Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (418)

Search Parameters:
Keywords = resveratrol derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 14954 KiB  
Article
Epigenomics Nutritional Insights of Crocus sativus L.: Computational Analysis of Bioactive Molecules Targeting DNA Methyltransferases and Histone Deacetylases
by Alessia Piergentili, Paolo Roberto Saraceni, Olivia Costantina Demurtas, Barbara Benassi and Caterina Arcangeli
Int. J. Mol. Sci. 2025, 26(15), 7575; https://doi.org/10.3390/ijms26157575 (registering DOI) - 5 Aug 2025
Abstract
Saffron (Crocus sativus L.) contains bioactive compounds with potential health benefits, including modulation of protein function and gene expression. However, their ability to tune the epigenetic machine remains poorly understood. This study employs molecular docking (AutoDock Vina 1.4), dynamics simulations, and MM/PBSA [...] Read more.
Saffron (Crocus sativus L.) contains bioactive compounds with potential health benefits, including modulation of protein function and gene expression. However, their ability to tune the epigenetic machine remains poorly understood. This study employs molecular docking (AutoDock Vina 1.4), dynamics simulations, and MM/PBSA calculations to investigate the interactions between four saffron-derived molecules—crocetin, beta-D-glucosyl trans-crocetin, picrocrocin and safranal—and four epigenetic enzymes—DNMT1, DNMT3a, HDAC2, and SIRT1. Our in silico screening identifies beta-D-glucosyl trans-crocetin, one of the saffron’s crocins, as a potential DNMT1 inhibitor. Along with crocetin, it also shows the ability to inhibit HDAC2 and activate SIRT1. Picrocrocin displays a resveratrol-like ability to activate SIRT1. None of the saffron-derived compounds effectively bind or inhibit DNMT3a. Among the tested molecules, safranal shows no interaction with the selected epigenetic targets. These findings highlight saffron’s nutriepigenomic potential and emphasize the need for functional validation within relevant in vitro and in vivo experimental methodologies. Full article
(This article belongs to the Section Molecular Biology)
14 pages, 1862 KiB  
Review
Update of Natural Compounds in Transthyretin Amyloidosis, Years 2020–2025
by Carlo Marotta, Lidia Ciccone and Susanna Nencetti
Crystals 2025, 15(8), 696; https://doi.org/10.3390/cryst15080696 - 30 Jul 2025
Viewed by 141
Abstract
Transthyretin amyloidosis (ATTR) is a disease caused by the deposition of transthyretin-derived fibrils in the body. Despite extensive research conducted over the years, there are currently only four drugs available in clinical use to treat this condition, two of which are repurposed drugs [...] Read more.
Transthyretin amyloidosis (ATTR) is a disease caused by the deposition of transthyretin-derived fibrils in the body. Despite extensive research conducted over the years, there are currently only four drugs available in clinical use to treat this condition, two of which are repurposed drugs used off-label. However, these treatments present several limitations; therefore, there is an urgent need for new therapeutic options. In this context, dietary supplements containing natural compounds capable of stabilizing the transthyretin (TTR) protein could represent a promising approach to contrast the disease progression, potentially supporting the therapeutic effects of the aforementioned drugs. In light of this, the present review highlights and analyzes the natural compounds that have most recently been reported in the literature as TTR stabilizers. In particular, the studies elucidating the potential of these compounds in the treatment of ATTR, along with the available crystallographic data explaining their binding mode to TTR, are reported. Overall, although the use of natural compounds as supplements shows promise in managing ATTR, further research is still needed to explore its feasibility and confirm its effectiveness. Hopefully, this work will help shed light on these issues and serve as a useful starting point for the development of new strategies to treat this disease. Full article
(This article belongs to the Collection Feature Papers in Biomolecular Crystals)
Show Figures

