Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = retrogressive landslide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 31846 KB  
Article
A Two-Dimensional InSAR-Based Framework for Landslide Identification and Movement Pattern Classification
by Xuhao Li, Qianyou Fan, Yufen Niu, Shuangcheng Zhang, Jinqi Zhao, Jinzhao Si, Zixuan Wang, Ziheng Ju and Zhong Lu
Remote Sens. 2025, 17(23), 3889; https://doi.org/10.3390/rs17233889 - 30 Nov 2025
Viewed by 361
Abstract
Frequent extreme climate events have intensified landslide hazards in mountainous regions, necessitating efficient identification and classification to understand movement mechanisms and mitigate risks. This study develops a novel, non-contact InSAR framework that seamlessly integrates three key steps—Identification, Inversion, and Classification—to address this challenge. [...] Read more.
Frequent extreme climate events have intensified landslide hazards in mountainous regions, necessitating efficient identification and classification to understand movement mechanisms and mitigate risks. This study develops a novel, non-contact InSAR framework that seamlessly integrates three key steps—Identification, Inversion, and Classification—to address this challenge. By applying this framework to ascending and descending Sentinel-1 data in the complex terrain of the Jishi Mountain region, we first introduce geometric distortion masking and a C-Index deformation consistency check, which enables the reliable identification of 530 active landslides, with 154 detected in both orbits. Second, we employ a local parallel flow model to invert the landslide movement geometry without relying on DEM-derived prior assumptions, successfully retrieving the two-dimensional (sliding and normal direction) deformation fields for all 154 consistent landslides. Finally, by synthesizing these 2D deformation patterns with geomorphological features, we achieve a systematic classification of movement types, categorizing them into retrogressive translational (31), progressive translational (66), rotational (19), composite (24), and earthflows (14). This integrated methodology provides a validated, transferable solution for deciphering landslide mechanisms and assessing risks in remote, complex mountainous areas. Full article
(This article belongs to the Topic Remote Sensing and Geological Disasters)
Show Figures

Figure 1

17 pages, 66095 KB  
Article
Causes and Failure Mechanisms of Cataclastic Emeishan Basalt Hillslope Instability: New Insights from the Nantang Landslide in Southwest China
by Difei Li, Wenkai Feng, Liwang Wen, Xiaoyu Yi, Yongjian Zhou, Xiushu Zeng, Botao Li and Yihe Li
Sustainability 2025, 17(22), 10393; https://doi.org/10.3390/su172210393 - 20 Nov 2025
Viewed by 313
Abstract
The instability and failure of Emeishan basalt slopes are common and destructive geological hazards in southwest China, but the dominant triggering factor for such landslides remains unclear in existing studies. To address this gap, this study comprehensively adopted field investigations, drilling, in situ [...] Read more.
The instability and failure of Emeishan basalt slopes are common and destructive geological hazards in southwest China, but the dominant triggering factor for such landslides remains unclear in existing studies. To address this gap, this study comprehensively adopted field investigations, drilling, in situ shear tests, and numerical simulations to systematically analyze the large-scale Emeishan basalt landslide that occurred in Nantang Village, Leibo County, Sichuan Province, in the early morning of 2 July 2017 (UTC+8). Results show that the highly weathered Emeishan basalt with a cataclastic structure and low rock mass shear strength provided the essential geological basis for the landslide. Among the triggering factors, beltway excavation was the primary driver, while rainfall played a secondary role. Specifically, the excavation created a new free surface, causing local slope collapse and reducing the slope’s overall factor of safety from 1.09 to 1.06. Subsequent rainfall further expanded the local collapse scale, leading to a shallow landslide on July 1; this expansion of the free surface then sharply decreased the slope’s resisting force, lowering the overall factor of safety to 0.94 and ultimately resulting in retrogressive slope failure. These findings clarify the triggering mechanism of excavation-induced Emeishan basalt landslides and provide scientific references for the risk assessment and prevention of landslides induced by human engineering activities in Emeishan basalt areas. Full article
Show Figures

