Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,489)

Search Parameters:
Keywords = responsive hydrogels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5314 KiB  
Review
Hydrogel Applications for Cultural Heritage Protection: Emphasis on Antifungal Efficacy and Emerging Research Directions
by Meijun Chen, Shunyu Xiang and Huan Tang
Gels 2025, 11(8), 606; https://doi.org/10.3390/gels11080606 (registering DOI) - 2 Aug 2025
Abstract
Hydrogels, characterized by their high water content, tunable mechanical properties, and excellent biocompatibility, have emerged as a promising material platform for the preservation of cultural heritage. Their unique physicochemical features enable non-invasive and adaptable solutions for environmental regulation, structural stabilization, and antifungal protection. [...] Read more.
Hydrogels, characterized by their high water content, tunable mechanical properties, and excellent biocompatibility, have emerged as a promising material platform for the preservation of cultural heritage. Their unique physicochemical features enable non-invasive and adaptable solutions for environmental regulation, structural stabilization, and antifungal protection. This review provides a comprehensive overview of recent progress in hydrogel-based strategies specifically developed for the conservation of cultural relics, with a particular focus on antifungal performance—an essential factor in preventing biodeterioration. Current hydrogel systems, composed of natural or synthetic polymer networks integrated with antifungal agents, demonstrate the ability to suppress fungal growth, regulate humidity, alleviate mechanical stress, and ensure minimal damage to artifacts during application. This review also highlights future research directions, such as the application prospects of novel materials, including stimuli-responsive hydrogels and self-dissolving hydrogels. As an early exploration of the use of hydrogels in antifungal protection and broader cultural heritage conservation, this work is expected to promote the wider application of this emerging technology, contributing to the effective preservation and long-term transmission of cultural heritage worldwide. Full article
(This article belongs to the Special Issue Properties and Structure of Hydrogel-Related Materials (2nd Edition))
14 pages, 6918 KiB  
Article
Point-of-Injury Treatment with Hydrogel Containing Dexamethasone Improves Cognitive Function and Reduces Secondary Injury Response After TBI
by Claire E. Jones, Bradley Elliott, Fuying Ma, Zachary Bailey, Janice Gilsdorf, Anke H. Scultetus, Deborah Shear, Ken Webb and Jeoung Soo Lee
Gels 2025, 11(8), 600; https://doi.org/10.3390/gels11080600 (registering DOI) - 1 Aug 2025
Abstract
Functional recovery after traumatic brain injury (TBI) is hindered by progressive neurodegeneration resulting from neuroinflammation and other secondary injury processes. Dexamethasone (DX), a synthetic glucocorticoid, has been shown to reduce inflammation, but its systemic administration can cause a myriad of other medical issues. [...] Read more.
Functional recovery after traumatic brain injury (TBI) is hindered by progressive neurodegeneration resulting from neuroinflammation and other secondary injury processes. Dexamethasone (DX), a synthetic glucocorticoid, has been shown to reduce inflammation, but its systemic administration can cause a myriad of other medical issues. We aim to provide a local, sustained treatment of DX for TBI. Previously, we demonstrated that PEG-bis-AA/HA-DXM hydrogels composed of polyethyleneglycol-bis-(acryloyloxy acetate) (PEG-bis-AA) and dexamethasone-conjugated hyaluronic acid (HA-DXM) reduced secondary injury and improved motor functional recovery at 7 days post-injury (DPI) in a rat moderate controlled cortical impact (CCI) TBI model. In this study, we evaluated the effect of PEG-bis-AA/HA-DXM hydrogel on cognitive function and secondary injury at 14 DPI. Immediately after injury, hydrogel disks were placed on the surface of the injured cortex. Cognitive function was evaluated using the Morris Water Maze test, and secondary injury was evaluated by histological analysis. The hydrogel treatment group demonstrated significantly shorter latency to target, decreased distance to find the hidden target, increased number of target crossings, increased number of entries to the platform zone, and decreased latency to first entry of target zone compared to untreated TBI rats for probe test. We also observed reduced lesion volume, inflammatory response, and apoptosis in the hydrogel treatment group compared to the untreated TBI group. Full article
(This article belongs to the Special Issue Recent Advances in Multi-Functional Hydrogels)
Show Figures

