Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,003)

Search Parameters:
Keywords = reticulum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 611 KiB  
Review
Role of Dyadic Proteins in Proper Heart Function and Disease
by Carter Liou and Michael T. Chin
Int. J. Mol. Sci. 2025, 26(15), 7478; https://doi.org/10.3390/ijms26157478 (registering DOI) - 2 Aug 2025
Abstract
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development [...] Read more.
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development and positioning of dyads is essential in excitation–contraction (EC) coupling and, thus, beating of the heart. Three proteins, namely CMYA5, JPH2, and BIN1, are responsible for maintaining the dyadic cleft between the T-tubule and junctional sarcoplasmic reticulum (jSR). Various other dyadic proteins play integral roles in the primary function of the dyad—translating a propagating action potential (AP) into a myocardial contraction. Ca2+, a secondary messenger in this process, acts as an allosteric activator of the sarcomere, and its cytoplasmic concentration is regulated by the dyad. Loss-of-function mutations have been shown to result in cardiomyopathies and arrhythmias. Adeno-associated virus (AAV) gene therapy with dyad components can rescue dyadic dysfunction, which results in cardiomyopathies and arrhythmias. Overall, the dyad and its components serve as essential mediators of calcium homeostasis and excitation–contraction coupling in the mammalian heart and, when dysfunctional, result in significant cardiac dysfunction, arrhythmias, morbidity, and mortality. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Histopathological and Molecular Diagnostics)
Show Figures