Figure 1

14 pages, 3949 KB  
Article
Numerical Simulation Study of Landslide Formation Mechanism Based on Strength Parameter
by Guang-Xiang Yuan, Peng Cheng and Yong-Qiang Tang
Appl. Sci. 2025, 15(16), 9004; https://doi.org/10.3390/app15169004 - 15 Aug 2025
Viewed by 760
Abstract
The shear strength parameters of landslide zones are the necessary data basis for landslide stability evaluation and landslide surge disaster chain research. It is important to determine the physical and mechanical parameters of landslide zones scientifically and reasonably. In this study, four small [...] Read more.
The shear strength parameters of landslide zones are the necessary data basis for landslide stability evaluation and landslide surge disaster chain research. It is important to determine the physical and mechanical parameters of landslide zones scientifically and reasonably. In this study, four small residual landslide deposits near the Hei Duo Village road in Diebu County, Gansu Province, were investigated. The research involved detailed field investigations, the construction of landslide engineering geological models, and the use of the transfer coefficient method for simultaneous/inverse inversion and sensitivity analysis of the strength parameters of the four landslides. Based on the inversion results, an analysis of the landslide formation mechanism was conducted. The inversion results yielded the shear strength parameters of the sliding surface soil as c = 30.12 kPa and φ = 21.08°. It was found that the excavation at the base of the slope is the direct triggering factor for the landslides, with the 3# landslide being the most affected by the base excavation. In terms of the type of movement, all four landslides belong to the retrogressive landslide, with the maximum shear strain increment mainly concentrated at the slope angle after excavation. The slope body experiences shear failure, which is in good agreement with the field conditions. The study provides reference for stability prediction and disaster prevention and control of reservoir bank slope. Full article
Show Figures

Figure 1

21 pages, 14257 KB  
Article
Shallow-Water Submarine Landslide Susceptibility Map: The Example in a Sector of Capo d’Orlando Continental Margin (Southern Tyrrhenian Sea)
by Elena Scacchia, Daniele Casalbore, Fabiano Gamberi, Daniele Spatola, Marco Bianchini and Francesco Latino Chiocci
J. Mar. Sci. Eng. 2025, 13(7), 1350; https://doi.org/10.3390/jmse13071350 - 16 Jul 2025
Cited by 2 | Viewed by 1087
Abstract
Active continental margins, generally characterized by narrow shelves incised by canyons, are pervasively shaped by submarine landslides that can occur near coastal areas. In this context, creating landslide susceptibility maps is the first step in landslide geohazard assessment. This paper focuses on shallow-water [...] Read more.
Active continental margins, generally characterized by narrow shelves incised by canyons, are pervasively shaped by submarine landslides that can occur near coastal areas. In this context, creating landslide susceptibility maps is the first step in landslide geohazard assessment. This paper focuses on shallow-water submarine landslides along the Capo d’Orlando continental margin and presents a related susceptibility map using the Weight of Evidence method. This method quantifies the strength of the association between a landslide inventory and predisposing factors. A geomorphological analysis of the continental shelf and upper slope yielded a landslide inventory of 450 initiation points, which were combined with five specifically selected preconditioning factors. The results revealed that the most favourable conditions for shallow-water landslides include slopes between 5° and 15°, proximity to faults (<1 km), proximity to river mouths (<2 km), the presence of consolidated lithologies and sandy terraces, and slopes facing NE and E. The landslide susceptibility map indicates that susceptible areas are in canyon heads and flanks, as well as in undisturbed slope portions near canyon heads where retrogressive landslides are likely. The model results are robust (AUC = 0.88), demonstrating that this method can be effectively applied in areas with limited geological data for preliminary susceptibility assessments. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