Figure 1

54 pages, 3105 KiB  
Review
Insight into the in Silico Structural, Physicochemical, Pharmacokinetic and Toxicological Properties of Antibacterially Active Viniferins and Viniferin-Based Compounds as Derivatives of Resveratrol Containing a (2,3-Dihydro)benzo[b]furan Privileged Scaffold
by Dominika Nádaská and Ivan Malík
Appl. Sci. 2025, 15(15), 8350; https://doi.org/10.3390/app15158350 - 27 Jul 2025
Viewed by 561
Abstract
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel [...] Read more.
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel natural products, including plant secondary metabolites. These molecules serve as inspiration and a suitable structural platform in the design and development of novel semi-synthetic and synthetic derivatives. All considered compounds have to be adequately evaluated in silico, in vitro, and in vivo using relevant approaches. The current review paper briefly focuses on the chemical and metabolic properties of resveratrol (1), as well as its oligomeric structures, viniferins, and viniferin-based molecules. The core scaffolds of these compounds contain so-called privileged structures, which are also present in many clinically approved drugs, indicating that those natural, properly substituted semi-synthetic, and synthetic molecules can provide a notably broad spectrum of beneficial pharmacological activities, including very impressive antimicrobial efficiency. Except for spectral verification of their structures, these compounds suffer from the determination or prediction of other structural and physicochemical characteristics. Therefore, the structure–activity relationships for specific dihydrodimeric and dimeric viniferins, their bioisosteres, and derivatives with notable efficacy in vitro, especially against chosen Gram-positive bacterial strains, are summarized. In addition, a set of descriptors related to their structural, physicochemical, pharmacokinetic, and toxicological properties is generated using various computational tools. The obtained values are compared to those of clinically approved drugs. The particular relationships between these in silico parameters are also explored. Full article
Show Figures

Figure 1

20 pages, 2893 KiB  
Review
Breast Cancer Cytochromes P450: Chemopreventive and/or Therapeutic Targets for Naturally Occurring Phytochemicals
by Hanna Szaefer, Barbara Licznerska, Hanna Sobierajska and Wanda Baer-Dubowska
Molecules 2025, 30(15), 3079; https://doi.org/10.3390/molecules30153079 - 23 Jul 2025
Viewed by 302
Abstract
Estrogens are considered the most important risk factor for the development of breast cancer. Therefore, attempts are being made to reduce their level through diminished synthesis on one hand and to protect against the formation of DNA-damaging estrogen metabolites on the other. Cytochromes [...] Read more.
Estrogens are considered the most important risk factor for the development of breast cancer. Therefore, attempts are being made to reduce their level through diminished synthesis on one hand and to protect against the formation of DNA-damaging estrogen metabolites on the other. Cytochromes P450 (CYPs) play key roles in estrogen synthesis and catabolism, leading to potentially carcinogenic metabolites. CYP19 (aromatase) catalyzes the conversion of androgens to estrogens. The estrogen receptor-dependent pathway induces cell growth. CYP1 family enzymes, particularly CYP1B1, are involved in the redox cycling of estrogen metabolites and the subsequent estrogen–DNA adducts formation. Naturally occurring phytochemicals of different classes were shown to modulate the CYP expression and activity in cell-free systems or breast cancer cells. One of the most promising CYP19 inhibitors is chrysin (flavone), while stilbenes seem to be the most effective CYP1B1 inhibitors. In most cases, their effect is not specific. Therefore, different approaches are made to find the best candidate for the drug prototype of a new therapeutic or chemopreventive agent and to improve its pharmacokinetic parameters. This review presents and discusses the possible effects on major CYPs involved in estrogen metabolism by phytochemicals from the most investigated classes, namely flavonoids, stilbenes, and glucosinolates breakdown products. Full article
Show Figures