Figure 1

19 pages, 1461 KiB  
Review
Roles of Type 10 17β-Hydroxysteroid Dehydrogenase in Health and Disease
by Xue-Ying He, Janusz Frackowiak and Song-Yu Yang
J. Pers. Med. 2025, 15(8), 346; https://doi.org/10.3390/jpm15080346 (registering DOI) - 1 Aug 2025
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain [...] Read more.
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain amino acid degradation and neurosteroid metabolism. It can bind to other proteins carrying out diverse physiological functions, e.g., tRNA maturation. It has also previously been proposed to be an Aβ-binding alcohol dehydrogenase (ABAD) or endoplasmic reticulum-associated Aβ-binding protein (ERAB), although those reports are controversial due to data analyses. For example, the reported km value of some substrate of ABAD/ERAB was five times higher than its natural solubility in the assay employed to measure km. Regarding any reported “one-site competitive inhibition” of ABAD/ERAB by Aβ, the kivalue estimations were likely impacted by non-physiological concentrations of 2-octanol at high concentrations of vehicle DMSO and, therefore, are likely artefactual. Certain data associated with ABAD/ERAB were found not reproducible, and multiple experimental approaches were undertaken under non-physiological conditions. In contrast, 17β-HSD10 studies prompted a conclusion that Aβ inhibited 17β-HSD10 activity, thus harming brain cells, replacing a prior supposition that “ABAD” mediates Aβ neurotoxicity. Furthermore, it is critical to find answers to the question as to why elevated levels of 17β-HSD10, in addition to Aβ and phosphorylated Tau, are present in the brains of AD patients and mouse AD models. Addressing this question will likely prompt better approaches to develop treatments for Alzheimer’s disease. Full article
34 pages, 4436 KiB  
Article
Structure of the Secretory Compartments in Goblet Cells in the Colon and Small Intestine
by Alexander A. Mironov, Irina S. Sesorova, Pavel S. Vavilov, Roberto Longoni, Paola Briata, Roberto Gherzi and Galina V. Beznoussenko
Cells 2025, 14(15), 1185; https://doi.org/10.3390/cells14151185 (registering DOI) - 31 Jul 2025
Abstract
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and [...] Read more.
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and immune EM we analyzed the secretory pathway in goblet cells and revealed that COPII-coated buds on the endoplasmic reticulum (ER) are extremely rare. The ERES vesicles with dimensions typical for the COPII-dependent vesicles were not found. The Golgi is formed by a single cisterna organized in a spiral with characteristics of the cycloid surface. This ribbon has a shape of a cup with irregular perforations. The Golgi cup is filled with secretory granules (SGs) containing glycosylated mucins. Their diameter is close to 1 µm. The cup is connected with ER exit sites (ERESs) with temporal bead-like connections, which are observed mostly near the craters observed at the externally located cis surface of the cup. The craters represent conus-like cavities formed by aligned holes of gradually decreasing diameters through the first three Golgi cisternae. These craters are localized directly opposite the ERES. Clusters of the 52 nm vesicles are visible between Golgi cisternae and between SGs. The accumulation of mucin, started in the fourth cisternal layer, induces distensions of the cisternal lumen. The thickness of these distensions gradually increases in size through the next cisternal layers. The spherical distensions are observed at the edges of the Golgi cup, where they fuse with SGs and detach from the cisternae. After the fusion of SGs located just below the apical plasma membrane (APM) with APM, mucus is secreted. The content of this SG becomes less osmiophilic and the excessive surface area of the APM is formed. This membrane is eliminated through the detachment of bubbles filled with another SG and surrounded with a double membrane or by collapse of the empty SG and transformation of the double membrane lacking a visible lumen into multilayered organelles, which move to the cell basis and are secreted into the intercellular space where the processes of dendritic cells are localized. These data are evaluated from the point of view of existing models of intracellular transport. Full article
22 pages, 2422 KiB  
Article
A Conserved N-Terminal Di-Arginine Motif Stabilizes Plant DGAT1 and Modulates Lipid Droplet Organization
by Somrutai Winichayakul, Hong Xue and Nick Roberts
Int. J. Mol. Sci. 2025, 26(15), 7406; https://doi.org/10.3390/ijms26157406 (registering DOI) - 31 Jul 2025
Abstract
Diacylglycerol-O-acyltransferase 1 (DGAT1, EC 2.3.1.20) is a pivotal enzyme in plant triacylglycerol (TAG) biosynthesis. Previous work identified conserved di-arginine (R) motifs (R-R, R-X-R, and R-X-X-R) in its N-terminal cytoplasmic acyl-CoA binding domain. To elucidate their functional significance, we engineered R-rich sequences in the [...] Read more.
Diacylglycerol-O-acyltransferase 1 (DGAT1, EC 2.3.1.20) is a pivotal enzyme in plant triacylglycerol (TAG) biosynthesis. Previous work identified conserved di-arginine (R) motifs (R-R, R-X-R, and R-X-X-R) in its N-terminal cytoplasmic acyl-CoA binding domain. To elucidate their functional significance, we engineered R-rich sequences in the N-termini of Tropaeolum majus and Zea mays DGAT1s. Comparative analysis with their respective non-mutant constructs showed that deleting or substituting R with glycine in the N-terminal region of DGAT1 markedly reduced lipid accumulation in both Camelina sativa seeds and Saccharomyces cerevisiae cells. Immunofluorescence imaging revealed co-localization of non-mutant and R-substituted DGAT1 with lipid droplets (LDs). However, disruption of an N-terminal di-R motif destabilizes DGAT1, alters LD organization, and impairs recombinant oleosin retention on LDs. Further evidence suggests that the di-R motif mediates DGAT1 retrieval from LDs to the endoplasmic reticulum (ER), implicating its role in dynamic LD–ER protein trafficking. These findings establish the conserved di-R motifs as important regulators of DGAT1 function and LD dynamics, offering insights for the engineering of oil content in diverse biological systems. Full article
(This article belongs to the Special Issue Modern Plant Cell Biotechnology: From Genes to Structure, 2nd Edition)
33 pages, 2423 KiB  
Review
Chaperone-Mediated Responses and Mitochondrial–Endoplasmic Reticulum Coupling: Emerging Insight into Alzheimer’s Disease
by Manish Kumar Singh, Minghao Fu, Sunhee Han, Jyotsna S. Ranbhise, Wonchae Choe, Sung Soo Kim and Insug Kang
Cells 2025, 14(15), 1179; https://doi.org/10.3390/cells14151179 - 31 Jul 2025
Abstract
Alzheimer’s disease (AD) is increasingly recognized as a multifactorial disorder driven by a combination of disruptions in proteostasis and organelle communication. The 2020 Lancet commission reported that approximately 10 million people worldwide were affected by AD in the mid-20th century. AD is the [...] Read more.
Alzheimer’s disease (AD) is increasingly recognized as a multifactorial disorder driven by a combination of disruptions in proteostasis and organelle communication. The 2020 Lancet commission reported that approximately 10 million people worldwide were affected by AD in the mid-20th century. AD is the most prevalent cause of dementia. By early 2030, the global cost of dementia is projected to rise by USD 2 trillion per year, with up to 85% of that cost attributed to daily patient care. Several factors have been implicated in the progression of neurodegeneration, including increased oxidative stress, the accumulation of misfolded proteins, the formation of amyloid plaques and aggregates, the unfolded protein response (UPR), and mitochondrial–endoplasmic reticulum (ER) calcium homeostasis. However, the exact triggers that initiate these pathological processes remain unclear, in part because clinical symptoms often emerge gradually and subtly, complicating early diagnosis. Among the early hallmarks of neurodegeneration, elevated levels of reactive oxygen species (ROS) and the buildup of misfolded proteins are believed to play pivotal roles in disrupting proteostasis, leading to cognitive deficits and neuronal cell death. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles is a characteristic feature of AD. These features contribute to chronic neuroinflammation, which is marked by the release of pro-inflammatory cytokines and chemokines that exacerbate oxidative stress. Given these interconnected mechanisms, targeting stress-related signaling pathways, such as oxidative stress (ROS) generated in the mitochondria and ER, ER stress, UPR, and cytosolic chaperones, represents a promising strategy for therapeutic intervention. This review focuses on the relationship between stress chaperone responses and organelle function, particularly the interaction between mitochondria and the ER, in the development of new therapies for AD and related neurodegenerative disorders. Full article
Show Figures