24 pages, 12115 KB  
Article
Deformation-Related Data Mining and Movement Patterns of the Huangtupo Landslide in the Three Gorges Reservoir Area of China
by Zhexian Liao, Jinge Wang, Gang Chen and Yizhe Li
Appl. Sci. 2025, 15(7), 4018; https://doi.org/10.3390/app15074018 - 5 Apr 2025
Cited by 2 | Viewed by 882
Abstract
Large reservoir-induced landslides pose a persistent threat to the safety of the Three Gorges Project and the Yangtze River shipping channel. A comprehensive multi-field monitoring system has been established to observe potential landslide areas within the Three Gorges Reservoir Area. The tasks of [...] Read more.
Large reservoir-induced landslides pose a persistent threat to the safety of the Three Gorges Project and the Yangtze River shipping channel. A comprehensive multi-field monitoring system has been established to observe potential landslide areas within the Three Gorges Reservoir Area. The tasks of effectively utilizing these extensive datasets and exploring the underlying correlation among various monitoring objects have become critical for understanding landslide movement patterns, assessing stability, and informing disaster prevention measures. This study focuses on the No. 1 riverside sliding mass of the Huangtupo landslide, a representative large-scale landslide in the Three Gorges Area. We specifically analyze the deformation characteristics at multiple monitoring points on the landslide surface and within underground tunnels. The analysis reveals a progressive increase in deformation rates from the rear to the front and from west to east. Representative monitoring points were selected from the front, middle, and rear sections of the landslide, along with four hydrological factors, including two reservoir water factors and two rainfall factors. These datasets were classified using the K-means clustering algorithm, while the FP-Growth algorithm was employed to uncover correlations between landslide deformation and hydrological factors. The results indicate significant spatial variability in the impacts of reservoir water levels and rainfall on the sliding mass. Specifically, reservoir water levels influence the overall deformation of the landslide, with medium-to-low water levels (146.32 to 163.23 m) or drawdowns (−18.70 to −2.16 m/month) accelerating deformation, whereas high water levels (165.37 to 175.10 m) or rising water levels (4.45 to 17.33 m/month) tend to mitigate it. In contrast, rainfall has minimal effects on the front of the landslide but significantly impacts the middle and rear areas. Given that landslide deformation is primarily driven by periodic fluctuations in reservoir water levels at the front, the movement pattern of the landslide is identified as retrogressive. The association rules derived from this study were validated using field monitoring data, demonstrating that the data mining method, in contrast to traditional statistical methods, enables the faster and more intuitive identification of reservoir-induced landslide deformation patterns and underlying mechanisms within extensive datasets. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 10534 KB  
Article
Evolution Characteristics and Failure Mechanisms of Retrogressive Loess Landslides: A Case Study from the South Jingyang Platform, China
by Tao Ding, Zhiyuan He, Penghui Ma, Qingyi Mu, Yifan Xue, Yalin Nan and Kui Liu
Appl. Sci. 2025, 15(5), 2426; https://doi.org/10.3390/app15052426 - 24 Feb 2025
Viewed by 1022
Abstract
The South Jingyang Platform, China, is well-known for its continuous irrigation-induced loess landslides. Many scholars have discussed the loess landslides in this area, as the frequent occurrence of these landslides has led to a gradual reduction in the size of the platform. On [...] Read more.
The South Jingyang Platform, China, is well-known for its continuous irrigation-induced loess landslides. Many scholars have discussed the loess landslides in this area, as the frequent occurrence of these landslides has led to a gradual reduction in the size of the platform. On the basis of these studies, this paper provides an updated summary of the distribution, evolution characteristics, and future trends of these landslides over the past 20 years. It was found that from 2003 to 2023, a total of 76 landslides occurred, mainly concentrated in three areas. In addition to forming retrogressive landslide groups, the large amount of landslide deposits at the substrate also transforms into loess mudflows, causing a disaster chain. The rapid rise of the groundwater level is the main key factor causing these flowslides, and the widely distributed joints, cracks, and caves in the slopes serve as preferential flow channels, actively contributing to the accelerated rise of the groundwater level. This further decreases the stability of the slopes and is also a significant factor promoting the occurrence of landslides. The occurrence of falls and slides is mainly due to the loosening of the slope caused by previous flowslides, which affects the soil structure and triggers the migration of the soil’s critical state. This explains why flowslides occur in the deep saturated zone, while slides and falls often occur in the shallow unsaturated zone in the study area. Since 2015, flowslides have decreased due to changes in irrigation practices and stabilized groundwater levels, confirming the close relationship between flowslide occurrence and groundwater level fluctuations. Full article
Show Figures