Figure 1

40 pages, 1638 KiB  
Review
Cardiac Tissue Bioprinting: Integrating Structure and Functions Through Biomimetic Design, Bioinks, and Stimulation
by Silvia Marino, Reem Alheijailan, Rita Alonaizan, Stefano Gabetti, Diana Massai and Maurizio Pesce
Gels 2025, 11(8), 593; https://doi.org/10.3390/gels11080593 (registering DOI) - 31 Jul 2025
Abstract
Pathologies of the heart (e.g., ischemic disease, valve fibrosis and calcification, progressive myocardial fibrosis, heart failure, and arrhythmogenic disorders) stem from the irreversible deterioration of cardiac tissues, leading to severe clinical consequences. The limited regenerative capacity of the adult myocardium and the architectural [...] Read more.
Pathologies of the heart (e.g., ischemic disease, valve fibrosis and calcification, progressive myocardial fibrosis, heart failure, and arrhythmogenic disorders) stem from the irreversible deterioration of cardiac tissues, leading to severe clinical consequences. The limited regenerative capacity of the adult myocardium and the architectural complexity of the heart present major challenges for tissue engineering. However, recent advances in biomaterials and biofabrication techniques have opened new avenues for recreating functional cardiac tissues. Particularly relevant in this context is the integration of biomimetic design principles, such as structural anisotropy, mechanical and electrical responsiveness, and tissue-specific composition, into 3D bioprinting platforms. This review aims to provide a comprehensive overview of current approaches in cardiac bioprinting, with a focus on how structural and functional biomimicry can be achieved using advanced hydrogels, bioprinting techniques, and post-fabrication stimulation. By critically evaluating materials, methods, and applications such as patches, vasculature, valves, and chamber models, we define the state of the art and highlight opportunities for developing next-generation bioengineered cardiac constructs. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (3rd Edition))
Show Figures

Figure 1

16 pages, 3705 KiB  
Article
Hydrophobic Interactions of Modified Coconut Oil and Pluronic 127 Enable Stable Formation of Bioactive Hydrogel for Onychomycosis
by Daniel P. Fitzpatrick, Grace Lawler, Carmel Kealey, Damien Brady and Jim Roche
Gels 2025, 11(8), 592; https://doi.org/10.3390/gels11080592 (registering DOI) - 31 Jul 2025
Abstract
Fungal infections pose a significant yet under-recognised global health burden, affecting over one billion individuals annually and contributing to approximately 2.5 million direct deaths. The World Health Organisation (WHO) has recently reemphasised this issue through the publication of its Fungal Priority Pathogens List [...] Read more.
Fungal infections pose a significant yet under-recognised global health burden, affecting over one billion individuals annually and contributing to approximately 2.5 million direct deaths. The World Health Organisation (WHO) has recently reemphasised this issue through the publication of its Fungal Priority Pathogens List (FPPL) and its 2025 report evaluating current antifungal diagnostics and therapeutics. Among the most prevalent fungal pathogens is Trichophyton rubrum, an anthropophilic dermatophyte responsible for up to 70% of superficial fungal infections, including onychomycosis. The emergence of antifungal resistance further complicates management, necessitating the development of novel, effective, and sustainable treatment alternatives. Natural compounds are increasingly being explored for their antifungal potential due to their broad-spectrum activity and lower toxicity. Coconut oil has gained particular attention for its therapeutic properties attributed to medium-chain fatty acids (MCFAs), especially lauric acid. The aim of this study was to understand how innate and modified coconut oils can alter the rheological properties of Pluronic hydrogels while retaining antifungal activity for downstream application in treating fungal infections. Results identified hydrophobic interactions by FTIR and DSC between the hydrocarbon chains of the coconut triglycerides and the hydrophobic core of the Pluronic micelles, leading to gel stabilisation as identified by rheological analysis. Full article
(This article belongs to the Special Issue Smart Hydrogels in Engineering and Biomedical Applications)
Show Figures