Figure 1

21 pages, 4201 KiB  
Review
Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia–Reperfusion Injury
by Kenneth J. Dery, Richard Chiu, Aanchal Kasargod and Jerzy W. Kupiec-Weglinski
Antioxidants 2025, 14(8), 944; https://doi.org/10.3390/antiox14080944 (registering DOI) - 31 Jul 2025
Viewed by 46
Abstract
Reactive oxygen species (ROS) play a dual role as both essential signaling molecules and harmful mediators of damage. Imbalances in the redox state of the liver can overwhelm antioxidant defenses and promote mitochondrial dysfunction, oxidative damage, and inflammation. Complex feedback loops between ROS [...] Read more.
Reactive oxygen species (ROS) play a dual role as both essential signaling molecules and harmful mediators of damage. Imbalances in the redox state of the liver can overwhelm antioxidant defenses and promote mitochondrial dysfunction, oxidative damage, and inflammation. Complex feedback loops between ROS and immune signaling pathways are a hallmark of pathological liver conditions, such as hepatic ischemia–reperfusion injury (IRI). This is a major cause of liver transplant failure and is of increasing significance due to the increased use of marginally discarded livers for transplantation. This review outlines the major enzymatic and metabolic sources of ROS in hepatic IRI, including mitochondrial reverse electron transport, NADPH oxidases, cytochrome P450 enzymes, and endoplasmic reticulum stress. Hepatocyte injury activates redox feedback loops that initiate immune cascades through DAMP release, toll-like receptor signaling, and cytokine production. Emerging regulatory mechanisms, such as succinate accumulation and cytosolic calcium–CAMKII signaling, further shape oxidative dynamics. Pharmacological therapies and the use of antioxidant and immunomodulatory approaches, including nanoparticles and redox-sensitive therapeutics, are discussed as protective strategies. A deeper understanding of how redox and immune feedback loops interact is an exciting and active area of research that warrants further clinical investigation. Full article
Show Figures

