2583; https://doi.org/10.3390/cancers17152583 - 6 Aug 2025
Abstract
Background/Objectives: The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand crosslinks and maintenance of genomic stability. Germline loss of FA pathway function in the inherited Fanconi anemia syndrome leads to increased DNA damage and a range of clinical phenotypes, [...] Read more.
Background/Objectives: The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand crosslinks and maintenance of genomic stability. Germline loss of FA pathway function in the inherited Fanconi anemia syndrome leads to increased DNA damage and a range of clinical phenotypes, including a heightened risk of head and neck squamous cell carcinoma (HNSCC). Non-synonymous FA gene mutations are also observed in up to 20% of sporadic HNSCCs. The mechanistic target of rapamycin (mTOR) is known to stimulate cell growth, anabolic metabolism including protein synthesis, and survival following genotoxic stress. Methods/Results: Here, we demonstrate that FA− deficient (FA−) HNSCC cells exhibit elevated intracellular amino acid levels, increased total protein content, and an increase in protein synthesis indicative of enhanced translation. These changes are accompanied by hyperactivation of the mTOR effectors translation initiation factor 4E Binding Protein 1 (4E-BP1) and ribosomal protein S6. Treatment with the mTOR inhibitor rapamycin reduced the phosphorylation of these targets and blocked translation specifically in FA− cells but not in their isogenic FA− proficient (FA+) counterparts. Rapamycin-mediated mTOR inhibition sensitized FA− but not FA+ cells to rapamycin under nutrient stress, supporting a therapeutic metabolism-based vulnerability in FA− cancer cells. Conclusions: These findings uncover a novel role for the FA pathway in suppressing mTOR signaling and identify mTOR inhibition as a potential strategy for targeting FA− HNSCCs. Full article
(This article belongs to the Special Issue Targeted Therapy in Head and Neck Cancer)
Show Figures

Figure 1

16 pages, 3202 KiB  
Article
Gut Microbiota Composition in Rats Consuming Sucralose or Rebaudioside A at Recommended Doses Under Two Dietary Interventions
by Meztli Ramos-García, Alma Delia Genis-Mendoza, Carlos García-Vázquez, José Jaime Martínez-Magaña, Viridiana Olvera-Hernández, Mirian Carolina Martínez-López, Juan Cuauhtémoc Díaz-Zagoya, Carina Shianya Alvarez-Villagomez, Isela Esther Juárez-Rojop, Humberto Nicolini and Jorge Luis Ble-Castillo
Metabolites 2025, 15(8), 529; https://doi.org/10.3390/metabo15080529 - 4 Aug 2025
Abstract
Background: Artificial non-nutritive sweeteners (NNSs), such as sucralose, have been associated with gut microbiota (GM) alterations. However, the impact of rebaudioside A (reb A), a natural NNS, on GM has received limited scrutiny. Objective: The objective of this study was to examine [...] Read more.
Background: Artificial non-nutritive sweeteners (NNSs), such as sucralose, have been associated with gut microbiota (GM) alterations. However, the impact of rebaudioside A (reb A), a natural NNS, on GM has received limited scrutiny. Objective: The objective of this study was to examine the response of GM composition to sucralose and reb A in rats under two dietary conditions. Methods: Male Wistar rats (150–200 g) fed with a normal diet (ND) or a high-fat diet (HFD) were randomly assigned to receive sucralose (SCL), reb A (REB), glucose (GLU, control), or sucrose (SUC). The NNS interventions were administered in water at doses equivalent to the acceptable daily intake (ADI). After eight weeks, the GM composition in fecal samples was analyzed through 16S ribosomal RNA gene sequencing. Results: The NNSs did not modify the diversity, structure, phylum-level composition, or Firmicutes/Bacteroidetes (F/B) ratio of the GM in rats under ND or HFD. However, REB with HFD decreased Bacilli and increased Faecalibacterium abundance at the class level. SCL and REB in rats receiving ND reduced the genera Romboutsia and Lactobacillus. Conclusions: Our study suggests that when sucralose or reb A is consumed at recommended doses, there is no alteration in the diversity or the composition of the GM at the phylum level. The clinical relevance of these findings lies in the potential modifications of the GM at specific taxonomic levels by the consumption of these NNSs. Further research involving humans and including a broader range of microbial analyses is warranted. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