Figure 1

18 pages, 12329 KiB  
Article
Red Cabbage Anthocyanin-Loaded Bacterial Cellulose Hydrogel for Colorimetric Detection of Microbial Contamination and Skin Healing Applications
by Hanna Melnyk, Olesia Havryliuk, Iryna Zaets, Tetyana Sergeyeva, Ganna Zubova, Valeriia Korovina, Maria Scherbyna, Lilia Savinska, Lyudmila Khirunenko, Evzen Amler, Maria Bardosova, Oleksandr Gorbach, Sergiy Rogalsky and Natalia Kozyrovska
Polymers 2025, 17(15), 2116; https://doi.org/10.3390/polym17152116 - 31 Jul 2025
Abstract
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics [...] Read more.
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics the skin matrix. Biological activities of RCA extract in bacterial cellulose (BC) showed no cytotoxicity and skin-sensitizing potential to human cells at concentrations of RCAs similar to those released from BC/RCA dressings (4.0–40.0 µg/mL). A decrease in cell viability and apoptosis was observed in human cancer cells with RCAs. The invisible eye detection of the early color change signal from RCAs in response to pH alteration by bacteria was recorded with a smartphone application. The incorporation of RCAs into BC polymer has altered the morphology of its matrix, resulting in a denser cellulose microfibril network. The complete coincidence of the vibrational modes detected in the absorption spectra of the cellulose/RCA composite with the modes in RCAs most likely indicates that RCAs retain their structure in the BC matrix. Affordable, sensitive halochromic BC/RCA hydrogels can be recommended for online monitoring of microbial contamination, making them accessible to patients. Full article
Show Figures

Graphical abstract

22 pages, 1268 KiB  
Review
Natural Polymer-Based Hydrogel Platforms for Organoid and Microphysiological Systems: Mechanistic Insights and Translational Perspectives
by Yeonoh Cho, Jungmok You and Jong Hun Lee
Polymers 2025, 17(15), 2109; https://doi.org/10.3390/polym17152109 - 31 Jul 2025
Viewed by 49
Abstract
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of [...] Read more.
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of providing a three-dimensional, biomimetic scaffold that supports cell viability, spatial organization, and dynamic signaling. Natural polymer-based hydrogels, derived from materials such as collagen, gelatin, hyaluronic acid, and alginate, offer favorable properties including biocompatibility, degradability, and an extracellular matrix-like architecture. This review presents recent advances in the design and application of such hydrogels, focusing on crosslinking strategies (physical, chemical, and hybrid), the viscoelastic characteristics, and stimuli-responsive behaviors. The influence of these materials on cellular processes, such as stemness maintenance, differentiation, and morphogenesis, is critically examined. Furthermore, the applications of organoid culture and dynamic MPS platforms are discussed, highlighting their roles in morphogen delivery, barrier formation, and vascularization. Current challenges and future perspectives toward achieving standardized, scalable, and translational hydrogel systems are also addressed. Full article
Show Figures

Figure 1

16 pages, 1855 KiB  
Article
Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis
by Gyu-Yeon Shim, Seong-Hee Moon, Seong-Jin Shin, Hyun-Jin Kim, Seunghan Oh and Ji-Myung Bae
Polymers 2025, 17(15), 2108; https://doi.org/10.3390/polym17152108 - 31 Jul 2025
Viewed by 37
Abstract
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis [...] Read more.
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis, with minimal inhibitory and minimal bactericidal concentrations of 50 μM. It also suppressed mRNA expression of proinflammatory cytokines [tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6] in lipopolysaccharide-stimulated RAW 264.7 cells. The hydrogel, formulated with poloxamers and carboxymethylcellulose, remained in a liquid state at room temperature and formed a gel at 34 °C, providing sustained drug release for 96 h and demonstrating biocompatibility with human periodontal ligament stem cells while exhibiting antibacterial activity against P. gingivalis. In a rat model of periodontitis, the hydrogel significantly reduced alveolar bone loss and inflammatory responses, as confirmed by micro-computed tomography and reverse transcription quantitative polymerase chain reaction of gingival tissue. The dual antimicrobial and anti-inflammatory properties of emodin, combined with its thermoresponsive delivery system, provide advantages over conventional treatments by maintaining therapeutic concentrations in the periodontal pocket while minimizing systemic exposure. This shows the potential of emodin-loaded thermoresponsive hydrogels as effective local delivery systems for periodontitis treatment. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

43 pages, 19225 KiB  
Review
Recent Progress in Flexible Wearable Sensors Utilizing Conductive Hydrogels for Sports Applications: Characteristics, Mechanisms, and Modification Strategies
by Jie Wu, Jingya Hong, Xing Gao, Yutong Wang, Wenyan Wang, Hongchao Zhang, Jaeyoung Park, Weiquan Shi and Wei Guo
Gels 2025, 11(8), 589; https://doi.org/10.3390/gels11080589 (registering DOI) - 30 Jul 2025
Viewed by 125
Abstract
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently [...] Read more.
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently required to resolve. Consequently, this paper comprehensively reviews the recent advancements in conductive hydrogel-based flexible wearable sensors for sports applications. The paper examines the conductivity, self-adhesion, self-repair, and biocompatibility of conductive hydrogels, along with detailed analyses of their working principles in resistance, capacitance, piezoelectric, and battery-based sensing mechanisms. Additionally, the paper summarizes innovative strategies to enhance sensor performance through polymer blending, polyelectrolyte doping, inorganic salt doping, and nanomaterial integration. Furthermore, the paper highlights the latest applications of conductive hydrogel flexible wearable sensors in human motion monitoring, electrophysiological signal detection, and electrochemical biosignal monitoring. Finally, the paper provides an in-depth discussion of the advantages and limitations of existing technologies, offering valuable insights and new perspectives for future research directions. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