Figure 1

13 pages, 1664 KiB  
Article
Inclusion Complex of a Cationic Mono-Choline-β-Cyclodextrin Derivative with Resveratrol: Preparation, Characterization, and Wound-Healing Activity
by Sonia Pedotti, Loredana Ferreri, Giuseppe Granata, Giovanni Gambera, Nicola D’Antona, Claudia Giovanna Leotta, Giovanni Mario Pitari and Grazia Maria Letizia Consoli
Int. J. Mol. Sci. 2025, 26(14), 6911; https://doi.org/10.3390/ijms26146911 - 18 Jul 2025
Viewed by 246
Abstract
Resveratrol is one of the most extensively studied natural products due to its pleiotropic health benefits. However, its low water solubility and limited stability hinder its application in the nutraceutical, cosmetic, and pharmaceutical sectors. In this work, we investigated the ability of a [...] Read more.
Resveratrol is one of the most extensively studied natural products due to its pleiotropic health benefits. However, its low water solubility and limited stability hinder its application in the nutraceutical, cosmetic, and pharmaceutical sectors. In this work, we investigated the ability of a cationic mono-choline-β-cyclodextrin derivative to complex trans-resveratrol. The complex was prepared using a phase solubility method without using organic solvents and was found to be stable after freeze-drying. The complex was characterized by a phase solubility study, NMR spectroscopy, and molecular modeling simulations, which revealed a 1:1 stoichiometry, a stability constant of 2051 M−1 (KC), and structural details. Complexation improved resveratrol’s solubility and dissolution rate, reduced its photoinduced trans-to-cis isomerization, and preserved its radical scavenging activity. The wound-healing activity of the complex was demonstrated via in vitro experiments on human keratinocyte cells. Full article
Show Figures

Figure 1

22 pages, 937 KiB  
Review
Early-Life Prevention of Cardiovascular–Kidney–Metabolic Syndrome: The DOHaD Perspective on Resveratrol and Short-Chain Fatty Acids
by Chien-Ning Hsu, Ying-Jui Lin, Chih-Yao Hou, Yu-Wei Chen and You-Lin Tain
Antioxidants 2025, 14(7), 851; https://doi.org/10.3390/antiox14070851 - 10 Jul 2025
Viewed by 591
Abstract
Cardiovascular–kidney–metabolic (CKM) syndrome underscores the interconnected biology of cardiovascular disease, kidney disease, and metabolic disorders such as obesity and type 2 diabetes. Although now recognized as a growing global health burden, accumulating preclinical evidence suggests that CKM syndrome may originate in early life—a [...] Read more.
Cardiovascular–kidney–metabolic (CKM) syndrome underscores the interconnected biology of cardiovascular disease, kidney disease, and metabolic disorders such as obesity and type 2 diabetes. Although now recognized as a growing global health burden, accumulating preclinical evidence suggests that CKM syndrome may originate in early life—a concept rooted in the developmental origins of health and disease (DOHaD) framework. Animal studies have greatly enhanced our comprehension of these mechanisms, emphasizing the promise of early interventions that focus on antioxidants and gut microbiota modulation to mitigate the development of CKM conditions. Resveratrol, a natural antioxidant and prebiotic, alongside short-chain fatty acids (SCFAs), a postbiotic, have demonstrated the ability to modulate gut microbiota and oxidative stress in experimental models. Various resveratrol derivatives have also been engineered to improve bioavailability, though their effects remain largely confined to animal studies. This review synthesizes preclinical findings on the impact of perinatal oxidative stress and gut dysbiosis on CKM outcomes, critically examining the roles of resveratrol, SCFAs, and their derivatives in animal models. Finally, we highlight the significant translational gap between experimental research and clinical application, underscoring the need for human studies to validate these early-life intervention strategies. Full article
Show Figures

Figure 1

25 pages, 9865 KiB  
Article
Microencapsulation of Propolis by Complex Coacervation with Chia Mucilage and Gelatin: Antioxidant Stability and Functional Potential
by Carlos A. Ligarda-Samanez, David Choque-Quispe, Henry Palomino-Rincón, Elibet Moscoso-Moscoso, Rodrigo J. Guzmán Gutiérrez and Ismael Banda Mozo
Antioxidants 2025, 14(7), 845; https://doi.org/10.3390/antiox14070845 - 10 Jul 2025
Viewed by 453
Abstract
Propolis is a bee-derived resin rich in phenolic compounds known for their antioxidant, anti-inflammatory, and antimicrobial properties; however, its limited solubility and stability hinder its incorporation into food matrices. This study aimed to optimize the microencapsulation of ethanolic propolis extract through complex coacervation [...] Read more.
Propolis is a bee-derived resin rich in phenolic compounds known for their antioxidant, anti-inflammatory, and antimicrobial properties; however, its limited solubility and stability hinder its incorporation into food matrices. This study aimed to optimize the microencapsulation of ethanolic propolis extract through complex coacervation using chia mucilage and gelatin as wall materials, followed by spray drying. A 32 factorial design was applied to evaluate the effects of coacervate concentration and inlet temperature on various microcapsule properties. The optimal formulation (3.13% coacervate and 120 °C) exhibited high phenolic retention (15.36 mg GAE/g), notable antioxidant capacity (60.10 µmol TE/g), good solubility, thermal stability, and sustained in vitro release. Phenolic compounds were identified and quantified by UPLC-PDA-QDa, including gallic acid, catechin, epicatechin, epigallocatechin gallate, rutin, myricetin, resveratrol, quercetin, and kaempferol. Incorporating the microcapsules into functional gummy candies significantly enhanced their antioxidant activity without compromising sensory attributes. These findings support the use of complex coacervation as an effective strategy for stabilizing propolis bioactives, with promising applications in the development of functional foods that offer potential health benefits. Full article
Show Figures