Figure 1

21 pages, 4857 KB  
Article
Geophysical Study of a Large Landslide Affecting the Urban Area of Albuñuelas (S Spain)
by Mara Mita, Juan José Galiana-Merino, Jesús Garrido, Luca Lenti, Salvatore Martino, Jacopo Pappadopoulo, José A. Peláez, Boualem Youcef Nassim Benabdeloued and José Delgado
Appl. Sci. 2023, 13(22), 12205; https://doi.org/10.3390/app132212205 - 10 Nov 2023
Cited by 1 | Viewed by 2175
Abstract
The urban area of Albuñuelas, a small town located to the south of Granada (S Spain), has been developed in terrain affected by a large-scale rotational landslide with very slow rate of movement. Despite this situation, the internal structure of the landslide and [...] Read more.
The urban area of Albuñuelas, a small town located to the south of Granada (S Spain), has been developed in terrain affected by a large-scale rotational landslide with very slow rate of movement. Despite this situation, the internal structure of the landslide and how it has evolved to its present state has not been analyzed in depth up to now. In this paper, we present the first study performed on this landslide to define its configuration and characteristics. For this purpose, ambient noise single-station and array measurements were carried out along several cross-sections of the landslide. The inversion of the measurements has allowed for the estimation of the soil stratigraphy at each site of measurement. These geophysical results have been constrained by data from a borehole drilled in the zone and from field observations of the local geology, allowing for the reduction in uncertainties in the results. A geological–geophysical model of the landslide has been built from these data, showing that the landslide thicknesses is greater than 50 m in its central parts and above 60 m in the upper ones. This model reveals that the evolution of the landslide was complex, with several dislodged elements (blocks) that moved in sequence (retrogression) and were partially eroded in order to explain present morphology. The future evolution of this landslide will be controlled by the composition of the materials surveyed along the foot of the valley, being the western part where there are more erodible materials according to the obtained results. Full article
(This article belongs to the Special Issue Geographic Visualization: Evaluation and Monitoring of Geohazards)
Show Figures

Figure 1

19 pages, 6581 KB  
Article
UAV Application for Short-Time Evolution Detection of the Vomice Landslide (South Italy)
by Michele Mercuri, Massimo Conforti, Mariantonietta Ciurleo and Luigi Borrelli
Geosciences 2023, 13(2), 29; https://doi.org/10.3390/geosciences13020029 - 25 Jan 2023
Cited by 4 | Viewed by 2480
Abstract
This paper investigates the possibility to detect the short-time evolution of the slow-moving Vomice earth flow, located in the northeastern sector of the Calabria region (South Italy), by combining the information obtained from two different drone flights, carried out in February 2019 and [...] Read more.
This paper investigates the possibility to detect the short-time evolution of the slow-moving Vomice earth flow, located in the northeastern sector of the Calabria region (South Italy), by combining the information obtained from two different drone flights, carried out in February 2019 and June 2022, with field surveys. The obtained results consisted of delimiting all landslide bodies constituting the Vomice earth flow, detecting landslide types and the state of activity, as well as identifying spatial and volumetric changes. The obtained results showed that depletion and transition zones of the Vomice earth flow are active, while the accumulation zone appears prevalently dormant. Particularly, in the analyzed period, the depletion zone was characterized by local collapses of the main scarps where several slides evolving in earth flows caused more than 20 m of retrogressive fail upslope. The maximum elevation changes observed in these zones were about ±5 m. The volume of the material mobilized by mass movements was about 114.2 × 103 m3, whereas the volume of the accumulated material was approximately 92.7 × 103 m3. The transition zone was affected by several slow earthflows that re-mobilized the displaced material located in the middle portion of the landslide and reached the accumulation zone. Overall, the results of this study demonstrated the practicality and feasibility of using UAV tools for detecting the short-time evolution of a large landslide. Full article
Show Figures

Figure 1

19 pages, 7279 KB  
Article
Progressive Formation of Retrogressive Landslide and the Lateral Length of Instability
by Xiongpeng Zhu, Linglin Xie, Yi Tang, Yifan Chen, Huihua Hu, Guangyin Lu, Changfu Chen and Hang Lin
Appl. Sci. 2023, 13(2), 799; https://doi.org/10.3390/app13020799 - 6 Jan 2023
Cited by 4 | Viewed by 2659
Abstract
Retrogressive landslide is caused by the lower rock mass sliding, so that the upper part loses support, is deformed, and starts to slide. In the process of highway construction, the incised slope often leads to retrogressive landslide, and the determination of the damage [...] Read more.
Retrogressive landslide is caused by the lower rock mass sliding, so that the upper part loses support, is deformed, and starts to slide. In the process of highway construction, the incised slope often leads to retrogressive landslide, and the determination of the damage range of retrogressive landslide is of great significance for the control of the slope. Taking a highway retrogressive landslide in Hunan Province as the research object, the particle flow discrete element is used to numerically simulate the entire failure process of the slope. According to the complex geological conditions of the slope, the rock mass of each part of the slope model is divided, the displacement of key parts of the landslide is monitored, the whole failure process of the retrogressive landslide is simulated, and the lateral length of traction instability is calculated through the stability theory of the sliding pull-crack failure slope. The research shows that the incised slope is the root cause of the retrogressive landslide, and the rainfall is the direct cause. When the retrogressive landslide is treated in engineering practice, the lateral length of traction instability can be obtained according to the stability theory of the sliding pull-crack failure slope, to realize the accurate judgment of the traction failure range of the sliding body. Full article
(This article belongs to the Special Issue Advances in Failure Behavior of Rocks)
Show Figures