11 pages, 2406 KiB  
Article
Surfactant-Free Electrosprayed Alginate Beads for Oral Delivery of Hydrophobic Compounds
by Hye-Seon Jeong, Hyo-Jin Kim, Sung-Min Kang and Chang-Hyung Choi
Polymers 2025, 17(15), 2098; https://doi.org/10.3390/polym17152098 - 30 Jul 2025
Viewed by 131
Abstract
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery [...] Read more.
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery of hydrophobic oils. Hydrophobic compounds were dispersed in high-viscosity alginate solutions without surfactants via ultrasonication, forming kinetically stable oil-in-water dispersions. These mixtures were electrosprayed into calcium chloride baths, yielding monodisperse hydrogel beads. Higher alginate concentrations improved droplet sphericity and suppressed phase separation by enhancing matrix viscosity. The resulting beads exhibited stimuli-responsive degradation and controlled release behavior in response to physiological ionic strength. Dense alginate networks delayed ion exchange and prolonged structural integrity, while elevated external ionic conditions triggered rapid disintegration and immediate payload release. This simple and scalable system offers a biocompatible platform for the oral delivery of lipophilic active compounds without the need for surfactants or complex fabrication steps. Full article
Show Figures

Figure 1

14 pages, 1259 KiB  
Review
Engineered Hydrogels for Musculoskeletal Regeneration: Advanced Synthesis Strategies and Therapeutic Efficacy in Preclinical Models
by Gabriela Calin, Mihnea Costescu, Marcela Nour (Cârlig), Tudor Ciuhodaru, Batîr-Marin Denisa, Letitia Doina Duceac, Cozmin Mihai, Melania Florina Munteanu, Svetlana Trifunschi, Alexandru Oancea and Daniela Liliana Damir
Polymers 2025, 17(15), 2094; https://doi.org/10.3390/polym17152094 (registering DOI) - 30 Jul 2025
Viewed by 190
Abstract
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial [...] Read more.
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial for musculoskeletal tissue regeneration. This is due to their high water content (70–99%), ECM-like structure, injectability, and controllable degradation rates. Recent preclinical studies indicate that they can enhance regeneration by modulating the release of bioactive compounds, growth factors, and stem cells. Composite hydrogels that combine natural and synthetic polymers, like chitosan and collagen, have compressive moduli that are advantageous for tendon–bone healing. Some of these hydrogels can even hold up to 0.8 MPa of tensile strength. In osteoarthritis models, functionalized systems such as microspheres responsive to matrix metalloproteinase-13 have demonstrated disease modulation and targeted drug delivery, while intelligent in situ hydrogels have exhibited a 43% increase in neovascularization and a 50% enhancement in myotube production. Hydrogel-based therapies have been shown to restore contractile force by as much as 80%, increase myofiber density by 65%, and boost ALP activity in bone defects by 2.1 times in volumetric muscle loss (VML) models. Adding TGF-β3 or MSCs to hydrogel systems improved GAG content by about 60%, collagen II expression by 35–50%, and O’Driscoll scores by 35–50% in cartilage regeneration. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

52 pages, 4770 KiB  
Review
Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine
by Qi-Xiang Wu, Natalia De Isla and Lei Zhang
Int. J. Mol. Sci. 2025, 26(15), 7384; https://doi.org/10.3390/ijms26157384 - 30 Jul 2025
Viewed by 308
Abstract
Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like [...] Read more.
Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like donor cell dependency and immune rejection. The key to success relies on biomaterial-engineered delivery platforms that ensure tissue-specific targeting and efficient intracellular transport. Viral vectors and non-viral carriers are strategically modified to enhance nucleic acid stability and cellular uptake, and integrate them into injectable or 3D-printed scaffolds. These scaffolds not only control nucleic acid release but also mimic native extracellular microenvironments to support stem cell recruitment and tissue regeneration. This review explores three key aspects: the mechanisms of gene editing in tissue repair; advancements in viral and non-viral vector engineering; and innovations in biomaterial scaffolds, including stimuli-responsive hydrogels and 3D-printed matrices. We evaluate scaffold fabrication methodologies, nucleic acid loading–release kinetics, and their biological impacts. Despite progress in spatiotemporal gene delivery control, challenges remain in balancing vector biocompatibility, manufacturing scalability, and long-term safety. Future research should focus on multifunctional “smart” scaffolds with CRISPR-based editing tools, multi-stimuli responsiveness, and patient-specific designs. This work systematically integrates the latest methodological advances, outlines actionable strategies for future investigations and advances clinical translation perspectives beyond the existing literature. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