Graphical abstract

7 pages, 813 KiB  
Proceeding Paper
Molecular Docking Study of Natural Compounds Targeting the β2-Adrenergic Receptor (β2-AR)
by Sepideh Jafari and Joanna Bojarska
Med. Sci. Forum 2025, 34(1), 3; https://doi.org/10.3390/msf2025034003 - 8 Jul 2025
Viewed by 296
Abstract
G-protein-coupled receptors (GPCRs) are vital transmembrane proteins that regulate a wide range of physiological processes by transmitting extracellular signals into intracellular responses. Among them, the β2-adrenergic receptor (β2-AR) plays a central role in bronchodilation, smooth muscle relaxation, and cardiovascular modulation, making it a [...] Read more.
G-protein-coupled receptors (GPCRs) are vital transmembrane proteins that regulate a wide range of physiological processes by transmitting extracellular signals into intracellular responses. Among them, the β2-adrenergic receptor (β2-AR) plays a central role in bronchodilation, smooth muscle relaxation, and cardiovascular modulation, making it a key therapeutic target for diseases such as asthma, chronic obstructive pulmonary disease (COPD), and hypertension. This study explores the potential of natural bioactive compounds like ephedrine, quercetin, catechin, and resveratrol as alternative ligands for β2-AR through molecular docking analysis. Using AutoDock 4.6, these compounds were docked with the binding site of the β2-AR (PDB ID: 2RH1), and their binding affinities and interaction map were evaluated. Results showed that all compounds exhibited favorable binding energies and stable interactions with key receptor residues, with quercetin demonstrating the highest affinity. The findings suggest that these natural compounds may serve as promising leads for the development of safer, plant-derived modulators of β2-AR, supporting the role of computational approaches in natural product-based drug discovery. However, as docking cannot determine functional activity, these findings should be interpreted as preliminary and require experimental validation. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomedicines)
Show Figures

Figure 1

21 pages, 750 KiB  
Review
Targeting Ocular Biofilms with Plant-Derived Antimicrobials in the Era of Antibiotic Resistance
by Monika Dzięgielewska, Michał Tomczyk, Adrian Wiater, Aleksandra Woytoń and Adam Junka
Molecules 2025, 30(13), 2863; https://doi.org/10.3390/molecules30132863 - 5 Jul 2025
Cited by 1 | Viewed by 678
Abstract
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, [...] Read more.
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, particularly in patients using contact lenses or intraocular implants—devices that serve as surfaces for biofilm formation. The global rise in antimicrobial resistance has intensified the search for alternative treatment modalities. In this regard, plant-derived antimicrobials have emerged as promising candidates demonstrating broad-spectrum antimicrobial and antibiofilm activity through different mechanisms from those of conventional antibiotics. These mechanisms include inhibiting quorum sensing, disrupting established biofilm matrices, and interfering with microbial adhesion and communication. However, the clinical translation of phytochemicals faces significant barriers, including variability in chemical composition due to environmental and genetic factors, difficulties in standardization and reproducibility, poor water solubility and ocular bioavailability, and a lack of robust clinical trials evaluating their efficacy and safety in ophthalmic settings. Furthermore, regulatory uncertainties and the absence of unified guidelines for approving plant-derived formulations further hinder their integration into evidence-based ophthalmic practice. This review synthesizes the current knowledge on the pathogenesis and treatment of biofilm-associated ocular infections, critically evaluating plant-based antimicrobials as emerging therapeutic agents. Notably, resveratrol, curcumin, abietic acid, and selected essential oils demonstrated notable antibiofilm activity against S. aureus, P. aeruginosa, and C. albicans. These findings support the potential of phytochemicals as adjunctive or alternative agents in managing biofilm-associated ocular infections. By highlighting both their therapeutic promise and translational limitations, this review contributes to the ongoing discourse on sustainable, innovative approaches to managing antibiotic-resistant ocular infections. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Figure 1