15 pages, 1691 KiB  
Article
tRNA Modifications: A Tale of Two Viruses—SARS-CoV-2 and ZIKV
by Patrick Eldin and Laurence Briant
Int. J. Mol. Sci. 2025, 26(15), 7479; https://doi.org/10.3390/ijms26157479 - 2 Aug 2025
Viewed by 176
Abstract
tRNA modifications are crucial for efficient protein synthesis, impacting codon recognition, tRNA stability, and translation rates. RNA viruses hijack the host’s translational machinery, including the pool of modified tRNA, to translate their own genomes. However, the mismatch between viral and host codon usage [...] Read more.
tRNA modifications are crucial for efficient protein synthesis, impacting codon recognition, tRNA stability, and translation rates. RNA viruses hijack the host’s translational machinery, including the pool of modified tRNA, to translate their own genomes. However, the mismatch between viral and host codon usage can lead to a limited availability of specific tRNA leading to ribosome stalling, posing a significant challenge for efficient protein translation. While some viruses address this challenge through codon optimization, we show here that SARS-CoV-2 (Coronavirus) and the Zika virus (ZIKV; Flavivirus) adopt a different approach, manipulating the host tRNA epitranscriptome. Analysis of codon bias indices confirmed a substantial divergence between viral and host codon usage, revealing a strong preference in viral genes for codons decoded by tRNAs requiring U34 wobble modification. Monitoring tRNA modification dynamics in infected cells showed that both SARS-CoV2 and ZIKV enhance U34 tRNA modifications during infection. Strikingly, impairing U34 tRNAs profoundly impacted viral replication, underscoring the strict reliance of SARS-CoV-2 and ZIKV on manipulating the host tRNA epitranscriptome to support the efficient translation of their genome. Full article
Show Figures

Figure 1

14 pages, 2230 KiB  
Article
Complete Mitochondrial (mtDNA) Genome Analysis of Economically Significant Fish Cirrhinus cirrhosus in Bangladesh
by Tajmirul Huda, Md. Alamgir Kabir and Md. Golam Rabbane
Int. J. Mol. Sci. 2025, 26(15), 7473; https://doi.org/10.3390/ijms26157473 - 2 Aug 2025
Viewed by 168
Abstract
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 [...] Read more.
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and a D-loop region. The overall base composition was 32% adenine, 25% thiamine, 16% guanine, and 27% cytosine. This mitochondrial DNA exhibits an AT biasness, with 56% AT content in its genome. Significant fluctuations were identified in the AT and GC skew values of the ND6 gene, indicating that the selection and mutation forces acting on this gene might be different from those acting on other genes. The Ka/Ks ratios of most protein-coding genes were less than 1, indicating very strong natural selection pressure. Phylogenetic analysis of Cirrhinus cirrhosus with Cirrhinus mrigala and Bangana tungting suggested a closer evolutionary relationship among these species, which might have shared a more recent common ancestor. It has been also found that the genera Labeo and Cirrhinus are not monophyletic. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 2141 KiB  
Article
Integrating Full-Length and Second-Generation Transcriptomes to Elucidate the ApNPV-Induced Transcriptional Reprogramming in Antheraea pernyi Midgut
by Xinlei Liu, Ying Li, Xinfeng Yang, Xuwei Zhu, Fangang Meng, Yaoting Zhang and Jianping Duan
Insects 2025, 16(8), 792; https://doi.org/10.3390/insects16080792 - 31 Jul 2025
Viewed by 227
Abstract
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 [...] Read more.
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 novel protein-coding genes, 17,736 novel alternative isoforms, 1664 novel long non-coding RNAs (lncRNAs), and 858 transcription factors (TFs). In addition, 2471 alternative splicing (AS) events and 3070 alternative polyadenylation (APA) sites were identified. Moreover, 3426 and 4796 differentially expressed genes (DEGs) and isoforms were identified after ApNPV infection, respectively, besides the differentially expressed lncRNAs (164), TFs (171), and novel isoforms of ApRelish (1) and ApSOCS2 (4). Enrichment analyses showed that KEGG pathways related to metabolism were suppressed, whereas GO terms related to DNA synthesis and replication were induced. Furthermore, the autophagy and apoptosis pathways were significantly enriched among the upregulated genes. Protein–protein interaction network (PPI) analysis revealed the coordinated downregulation of genes involved in mitochondrial ribosomes, V-type and F-type ATPases, and oxidative phosphorylation, indicating the disruption of host energy metabolism and organelle acidification. Moreover, coordinated upregulation of genes associated with cytoplasmic ribosomes was observed, suggesting that the infection by ApNPV interferes with host translational machinery. These results show that ApNPV infection reprograms energy metabolism, biosynthetic processes, and immune response in A. pernyi midgut. Our study provides a foundation for elucidating the mechanisms of A. pernyi–virus interactions, particularly how the viruses affect host defense strategies. Full article
(This article belongs to the Special Issue Genomics and Molecular Biology in Silkworm)
Show Figures