Figure 1

18 pages, 300 KiB  
Review
Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder
by John Jay Gargus
Genes 2025, 16(8), 923; https://doi.org/10.3390/genes16080923 (registering DOI) - 31 Jul 2025
Viewed by 44
Abstract
Background/Objectives: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in [...] Read more.
Background/Objectives: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in ASD, as recently highlighted by insights from the BTBR mouse model of ASD. The rapid brain expansion taking place as Homo sapiens evolved, particularly in the parietal lobe, led to increased energy demands, making the brain vulnerable to such metabolic disruptions as are seen in ASD. Methods: Mitochondrial dysfunction in ASD is characterized by impaired oxidative phosphorylation, elevated lactate and alanine levels, carnitine deficiency, abnormal reactive oxygen species (ROS), and altered calcium homeostasis. These dysfunctions are primarily functional, rather than being due to mitochondrial DNA mutations. Calcium signaling plays a crucial role in neuronal ATP production, with disruptions in inositol 1,4,5-trisphosphate receptor (ITPR)-mediated endoplasmic reticulum (ER) calcium release being observed in ASD patient-derived cells. Results: This impaired signaling affects the ER–mitochondrial calcium axis, leading to mitochondrial energy deficiency, particularly in high-energy regions of the developing brain. The BTBR mouse model, with its unique Itpr3 gene mutation, exhibits core autism-like behaviors and metabolic syndromes, providing valuable insights into ASD pathophysiology. Conclusions: Various interventions have been tested in BTBR mice, as in ASD, but none have directly targeted the Itpr3 mutation or its calcium signaling pathway. This review presents current genetic, biochemical, and neurological findings in ASD and its model systems, highlighting the need for further research into metabolic resilience and calcium signaling as potential diagnostic and therapeutic targets for ASD. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Graphical abstract

34 pages, 6455 KiB  
Article
IBCar: Potent Orally Bioavailable Methyl N-[5-(3′-Iodobenzoyl)-1H-Benzimidazol-2-yl]Carbamate for Breast Cancer Therapy
by Janina Baranowska-Kortylewicz and Ying Yan
Cancers 2025, 17(15), 2526; https://doi.org/10.3390/cancers17152526 - 30 Jul 2025
Viewed by 220
Abstract
Objectives: To investigate the efficacy and underlying mechanisms of IBCar’s biological activity in breast cancer models, both in cell culture and in mice, and to compare its effects on cancer versus normal cells. Methods: The cytotoxicity of IBCar was evaluated using [...] Read more.
Objectives: To investigate the efficacy and underlying mechanisms of IBCar’s biological activity in breast cancer models, both in cell culture and in mice, and to compare its effects on cancer versus normal cells. Methods: The cytotoxicity of IBCar was evaluated using the MTS assay to assess metabolic activity and the clonogenic assay to determine reproductive integrity. The impact of IBCar on microtubule integrity, mitochondrial function, and multiple signaling pathways was analyzed using Western blotting, microarray analysis, and live cell imaging. The therapeutic effectiveness of orally administered IBCar was assessed in a transgenic mouse model of Luminal B breast cancer and in mice implanted with subcutaneous triple-negative breast cancer xenografts. Results: IBCar demonstrated potent cytotoxicity across a diverse panel of breast cancer cell lines, including those with mutant or wild-type TP53, and cell lines with short and long doubling times. Comparative analysis revealed distinct responses between normal and cancer cells, including differences in IBCar’s effects on the mitochondrial membrane potential, endoplasmic reticulum stress and activation of cell death pathways. In breast cancer cells, IBCar was cytotoxic at nanomolar concentrations, caused irreversible microtubule depolymerization leading to sustained mitochondrial dysfunction, endoplasmic reticulum stress, and induced apoptosis. In normal cells, protective mechanisms included reversible microtubule depolymerization and activation of pro-survival signaling via the caspase-8 and riptosome pathways. The therapeutic potential of IBCar was confirmed in mouse models of Luminal B and triple negative BC, where it exhibited strong antitumor activity without detectable toxicity. Conclusions: These findings collectively support IBCar as a promising, effective, and safe therapeutic candidate for breast cancer treatment. Full article
Show Figures