32 pages, 4142 KiB  
Review
Phytotherapy and the Role of Bioactive Compounds in Modulating Mechanisms of Overweight and Obesity Comorbid with Depressive Symptoms—A Scoping Review of Mechanisms of Action
by Klaudia Sochacka and Sabina Lachowicz-Wiśniewska
Molecules 2025, 30(13), 2827; https://doi.org/10.3390/molecules30132827 - 30 Jun 2025
Viewed by 543
Abstract
Obesity and depression frequently coexist, sharing overlapping molecular pathways such as inflammation, oxidative stress, gut microbiota dysbiosis, and neuroendocrine dysfunction. Recent research highlights the therapeutic potential of plant-derived bioactive compounds in targeting these shared mechanisms. This scoping review followed Preferred Reporting Items for [...] Read more.
Obesity and depression frequently coexist, sharing overlapping molecular pathways such as inflammation, oxidative stress, gut microbiota dysbiosis, and neuroendocrine dysfunction. Recent research highlights the therapeutic potential of plant-derived bioactive compounds in targeting these shared mechanisms. This scoping review followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and included 261 peer-reviewed studies identified through PubMed, Scopus, and the Web of Science up to December 2024. Studies were screened based on predefined inclusion and exclusion criteria. This review synthesizes data from peer-reviewed studies, including both preclinical and clinical investigations, focusing on polyphenols, flavonoids, alkaloids, and other phytochemicals with anti-inflammatory, antioxidant, neuroprotective, and metabolic effects. Compounds such as quercetin, epigallocatechin gallate (EGCG), resveratrol, curcumin, anthocyanins, and luteolin demonstrate promise in modulating adenosine monophosphate-activated protein kinase (AMPK), brain-derived neurotrophic factor (BDNF), nuclear factor kappa B (NF-κB), and gut–brain axis pathways. Our scoping review, conducted in accordance with PRISMA guidelines, identifies promising combinations and mechanisms for integrative phytotherapy. These findings underscore the potential of botanical strategies in developing future interventions for metabolic and mood comorbidities. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Graphical abstract

15 pages, 1371 KiB  
Review
Potential Therapeutic Appliances of Dietary Polyphenols: Resveratrol and Curcumin in Treatment of Gliomas
by Ewa Smolińska, Mikołaj Grabarczyk, Weronika Justyńska, Aleksandra Bielenin, Andrzej Glabinski and Piotr Szpakowski
Int. J. Mol. Sci. 2025, 26(13), 6154; https://doi.org/10.3390/ijms26136154 - 26 Jun 2025
Viewed by 397
Abstract
Plant-derived polyphenols have become a subject of scientific interest in recent decades due to their widespread occurrence in dietary sources and multi-faceted biological activity, with many of these compounds being recognized as antioxidants and anti-inflammatory agents. Several of these chemicals have, moreover, attracted [...] Read more.
Plant-derived polyphenols have become a subject of scientific interest in recent decades due to their widespread occurrence in dietary sources and multi-faceted biological activity, with many of these compounds being recognized as antioxidants and anti-inflammatory agents. Several of these chemicals have, moreover, attracted further interest as their anti-tumoral capabilities were discovered, promising potential implementation in the treatment of proliferative diseases, including various cancers. Malignancies of the central nervous system, the most prevalent of which are glioblastomas, are noted for their aggressiveness, dismal prognosis and low survival rates. This review focuses on two polyphenols with the most expansive body of research on this topic, namely resveratrol and curcumin. It covers recent developments in the research, including in vitro findings, animal model studies and clinical trials on these compounds’ effects on the growth and progression of glial tumors of the central nervous system. Its aim is to present the latest findings on the subject of the mechanisms of action of these phytochemicals and their synergistic activity with conventional therapies, as well as strategies to improve their efficacy for future therapeutic applications. Full article
Show Figures