Figure 1

18 pages, 5970 KB  
Article
Experimental Study on Failure Mechanism and Mode of Fly-Ash Dam Slope Triggered by Rainfall Infiltration
by Hong-Kai Niu, Qiang Li, Li-Ting Zhang, Xin Li and Jun-Tao Wang
Appl. Sci. 2022, 12(19), 9404; https://doi.org/10.3390/app12199404 - 20 Sep 2022
Cited by 3 | Viewed by 3501
Abstract
The fly-ash dam is used to store the fly ash discharged from the thermal power plant. A fly-ash dam is a special slope built with fly ash, and rainfall infiltration is an important reason to induce the landslide of this kind of slope. [...] Read more.
The fly-ash dam is used to store the fly ash discharged from the thermal power plant. A fly-ash dam is a special slope built with fly ash, and rainfall infiltration is an important reason to induce the landslide of this kind of slope. In this paper, the laboratory tests of different slope ratios and initial seepage fields under rainfall were carried out, aimed at studying the failure mechanism, failure mode, triggering mechanism, and influence factors for the slope instability of the fly ash dam slope under rainfall infiltration. The results show that: (I) Three failure mechanisms were found in the tests: sliding failure, runoff erosion, and flow-slide failure. Due to the low density of fly ash, runoff erosion is more likely to occur under rainfall. Differently from clay slope, flow slide is an important failure mechanism of fly ash slope under rainfall. (II) Local erosion damages caused by runoff erosion and flow slide are the important triggering factors of the fly-ash dam slope failure under rainfall. (III) Three failure modes were observed in the test: the overall sliding failure of the slope, the retrogressive landslide caused by multi-stage local sliding, and the gradual erosion failure of the slope (caused by the combined action of runoff erosion and flow slide). (IV) The slope ratio has an important influence on the failure mode. With the decrease in slope ratio, the failure mode evolves from sliding failure to flow-slide failure and runoff erosion failure. The greater the slope ratio, the more obvious the sliding failure characteristics; the lower the slope rate, the greater the runoff erosion damage. The existence of an internal seepage field in the slope intensifies the occurrence of flow slide. Full article
(This article belongs to the Special Issue Slope Stability and Earth Retaining Structures)
Show Figures

Figure 1

24 pages, 6514 KB  
Article
Updated Understanding of the Ripley Landslide Kinematics Using Satellite InSAR
by Amir Soltanieh and Renato Macciotta
Geosciences 2022, 12(8), 298; https://doi.org/10.3390/geosciences12080298 - 30 Jul 2022
Cited by 15 | Viewed by 4463
Abstract
The Thompson River valley hosts 14 landslides along a 10 km section, which threaten the two major railroads connecting the Port of Vancouver and the interior provinces in Canada. The Ripley landslide is one of the active landslides in this section of the [...] Read more.
The Thompson River valley hosts 14 landslides along a 10 km section, which threaten the two major railroads connecting the Port of Vancouver and the interior provinces in Canada. The Ripley landslide is one of the active landslides in this section of the valley. Previous research at this site included an analysis of landslide deformations using satellite radar interferometry focusing on deformations measured in the line of sight between the satellite and the slopes, and average downslope displacement (deformations projected in the average downslope direction). Since then, further stratigraphic interpretation has provided an enhanced understanding of the Ripley landslide. In this update, the new stratigraphic interpretation is supplemented with satellite InSAR data from May 2015 to May 2017 to enhance the current understanding of the landslide kinematics. The results indicate that the Ripley landslide has been moving at a rate between 2 and 82 mm per year, corresponding to a very slow to slow landslide. It is also observed that the movements tend to be near-horizontal on areas closer to the toe of the landslide, while the vertical component of deformation increases near the scarp of the landslide. This, together with the interpreted stratigraphy, indicates the kinematics corresponds to a compound landslide. This is consistent with interpreted landslide kinematics of older, more mature landslides in the area that have shown episodes of retrogression and suggests the possibility of a similar future behaviour of the Ripley landslide. Full article
Show Figures