Figure 1

25 pages, 2693 KiB  
Article
Adipokine and Hepatokines in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Current and Developing Trends
by Salvatore Pezzino, Stefano Puleo, Tonia Luca, Mariacarla Castorina and Sergio Castorina
Biomedicines 2025, 13(8), 1854; https://doi.org/10.3390/biomedicines13081854 - 30 Jul 2025
Viewed by 231
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the scientific landscape through bibliometric analysis, identifying emerging domains and future clinical translation directions. Methods: A comprehensive bibliometric analysis of 1002 publications from 2004 to 2025 was performed using thematic mapping, temporal trend evaluation, and network analysis. Analysis included geographical and institutional distributions, thematic cluster identification, and research paradigm evolution assessment, focusing specifically on adipokine–hepatokine signaling mechanisms and clinical implications. Results: The United States and China are at the forefront of research output, whereas European institutions significantly contribute to mechanistic discoveries. The thematic map analysis reveals the motor/basic themes residing at the heart of the field, such as insulin resistance, fatty liver, metabolic syndrome, steatosis, fetuin-A, and other related factors that drive innovation. Basic clusters include metabolic foundations (obesity, adipose tissue, FGF21) and adipokine-centered subjects (adiponectin, leptin, NASH). New themes focus on inflammation, oxidative stress, gut microbiota, lipid metabolism, and hepatic stellate cells. Niche areas show targeted fronts such as exercise therapies, pediatric/novel adipokines (chemerin, vaspin, omentin-1), and advanced molecular processes that focus on AMPK and endoplasmic-reticulum stress. Temporal analysis shows a shift from single liver studies to whole models that include the gut microbiota, mitochondrial dysfunction, and interactions between other metabolic systems. The network analysis identifies nine major clusters: cardiovascular–metabolic links, adipokine–inflammatory pathways, hepatokine control, and new therapeutic domains such as microbiome interventions and cellular stress responses. Conclusions: In summary, this study delineates current trends and emerging areas within the field and elucidates connections between mechanistic research and clinical translation to provide guidance for future research and development in this rapidly evolving area. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

31 pages, 7303 KiB  
Review
Membrane-Targeting Antivirals
by Maxim S. Krasilnikov, Vladislav S. Denisov, Vladimir A. Korshun, Alexey V. Ustinov and Vera A. Alferova
Int. J. Mol. Sci. 2025, 26(15), 7276; https://doi.org/10.3390/ijms26157276 - 28 Jul 2025
Viewed by 198
Abstract
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical [...] Read more.
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical nature and mechanisms of action of membrane-targeting antivirals. They can affect virions by (1) physically modulating membrane properties to inhibit fusion of the viral envelope with the cell membrane, (2) physically affecting envelope lipids and proteins leading to membrane damage, pore formation and lysis, (3) causing photochemical damage of unsaturated membrane lipids resulting in integrity loss and fusion arrest. Other membrane-active compounds can target host cell membranes involved in virion’s maturation, coating, and egress (endoplasmic reticulum, Golgi apparatus, and outer membrane) affecting these last stages of viral reproduction. Both virion- and host-targeting membrane-active molecules are promising concepts for broad-spectrum antivirals. A panel of approved antivirals would be a superior weapon to respond to and control emerging disease outbreaks caused by new viral strains and variants. Full article
Show Figures