Figure 1

16 pages, 630 KiB  
Review
Role of Oxidative Stress and Neuroinflammation in the Etiology of Alzheimer’s Disease: Therapeutic Options
by Marta Weinstock
Antioxidants 2025, 14(7), 769; https://doi.org/10.3390/antiox14070769 - 23 Jun 2025
Viewed by 778
Abstract
Cognitive impairment in subjects with Alzheimer’s disease correlates well with the loss of synaptic plasticity. This results from mitochondrial dysfunction and production of reactive oxygen species, which damage nerve terminals causing them to release ATP and adenosine. These purines activate receptors on microglia [...] Read more.
Cognitive impairment in subjects with Alzheimer’s disease correlates well with the loss of synaptic plasticity. This results from mitochondrial dysfunction and production of reactive oxygen species, which damage nerve terminals causing them to release ATP and adenosine. These purines activate receptors on microglia resulting in a change in morphology and release proinflammatory cytokines that exacerbate neuronal damage. The review describes retrospective studies with naturally occurring antioxidants, vitamin E, resveratrol, Ginkgo biloba and others that suggested they reduce the incidence of Alzheimer’s disease. They have antioxidant activity in cellular systems and rodent models, but most of them failed in clinical trials, probably because they were not absorbed after oral administration or, like anti-inflammatory drugs, were not given at the right time or for long enough to detect an effect on disease progression. Ladostigil is an aminoindan derivative that is well absorbed after oral administration. It has antioxidant effects in cells and prevents cytokine release from activated microglia. In a phase 2 trial in subjects with mild cognitive impairment, ladostigil significantly reduced number of converters to Alzheimer’s disease in ApoE4-ve subjects and delayed the decline in whole brain and hippocampal volumes without causing adverse effects related to drug intake. Full article
Show Figures

Figure 1

14 pages, 1524 KiB  
Article
Design, Synthesis, Theoretical Study, and Antioxidant Activity of Aromaticity-Extended Resveratrol Derivatives Incorporating Chalcogen
by Sangwon Ko, Hyun Min Lim, Yeonho Song, Hyonseok Hwang and Jeong Tae Lee
Int. J. Mol. Sci. 2025, 26(12), 5872; https://doi.org/10.3390/ijms26125872 - 19 Jun 2025
Viewed by 452
Abstract
Naturally occurring antioxidants have attracted significant research interest, owing to their radical scavenging ability that can be improved via structural modifications. In this study, aromaticity-extended resveratrol analogues (35) containing chalcogens were designed and synthesized using ring closure and Horner–Wadsworth–Emmons [...] Read more.
Naturally occurring antioxidants have attracted significant research interest, owing to their radical scavenging ability that can be improved via structural modifications. In this study, aromaticity-extended resveratrol analogues (35) containing chalcogens were designed and synthesized using ring closure and Horner–Wadsworth–Emmons reactions. The antioxidant activities of the derivatives were evaluated using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABST) assay. All resveratrol derivatives (35) exhibited higher radical scavenging activities than resveratrol 1 and analogue 2, with benzoselenophene-conjugated derivative 5 demonstrating the highest activity. The improved antioxidant performance of the resveratrol derivatives was attributed to the extended π conjugation resulting from the incorporation of fused rings, benzoheteroles. Additionally, the integration of benzoheteroles into resveratrol contributed to an efficient reduction in HOMO-LUMO gaps. This study demonstrates that aromaticity extension by introducing benzofuran, benzothiophene, and benzoselenophene is a feasible strategy for improving the antioxidant activity of naturally occurring oxidants. Full article
Show Figures