Graphical abstract

12 pages, 1678 KiB  
Article
Molecular Surveillance of Plasmodium spp. Infection in Neotropical Primates from Bahia and Minas Gerais, Brazil
by Luana Karla N. S. S. Santos, Sandy M. Aquino-Teixeira, Sofía Bernal-Valle, Beatriz S. Daltro, Marina Noetzold, Aloma Roberta C. Silva, Denise Anete M. Alvarenga, Luisa B. Silva, Ramon S. Oliveira, Cirilo H. Oliveira, Iago A. Celestino, Maria E. Gonçalves-dos-Santos, Thaynara J. Teixeira, Anaiá P. Sevá, Fabrício S. Campos, Bergmann M. Ribeiro, Paulo M. Roehe, Danilo Simonini-Teixeira, Filipe V. S. Abreu, Cristiana F. A. Brito and George R. Albuquerqueadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 757; https://doi.org/10.3390/pathogens14080757 - 31 Jul 2025
Viewed by 298
Abstract
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial [...] Read more.
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial for understanding the distribution of these parasites and assessing the risk of zoonotic transmission. This study aimed to detect the presence of Plasmodium spp. genetic material in Platyrrhini primates from 47 municipalities in the states of Bahia and Minas Gerais. The animals were captured using Tomahawk-type live traps baited with fruit or immobilized with tranquilizer darts. Free-ranging individuals were chemically restrained via inhalation anesthesia using VetBag® or intramuscular anesthesia injection. Blood samples were collected from the femoral vein. A total of 298 blood and tissue samples were collected from 10 primate species across five genera: Alouatta caraya (25), Alouatta guariba clamitans (1), Callicebus melanochir (1), Callithrix geoffroyi (28), Callithrix jacchus (4), Callithrix kuhlii (31), Callithrix penicillata (175), Callithrix spp. hybrids (15), Leontopithecus chrysomelas (16), Sapajus robustus (1), and Sapajus xanthosthernos (1). Molecular diagnosis was performed using a nested PCR targeting the 18S small subunit ribosomal RNA (18S SSU rRNA) gene, followed by sequencing. Of the 298 samples analyzed, only one (0.3%) from Bahia tested positive for Plasmodium brasilianum/P. malariae. This represents the first detection of this parasite in a free-living C. geoffroyi in Brazil. These findings highlight the importance of continued surveillance of Plasmodium infections in NHPs to identify regions at risk for zoonotic transmission. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