Figure 1

19 pages, 9984 KiB  
Article
Concentration-Related Ultrastructural Alterations in Mouse Oocytes Following In Vitro Lindane Exposure
by Marta Gatti, Manuel Belli, Mariacarla De Rubeis, Stefania Annarita Nottola, Guido Macchiarelli, Carla Tatone, Giovanna Di Emidio and Maria Grazia Palmerini
Appl. Sci. 2025, 15(15), 8320; https://doi.org/10.3390/app15158320 - 26 Jul 2025
Viewed by 161
Abstract
Lindane, a persistent organochlorine pesticide, exerts toxic effects on the female reproductive system, compromising oocyte quality and maturation. However, the effects of this pesticide on mammalian oocyte morphology and ultrastructure remain unknown. This study investigated the effects of Lindane on mouse oocyte ultrastructure [...] Read more.
Lindane, a persistent organochlorine pesticide, exerts toxic effects on the female reproductive system, compromising oocyte quality and maturation. However, the effects of this pesticide on mammalian oocyte morphology and ultrastructure remain unknown. This study investigated the effects of Lindane on mouse oocyte ultrastructure using an in vitro model with Transmission Electron Microscopy (TEM) at concentrations from 1 to 100 μM. The results revealed a progressive dose-related trend of alterations: at 1 μM, mild swelling of smooth endoplasmic reticulum (SER) vesicles; at 10 μM, increased SER dilation and cytoplasmic disorganization; and at 100 μM, pronounced vacuolization, mitochondrial swelling, dense lamellar bodies (dlbs), and multivesicular bodies (MVBs) indicative of autophagic activity. Mitochondrial alterations increased significantly with concentration: 3.2 ± 0.8 (control), 5.7 ± 1.0 (1 μM), 9.4 ± 1.5 (10 μM), and 16.8 ± 2.3 (100 μM) altered mitochondria per oocyte (p < 0.01). Vacuole frequency was notably elevated at 100 μM (4.3 ± 1.1 vs. 0.7 ± 0.5 in controls), and mislocalization of organelles within the ooplasm was observed. In conclusion, Lindane-induced oocyte ultrastructural alterations were observed at all tested concentrations but were more pronounced at 100 μM. These results highlight its impact on female fertility and may guide the search for protective agents, as well as efforts to reduce environmental exposure to endocrine disruptors. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

23 pages, 2161 KiB  
Review
Recent Advances in Engineering the Unfolded Protein Response in Recombinant Chinese Hamster Ovary Cell Lines
by Dyllan Rives, Tara Richbourg, Sierra Gurtler, Julia Martone and Mark A. Blenner
Int. J. Mol. Sci. 2025, 26(15), 7189; https://doi.org/10.3390/ijms26157189 - 25 Jul 2025
Viewed by 259
Abstract
Chinese hamster ovary (CHO) cells are the most common protein production platform for glycosylated biopharmaceuticals due to their relatively efficient secretion systems, post-translational modification (PTM) machinery, and quality control mechanisms. However, high productivity and titer demands can overburden these processes. In particular, the [...] Read more.
Chinese hamster ovary (CHO) cells are the most common protein production platform for glycosylated biopharmaceuticals due to their relatively efficient secretion systems, post-translational modification (PTM) machinery, and quality control mechanisms. However, high productivity and titer demands can overburden these processes. In particular, the endoplasmic reticulum (ER) can become overwhelmed with misfolded proteins, triggering the unfolded protein response (UPR) as evidence of ER stress. The UPR increases the expression of multiple genes/proteins, which are beneficial to protein folding and secretion. However, if the stressed ER cannot return to a state of homeostasis, a prolonged UPR results in apoptosis. Because ER stress poses a substantial bottleneck for secreting protein therapeutics, CHO cells are both selected for and engineered to improve high-quality protein production through optimized UPR and ER stress management. This is vital for optimizing industrial CHO cell fermentation. This review begins with an overview of common ER-stress related markers. Next, the optimal UPR profile of high-producing CHO cells is discussed followed by the context-dependency of a UPR profile for any given recombinant CHO cell line. Recent efforts to control and engineer ER stress-related responses in CHO cell lines through the use of various bioprocess operations and activation/inhibition strategies are elucidated. Finally, this review concludes with a discussion on future directions for engineering the CHO cell UPR. Full article
(This article belongs to the Special Issue New Insights into the Molecular Mechanisms of the UPR and Cell Stress)
Show Figures