Graphical abstract

23 pages, 3343 KiB  
Article
Mucoadhesive PVA Film for Sustained Resveratrol Delivery: Formulation, Characterization, and Release Profile
by Arleta Dołowacka-Jóźwiak, Izabela Nawrot-Hadzik, Adam Matkowski, Tomasz Ciecieląg, Agnieszka Gawin-Mikołajewicz, Ruth Dudek-Wicher, Mirosława Prochoń, Dorota Markowska, Robert Adamski, Adrian Wiater and Bożena Lucyna Karolewicz
Molecules 2025, 30(12), 2642; https://doi.org/10.3390/molecules30122642 - 18 Jun 2025
Cited by 1 | Viewed by 516
Abstract
This study aimed to develop and optimize polyvinyl alcohol (PVA)-based polymeric films containing resveratrol (RSV) and to evaluate their applicability as oral mucosal wound dressings. Given the dynamic and complex nature of the oral environment, physicochemical parameters such as elasticity, mucoadhesive strength, and [...] Read more.
This study aimed to develop and optimize polyvinyl alcohol (PVA)-based polymeric films containing resveratrol (RSV) and to evaluate their applicability as oral mucosal wound dressings. Given the dynamic and complex nature of the oral environment, physicochemical parameters such as elasticity, mucoadhesive strength, and the release profile of the RSV were systematically investigated. The therapeutic performance of pure resveratrol was compared with that of an extract derived from Reynoutria japonica. Films were fabricated using a solvent casting method and characterized in terms of thickness uniformity, weight, color consistency, and flexibility, all of which met the required pharmaceutical criteria. Two tested formulations, FR2 (RSV/PVA/PVP/MCA15C/NaCMC/W/PGE), FE2 (extract/PVA/PVP/MCA15C/NaCMC/W/PGE), showed the best mucoadhesive properties (261.11 ± 0.5 g for FR2 and 299.43 ± 0.38 g for FE2) and a favorable release profile both in water (72.42% for FR2, 77.23% for FE2) and in saliva (49.74% for FR2, 49.70% for FE2). Moreover, the optimized films are characterized by hydrophilicity (contact angle < 90°) and the pH value of the extract after their blurring is close to physiological, which promotes better tolerance and reduces the risk of irritation. Obtained results for polymeric films with resveratrol and R. japonica extract confirmed their great potential for use in dentistry as modern, mucoadhesive dressings, improving the effectiveness of local therapies. Full article
Show Figures

Figure 1

27 pages, 4599 KiB  
Article
Heterostilbene Carbamates with Selective and Remarkable Butyrylcholinesterase Inhibition: Computational Study and Physico-Chemical Properties
by Anamarija Raspudić, Ilijana Odak, Milena Mlakić, Antonija Jelčić, Karla Bulava, Karla Karadža, Valentina Milašinović, Ivana Šagud, Paula Pongrac, Dora Štefok, Danijela Barić and Irena Škorić
Biomolecules 2025, 15(6), 825; https://doi.org/10.3390/biom15060825 - 5 Jun 2025
Viewed by 716
Abstract
This manuscript reports the synthesis and characterization of 19 novel heterostilbene carbamates, designed as selective butyrylcholinesterase (BChE) inhibitors with potential applications in the treatment of neurodegenerative disorders, particularly Alzheimer’s disease. The compounds were synthesized from resveratrol analogs, and their structures were confirmed by [...] Read more.
This manuscript reports the synthesis and characterization of 19 novel heterostilbene carbamates, designed as selective butyrylcholinesterase (BChE) inhibitors with potential applications in the treatment of neurodegenerative disorders, particularly Alzheimer’s disease. The compounds were synthesized from resveratrol analogs, and their structures were confirmed by NMR spectroscopy, high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction for selected derivatives (compounds 1 and 4). In vitro assays demonstrated high selectivity toward BChE over acetylcholinesterase (AChE), with compound 16 exhibiting exceptional inhibitory activity (IC50 = 26.5 nM). Furthermore, compound 16 showed moderate anti-inflammatory effects by inhibiting LPS-stimulated TNF-α production in peripheral blood mononuclear cells. In silico ADME(T) profiling revealed favorable pharmacokinetic properties and low mutagenic potential for the majority of compounds. Molecular docking and molecular dynamics simulations confirmed stable binding interactions within the BChE active site. These results highlight heterostilbene carbamates as promising lead structures for developing novel therapeutic agents targeting neurodegenerative diseases. Full article
Show Figures

Figure 1

Back to TopTop