15 pages, 7581 KiB  
Article
Complete Chloroplast Genome Sequence of Medicago falcata: Comparative Analyses with Other Species of Medicago
by Wei Duan, Xueli Zhang, Yuxiang Wang and Qian Li
Agronomy 2025, 15(8), 1856; https://doi.org/10.3390/agronomy15081856 - 31 Jul 2025
Viewed by 225
Abstract
Medicago falcata is one of the most important perennial forage legumes in the Medicago genus. In this study, we reported the complete chloroplast genome of two M. falcata ecotypes grown in different regions, and compared them with those of Medicago truncatula and Medicago [...] Read more.
Medicago falcata is one of the most important perennial forage legumes in the Medicago genus. In this study, we reported the complete chloroplast genome of two M. falcata ecotypes grown in different regions, and compared them with those of Medicago truncatula and Medicago sativa. We found that the M. falcata chloroplast genome lacks a typical quadripartite structure, containing 78 protein-coding genes, 30 tRNA genes, and four ribosomal RNA genes. They shared high conservation in size, genome structure, gene order, gene number and GC content with those of M. truncatula and M. sativa. High nucleotide diversity occurred in the coding gene regions of rps16, rps3, and ycf4 genes. Meanwhile, mononucleotide repeats are the most abundant repeat type, followed by the di-, tri-, tetra-, and pentanucleotides, and forward repeats were more abundant than reverse and palindrome repeats for all these three Medicago species. Phylogenetic analyses using both coding sequences and complete chloroplast genomes revealed that M. falcata shares the closest phylogenetic relationship with M. hybrida and M. sativa. This study provided valuable information for further studies on the genetic relationship of the Medicago genus. Full article
Show Figures

Figure 1

37 pages, 2865 KiB  
Review
Ribosome Biogenesis and Function in Cancer: From Mechanisms to Therapy
by Kezia Gitareja, Shalini S. Chelliah, Elaine Sanij, Shahneen Sandhu, Jian Kang and Amit Khot
Cancers 2025, 17(15), 2534; https://doi.org/10.3390/cancers17152534 - 31 Jul 2025
Viewed by 388
Abstract
Ribosome biogenesis is a highly coordinated, multi-step process that assembles the ribosomal machinery responsible for translating mRNAs into proteins. It begins with the rate-limiting step of RNA polymerase I (Pol I) transcription of the 47S ribosomal RNA (rRNA) genes within a specialised nucleolar [...] Read more.
Ribosome biogenesis is a highly coordinated, multi-step process that assembles the ribosomal machinery responsible for translating mRNAs into proteins. It begins with the rate-limiting step of RNA polymerase I (Pol I) transcription of the 47S ribosomal RNA (rRNA) genes within a specialised nucleolar region in the nucleus, followed by rRNA processing, modification, and assembly with ribosomal proteins and the 5S rRNA produced by Pol III. The ribosomal subunits are then exported to the cytoplasm to form functional ribosomes. This process is tightly regulated by the PI3K/RAS/MYC oncogenic network, which is frequently deregulated in many cancers. As a result, ribosome synthesis, mRNA translation, and protein synthesis rates are increased. Growing evidence supports the notion that dysregulation of ribosome biogenesis and mRNA translation plays a pivotal role in the pathogenesis of cancer, positioning the ribosome as a promising therapeutic target. In this review, we summarise current understanding of dysregulated ribosome biogenesis and function in cancer, evaluate the clinical development of ribosome targeting therapies, and explore emerging targets for therapeutic intervention in this rapidly evolving field. Full article
Show Figures