Figure 1

20 pages, 12367 KiB  
Article
Chemosensitizer Effects of Cisplatin- and 5-Fluorouracil-Treated Hepatocellular Carcinomas by Lidocaine
by Teng-Wei Chen, Hsiu-Lung Fan, Shu-Ting Liu and Shih-Ming Huang
Int. J. Mol. Sci. 2025, 26(15), 7137; https://doi.org/10.3390/ijms26157137 - 24 Jul 2025
Viewed by 223
Abstract
Approximately 90% of liver cancer cases are classified as hepatocellular carcinomas (HCCs), with chemotherapy and immunotherapy being the most recommended treatment options. While conventional chemotherapy specifically targets rapidly dividing cancer cells, it can also impact on healthy cells that are proliferating quickly. This [...] Read more.
Approximately 90% of liver cancer cases are classified as hepatocellular carcinomas (HCCs), with chemotherapy and immunotherapy being the most recommended treatment options. While conventional chemotherapy specifically targets rapidly dividing cancer cells, it can also impact on healthy cells that are proliferating quickly. This collateral damage to healthy cells, along with the potential for cancer cells to develop resistance, presents significant challenges for conventional chemotherapy in liver cancer patients. Hepatic artery infusion of chemotherapy (HAIC) generally leads to reduced toxicity and fewer side effects. The process of catheter insertion is usually performed under local anesthesia, with lidocaine being the preferred choice to combine with various chemotherapeutics in HCC treatment. In our study, we explored the effects of repurposing lidocaine in combination with cisplatin or 5-fluorouracil (5-FU) on two HCC cell lines, HepG2 and Hep3B. Our cytotoxicity analysis revealed that lidocaine functions as a chemosensitizer for cisplatin and 5-FU in both HepG2 and Hep3B cells. Specifically, we observed an increase in the subG1 population and a reduction in cytosolic reactive oxygen species in cisplatin- or 5-FU-treated HepG2 and Hep3B cells. Interestingly, lidocaine selectively decreased the reduced/oxidized glutathione ratio in cisplatin- or 5-FU-treated HepG2 cells but not in Hep3B cells. Furthermore, lidocaine induced endoplasmic reticulum stress, apoptosis, mitochondrial membrane depolarization, lipid peroxidation, and autophagy while suppressing cellular proliferation HepG2 and Hep3B cells. In conclusion, our study demonstrates the synergistic potential of combining lidocaine with cisplatin or 5-FU for the treatment of HCC, indicating that lidocaine may serve as an effective chemosensitizer. These findings highlight a new clinical advantage of using repurposing lidocaine as a chemosensitizer in the current HAIC procedure, suggesting that this combination warrants further exploration through rigorous clinical trials. In the future, we can better optimize therapeutic regimens, potentially leading to improved patient outcomes in HCCs. Full article
(This article belongs to the Special Issue Current Research on Cancer Biology and Therapeutics: Third Edition)
Show Figures