Figure 1

16 pages, 9644 KB  
Article
The Post-Failure Spatiotemporal Deformation of Certain Translational Landslides May Follow the Pre-Failure Pattern
by Luyao Wang, Haijun Qiu, Wenqi Zhou, Yaru Zhu, Zijing Liu, Shuyue Ma, Dongdong Yang and Bingzhe Tang
Remote Sens. 2022, 14(10), 2333; https://doi.org/10.3390/rs14102333 - 12 May 2022
Cited by 74 | Viewed by 3288
Abstract
Investigating landslide deformation patterns in different evolution stages is important for understanding landslide movement. Translational landslides generally slide along a relatively straight surface of rupture. Whether the post-failure spatiotemporal deformation for certain translational landslides follows the pre-failure pattern remains untested. Here, the pre- [...] Read more.
Investigating landslide deformation patterns in different evolution stages is important for understanding landslide movement. Translational landslides generally slide along a relatively straight surface of rupture. Whether the post-failure spatiotemporal deformation for certain translational landslides follows the pre-failure pattern remains untested. Here, the pre- and post-failure spatiotemporal deformations of the Simencun landslide along the Yellow River in 2018 were analyzed through multi-temporal remote sensing image analysis, Interferometric Synthetic Aperture Radar (InSAR) deformation monitoring and intensive field investigations. The results show that the pre- and post-failure spatial deformations both follow a retrogressive failure pattern. The long time series of the displacement before and after failure is characterized by obvious seasonal and periodic stage acceleration movements. Effective rainfall played an important role in the increase of the displacement acceleration, and the change in temperature might have accelerated the displacement. Finally, there is a possibility that the post-failure spatiotemporal deformation pattern of translational landslides does follow the pre-failure pattern when certain conditions are satisfied. The results are of great significance to improving our understanding of the spatiotemporal deformation pattern of landslides and to post-failure risk prevention and control. Full article
Show Figures

Graphical abstract

21 pages, 7582 KB  
Article
How Can the Morphometric Characteristics and Failure Conditions of a Historic Gully Caused by Intense Rainfall Be Reconstructed?
by Claire Rault, Yannick Thiery, Bertrand Aunay, Bastien Colas, Kahina Reboul and Thomas J. B. Dewez
Earth 2022, 3(1), 324-344; https://doi.org/10.3390/earth3010020 - 19 Feb 2022
Cited by 1 | Viewed by 3089
Abstract
In January 1980, during exceptional cyclonic rainfall, an atypical landslide, called déboulé, rapidly generated the permanent 700 m-long gully of the Ravine de l’Eglise on an inhabited plateau in Reunion Island (Indian Ocean). Retrieving the initial conditions that led to this historical [...] Read more.
In January 1980, during exceptional cyclonic rainfall, an atypical landslide, called déboulé, rapidly generated the permanent 700 m-long gully of the Ravine de l’Eglise on an inhabited plateau in Reunion Island (Indian Ocean). Retrieving the initial conditions that led to this historical process is both challenging and necessary for understanding the mechanism of gully incision and providing pointers for improving risk mitigation in relation to this phenomenon. In this study, we reconstruct the pre- and post-failure topographies using SFM (structure from motion) applied on archive aerial photographs. Based on the comparison of these digital elevation models, we estimate the volume of material eroded to be ca. 0.63 Mm3. Groundwater level increase, part of the triggering mechanism, is hindcast in the catchment of the gully using a lumped hydrological model. This model shows that in only a fortnight the groundwater level probably rose by 36 m, which could have caused a progressive increase in pore pressure and triggered formation of the gully by retrogressive landslides. We test this hypothesis by considering the pre-failure topography and the hindcast groundwater level in a deterministic model based on limit equilibrium equations to explore ground stability. The evolution of ground stability with a rise in the water table shows that the gully may have extended in a headward direction by retrogressive landslides. This is the first quantitative reconstruction of an exceptional historical event affecting the territory of Reunion Island. The methods used to investigate the Ravine de L’Eglise incision thus offer new complementary insights and challenges for understanding the mechanism and the temporality of gully formation. Full article
(This article belongs to the Special Issue Innovative Approaches for Modeling and Monitoring of Gully Erosion)
Show Figures