Figure 1

15 pages, 4068 KiB  
Article
Characterization of the Avian Mitochondrial-Derived Peptide MOTS-c and Its Potential Role as a Metabolic Regulator
by Xin Shu, Jiying Liu, Bingjie Xu, Hui Wang, Li Liu, Xiaotong Zheng and Jianfei Chen
Animals 2025, 15(15), 2230; https://doi.org/10.3390/ani15152230 - 29 Jul 2025
Viewed by 183
Abstract
MOTS-c is a mitochondrial peptide that plays a crucial role in regulating energy metabolism, gene expression, and immune processes. However, current research primarily focuses on mammals like humans and mice, with no reports on avian MOTS-c. This study aimed to identify and characterize [...] Read more.
MOTS-c is a mitochondrial peptide that plays a crucial role in regulating energy metabolism, gene expression, and immune processes. However, current research primarily focuses on mammals like humans and mice, with no reports on avian MOTS-c. This study aimed to identify and characterize MOTS-c coding sequences across major poultry species through bioinformatics analysis and experimental validation. The alignment results showed high sequence similarity in the MOTS-c coding regions between avian and mammalian species. However, a single nucleotide deletion was identified in avian sequences at the position corresponding to the fourth amino acid residue of mammalian homologs, resulting in divergent downstream amino acid sequences. Despite this deletion, several residues were conserved across species. Phylogenetic analysis of mRNA sequences grouped pigeons with mammals, while protein sequence analysis revealed that poultry and mammals form separate branches, highlighting the divergence between avian and mammalian MOTS-c sequences. Tissue expression profiling demonstrated widespread distribution of chicken MOTS-c across multiple tissues, with the highest expression levels in the heart. Fasting significantly reduced heart MOTS-c expression, suggesting potential metabolic regulatory functions. Functional analysis of MOTS-c in primary hepatocytes revealed significant enrichment of the ribosome, oxidative phosphorylation, and key signaling pathways (PI3K-AKT and JAK-STAT) following 24 hours of treatment. Western blot validation confirmed MOTS-c-mediated activation of the AKT signaling pathway. This study represents the first comprehensive characterization of avian MOTS-c, providing critical insights into its evolutionary conservation and its potential functional roles in gene expression and cellular metabolism. Our findings establish a foundation for further investigation into the functions of mitochondrial-encoded peptides in avian species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2990 KiB  
Article
Early Dysregulation of RNA Splicing and Translation Processes Are Key Markers from Mild Cognitive Impairment to Alzheimer’s Disease: An In Silico Transcriptomic Analysis
by Simone D’Angiolini, Agnese Gugliandolo, Gabriella Calì and Luigi Chiricosta
Int. J. Mol. Sci. 2025, 26(15), 7303; https://doi.org/10.3390/ijms26157303 - 28 Jul 2025
Viewed by 243
Abstract
About one billion people worldwide are affected by neurologic disorders. Among the various neurologic disorders, one of the most common is Alzheimer’s disease (AD). AD is a neurodegenerative disorder that progressively affects cognitive functions, disrupting the daily lives of millions of individuals. Mild [...] Read more.
About one billion people worldwide are affected by neurologic disorders. Among the various neurologic disorders, one of the most common is Alzheimer’s disease (AD). AD is a neurodegenerative disorder that progressively affects cognitive functions, disrupting the daily lives of millions of individuals. Mild cognitive impairment (MCI) is often considered a prodromal stage of Alzheimer’s disease. In this article, we retrieved data from the online available dataset GSE63060, which includes transcriptomic data of 329 blood samples, of which there are 104 cognitively normal controls, 80 MCI patients, and 145 AD patients. We used transcriptomic data related to all three groups to perform an over-representation analysis of the gene ontologies followed by a network analysis. The aim of our study is to pinpoint alterations, detectable through a non-invasive method, in biological processes affected in MCI that persist during AD. Our goal is to uncover transcriptomic changes that could support earlier diagnosis and the development of more effective therapeutic strategies, starting from the early stages of the disease, to slow down or mitigate its progression. Our work provides a consistent picture of the transcriptomic unbalance of many genes strongly involved in ribosomal formation and biogenesis and splicing processes both in patients with MCI and with AD. Full article
(This article belongs to the Special Issue Research in Alzheimer’s Disease: Advances and Perspectives)
Show Figures

Figure 1

20 pages, 2905 KiB  
Article
Redefining Latrogastropoda Again and Searching for Its Sister Group in Hypsogastropoda (Gastropoda: Caenogastropoda)
by Donald J. Colgan and Winston F. Ponder
Diversity 2025, 17(8), 524; https://doi.org/10.3390/d17080524 - 28 Jul 2025
Viewed by 133
Abstract
Caenogastropoda is a highly speciose and ecologically diverse subclass of Gastropoda but its higher order classification remains unclear, especially within its largest constituent group, Hypsogastropoda. Two nominal taxa encompassing most of the great diversity of Hypsogastropoda are in current widespread use: one is [...] Read more.
Caenogastropoda is a highly speciose and ecologically diverse subclass of Gastropoda but its higher order classification remains unclear, especially within its largest constituent group, Hypsogastropoda. Two nominal taxa encompassing most of the great diversity of Hypsogastropoda are in current widespread use: one is Latrogastropoda, which has been repeatedly redefined resulting in changes to the second, Littorinimorpha, which is generally not supposed to be monophyletic. We examined the utility of these divisions by assembling single-gene data sets of nuclear 28S ribosomal RNA (28S rRNA) and mitochondrial 16S ribosomal RNA (16S rRNA) and cytochrome c oxidase subunit I from many genera. Capuloidea was consistently found with strong support within Latrogastropoda, so this taxon is redefined here to include that superfamily. The analyses also suggested the redefinition of some superfamilies within Littorinimorpha, particularly for the clade comprising Truncatelloidea, Vanikoroidea and Rissooidea, and the Littorinoidea. Littorinimorpha was monophyletic (albeit lacking strong support) in the combined analysis of 28S rRNA and 16S rRNA and was resolved as the sister group of Latrogastropoda which was also monophyletic, with bootstrap support of 66%. Littorinimorpha was not monophyletic in other analyses. In these, the sister group of Latrogastropoda comprised clades of multiple littorinimorph superfamilies but these relationships were also not strongly supported. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