Figure 1

12 pages, 1137 KiB  
Article
Which One Would You Choose?—Investigation of Widely Used Housekeeping Genes and Proteins in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis
by Aimo Samuel Christian Epplen, Sarah Stahlke, Carsten Theiss and Veronika Matschke
NeuroSci 2025, 6(3), 69; https://doi.org/10.3390/neurosci6030069 - 23 Jul 2025
Viewed by 232
Abstract
Amyotrophic lateral sclerosis (ALS) remains a progressive neurodegenerative disease, lacking effective causal therapies. The Wobbler mouse model harboring a spontaneous autosomal recessive mutation in the vacuolar protein sorting associated protein (Vps54), has emerged as a valuable model for investigating ALS pathophysiology and potential [...] Read more.
Amyotrophic lateral sclerosis (ALS) remains a progressive neurodegenerative disease, lacking effective causal therapies. The Wobbler mouse model harboring a spontaneous autosomal recessive mutation in the vacuolar protein sorting associated protein (Vps54), has emerged as a valuable model for investigating ALS pathophysiology and potential treatments. This model exhibits cellular and phenotypic parallels to human ALS, including protein aggregation, microglia and astrocyte activation, as well as characteristic disease progression at distinct stages. Exploring the underlying pathomechanisms and identifying therapeutic targets requires a comprehensive analysis of gene and protein expression. In this study, we examined the expression of three well-established housekeeping genes and proteins—calnexin, ß-actin, and ßIII-tubulin—in the cervical spinal cord of the Wobbler model. These candidates were selected based on their demonstrated stability across various systems like animal models or cell culture. Calnexin, an integral protein of the endoplasmic reticulum, ß-actin, a structural component of the cytoskeleton, and ß-tubulin III, a component of microtubules, were quantitatively assessed using quantitative reverse transcription-polymerase chain reaction (RT-PCR) for gene expression and Western blotting for protein expression. Our results revealed no significant differences in the expression of CANX, ACTB, and TUBB3 between spinal cords of wild-type and Wobbler mice at the symptomatic stage (p40) at both the gene and protein levels. These findings suggest that the pathophysiological alterations induced by the Wobbler mutation do not significantly affect the expression of these crucial housekeeping genes and proteins at p40. Overall, this study provides a basis for further investigations using the Wobbler mouse model, while highlighting the potential use of calnexin, ß-actin, and ßIII-tubulin as reliable reference genes and proteins in future research to aid in the discovery for effective therapeutic interventions. Full article
Show Figures

Figure 1

24 pages, 12430 KiB  
Article
DNAJ Homolog Subfamily C Member 11 Stabilizes SARS-CoV-2 NSP3 to Promote Double-Membrane Vesicle Formation
by Shuying Chen, Shanrong Yang, Xiaoning Li, Junqi Xiang, Jiangyu Cai, Yaokai Wang, Qingqing Li, Na Zang, Jiaxu Wang, Jian Shang and Yushun Wan
Viruses 2025, 17(8), 1025; https://doi.org/10.3390/v17081025 - 22 Jul 2025
Viewed by 342
Abstract
Coronaviruses, particularly those classified as highly pathogenic species, pose a significant threat to global health. These viruses hijack host cellular membranes and proteins to facilitate their replication, primarily through the formation of replication organelles (ROs). However, the precise regulatory mechanisms underlying RO formation [...] Read more.
Coronaviruses, particularly those classified as highly pathogenic species, pose a significant threat to global health. These viruses hijack host cellular membranes and proteins to facilitate their replication, primarily through the formation of replication organelles (ROs). However, the precise regulatory mechanisms underlying RO formation remain poorly understood. To elucidate these mechanisms, we conducted mass spectrometry analyses, identifying interactions between the host protein DnaJ homolog subfamily C member 11 (DNAJC11) and the SARS-CoV-2 nonstructural protein 3 (NSP3) protein. Notably, results showed that DNAJC11 depletion reduces SARS-CoV-2 infection, indicating possible positive regulatory involvement. But the ectopic expression of DNAJC11 did not lead to marked alterations in immune or inflammatory responses. DNAJC11 enhanced NSP3 expression stability through endogenous apoptosis pathways and facilitated its interaction with NSP4, thereby promoting the formation of double-membrane vesicles (DMVs). Knockdown of DNAJC11 reduced DMV number and size, accompanied by dysregulation of the endoplasmic reticulum and mitochondria. However, supplementation with DNAJC11 restored both DMV number and size. These findings provide novel insights into the role of DNAJC11 as a host factor that modulates DMV formation and supports SARS-CoV-2 replication by targeting the NSP3 protein. This study advances our understanding of the molecular interactions between host and viral components and highlights DNAJC11 as a potential target for antiviral interventions. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

Back to TopTop