Figure 1

19 pages, 4397 KB  
Article
Evaluating the Landslide Stability and Vegetation Recovery: Case Studies in the Tsengwen Reservoir Watershed in Taiwan
by Chun-Hung Wu
Water 2021, 13(24), 3479; https://doi.org/10.3390/w13243479 - 7 Dec 2021
Cited by 11 | Viewed by 4186
Abstract
The sediment yield from numerous landslides triggered in Taiwan’s mountainous regions by 2009 Typhoon Morakot have had substantial long-term impacts on the evolution of rivers. This study evaluated the long-term evolution of landslides induced by 2001 Typhoon Nari and 2009 Typhoon Morakot in [...] Read more.
The sediment yield from numerous landslides triggered in Taiwan’s mountainous regions by 2009 Typhoon Morakot have had substantial long-term impacts on the evolution of rivers. This study evaluated the long-term evolution of landslides induced by 2001 Typhoon Nari and 2009 Typhoon Morakot in the Tsengwen Reservoir Watershed by using multiannual landslide inventories and rainfall records for the 2001–2017 period. The landslide activity, vegetation recovery time, and the landslide spatiotemporal hotspot analyses were used in the study. Severe landslides most commonly occurred on 35–45° slopes at elevations of 1400–2000 m located within 500 m of the rivers. The average vegetation recovery time was 2.29 years, and landslides with vegetation recovery times exceeding 10 years were most frequently retrogressive landslide, riverbank landslides in sinuous reaches, and the core area of large landslides. The annual landslide area decline ratios after 2009 Typhoon Morakot in Southern Taiwan was 4.75% to 7.45%, and the time of landslide recovery in the Tsengwen reservoir watershed was predicted to be 28.48 years. Oscillating hotspots and coldspots occupied 95.8% of spatiotemporal patterns in the watershed area. The results indicate that landslides moved from hillslopes to rivers in the 2001–2017 period because the enormous amount of sediment deposited in rivers resulted in the change of river geomorphology and the riverbank landslides. Full article
Show Figures

Figure 1

18 pages, 3997 KB  
Article
Remote Sensing of Landslide-Generated Sediment Plumes, Peace River, British Columbia
by Katie E. Hughes, Amanda Wild, Eva Kwoll, Marten Geertsema, Alexandra Perry and K. Darcy Harrison
Remote Sens. 2021, 13(23), 4901; https://doi.org/10.3390/rs13234901 - 3 Dec 2021
Cited by 3 | Viewed by 3828
Abstract
Quantifying the contribution of sediment delivered to rivers by landslides is needed to assess a river’s sediment load in regions prone to mass wasting. Monitoring such events, however, remains difficult. This study utilised six years of remotely sensed imagery (PlanetScope and RapidEye, Imagery [...] Read more.
Quantifying the contribution of sediment delivered to rivers by landslides is needed to assess a river’s sediment load in regions prone to mass wasting. Monitoring such events, however, remains difficult. This study utilised six years of remotely sensed imagery (PlanetScope and RapidEye, Imagery courtesy of Planet Labs, Inc., San Francisco, CA, USA), topographic surveys, and field observation to examine a hydro-geologically controlled, retrogressive landslide near a tributary to the Peace River, British Columbia. The slide has been active since 2014, delivering large amounts of sediment to the Peace River, visible in a persistent plume. Here, we quantify the landslide’s sediment contribution to the Peace River, assess the hydro-meteorological drivers of plume variability, and test whether plume activity can be directly linked to landslide activity for monitoring purposes. Our results show that the landslide on average delivered 165,000 tonnes of sediment per year, a seven-fold increase of the tributary’s regular load and near half of the Peace River’s load at this location. Due to continuous erosion of landslide material, sediment supply is steady and fuelled by repeated failures. Using thresholding, the identification of ‘high’ plume activity was possible, which positively correlated with the water level in a nearby reservoir, a proxy for the state of groundwater in this region. We reason that ‘high’ plume activity is linked to increased groundwater pressure because landslide activity is groundwater-controlled and failures fuel sediment delivery to the Peace River. Using readily available imagery, it is thus possible to monitor the activity of this recurrent landslide when field data are difficult to obtain. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

Back to TopTop