36 pages, 3579 KiB  
Article
RNA Sequencing Reveals Inflammatory and Metabolic Changes in the Lung and Brain After Carbon Black and Naphthalene Whole Body Inhalation Exposure in a Rodent Model of Military Burn Pit Exposures
by Allison M. Haaning, Brian J. Sandri, Henry L. Wyneken, William T. Goldsmith, Joshua P. Nixon, Timothy R. Nurkiewicz, Chris H. Wendt, Paul Barach, Janeen H. Trembley and Tammy A. Butterick
Int. J. Mol. Sci. 2025, 26(15), 7238; https://doi.org/10.3390/ijms26157238 - 26 Jul 2025
Viewed by 544
Abstract
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. [...] Read more.
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. To investigate molecular mechanisms, adult male rats were exposed to filtered air, naphthalene (a representative volatile organic compound), or a combination of naphthalene and carbon black (surrogate for particulate matter; CBN) via whole-body inhalation (six hours/day, three consecutive days). Lung, brain, and plasma samples were collected 24 h after the final exposure. Pro-inflammatory biomarkers were assessed using multiplex electrochemiluminescence and western blot. Differentially expressed genes (DEGs) were identified by RNA sequencing, and elastic net modeling was used to define exposure-predictive gene signatures. CBN exposure altered inflammatory biomarkers across tissues, with activation of nuclear factor kappa B (NF-κB) signaling. In the lung, gene set enrichment revealed activated pathways related to proliferation and inflammation, while epithelial–mesenchymal transition (EMT) and oxidative phosphorylation were suppressed. In the brain, EMT, inflammation, and senescence pathways were activated, while ribosomal function and oxidative metabolism were downregulated. Elastic net modeling identified a lung gene signature predictive of CBN exposure, including Kcnq3, Tgfbr1, and Tm4sf19. These findings demonstrate that inhalation of a surrogate burn pit mixture induces inflammatory and metabolic gene expression changes in both lung and brain tissues, supporting the utility of this animal model for understanding systemic effects of airborne military toxicants and for identifying potential biomarkers relevant to DRRD and Veteran health. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 2118 KiB  
Article
Ribosomal Hibernation Factor Links Quorum-Sensing to Acid Resistance in EHEC
by Yang Yang, Xinyi Zhang, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microorganisms 2025, 13(8), 1730; https://doi.org/10.3390/microorganisms13081730 - 24 Jul 2025
Viewed by 259
Abstract
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with [...] Read more.
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with endogenous yenI-derived AHL, to investigate QS-mediated protection against acid stress. RNA-seq transcriptomics identified key upregulated genes (e.g., rmf). Functional validation using isogenic rmf knockout mutants generated via λ-Red demonstrated abolished stress resistance and pan-stress vulnerability. Mechanistic studies employing qRT-PCR and stress survival assays established Ribosomal Hibernation Factor (RMF) as a non-redundant executor in a SdiA–RMF–RpoS axis, which activates ribosomal dormancy and SOS response to enhance EHEC survival under diverse stresses. For the first time, we define ribosomal hibernation as the core adaptive strategy linking QS to pathogen resilience, providing crucial mechanistic insights for developing EHEC control measures against foodborne threats. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

Back to TopTop