15 pages, 2594 KiB  
Article
Novel Zwitterionic Hydrogels with High and Tunable Toughness for Anti-Fouling Application
by Kefan Wu, Xiaoyu Guo, Jingyao Feng, Xiaoxue Yang, Feiyang Li, Xiaolin Wang and Hui Guo
Gels 2025, 11(8), 587; https://doi.org/10.3390/gels11080587 - 30 Jul 2025
Viewed by 102
Abstract
Zwitterionic hydrogels have emerged as eco-friendly anti-fouling materials owing to their superior hydration-mediated resistance to biofouling. Nevertheless, their practical utility remains constrained by intrinsically poor mechanical robustness. Herein, this study proposes a novel strategy to develop novel tough zwitterionic hydrogels by freezing the [...] Read more.
Zwitterionic hydrogels have emerged as eco-friendly anti-fouling materials owing to their superior hydration-mediated resistance to biofouling. Nevertheless, their practical utility remains constrained by intrinsically poor mechanical robustness. Herein, this study proposes a novel strategy to develop novel tough zwitterionic hydrogels by freezing the gels’ polymer network. As a proof of concept, a zwitterionic hydrogel was synthesized via copolymerization of hydrophobic monomer phenyl methacrylate (PMA) and hydrophilic cationic monomer N-(3-dimethylaminopropyl) methacrylamide (DMAPMA), followed by post-oxidation to yield a zwitterionic structure. At service temperature, the rigid and hydrophobic PMA segments remain frozen, while the hydrophilic zwitterionic units maintain substantial water content by osmotic pressure. Synergistically, the zwitterionic hydrogel achieves robust toughness and adhesiveness, with high rigidity (66 MPa), strength (4.78 MPa), and toughness (2.53 MJ/m3). Moreover, the hydrogel exhibits a distinct temperature-dependent behavior by manifesting softer and more stretchable behavior after heating, since the thawing of the gel network at high temperatures increases segmental mobility. Therefore, it achieved satisfactory adhesiveness to substrates (80 kPa). Additionally, the hydrogel demonstrated remarkable anti-fouling performance, effectively suppressing biofilm formation and larval attachment. In summary, this work opens up promising prospects for the development of zwitterionic hydrogels with high application potential. Full article
Show Figures

Figure 1

8 pages, 1008 KiB  
Proceeding Paper
Adsorption of Nickel (II) from Aqueous Solution Using Recyclable Three-Dimensional Cellulose Nanocrystal Hydrogel: A Central Composite Design
by Leon Ngwenya, Musamba Banza and Tumisang Seodigeng
Eng. Proc. 2025, 87(1), 99; https://doi.org/10.3390/engproc2025087099 - 29 Jul 2025
Viewed by 68
Abstract
To remove nickel (II) from an aqueous solution, cellulose nanocrystals (CNCs) were modified as an adsorbent. The FTIR and SEM were used to characterise the properties of CNCs. In addition to how well they predicted reaction (adsorption capacity), the central composite design was [...] Read more.
To remove nickel (II) from an aqueous solution, cellulose nanocrystals (CNCs) were modified as an adsorbent. The FTIR and SEM were used to characterise the properties of CNCs. In addition to how well they predicted reaction (adsorption capacity), the central composite design was used. The response surface model method performs well, according to statistical data. Four operational variables were studied: The initial concentration of the nickel (II) solution in mg/L, the pH, the contact period in minutes, and the adsorbent dose in g/100 mL. The removal percentage (%) was the result. The percentage removal was 98% after 178 min of contact, a starting concentration of 110 mg/L, an adsorbent dosage of 9.3 g, and an initial pH of 3.5. The R2 was 0.996, the adjusted R2 was 0.921, and the predicted R2 was 0.945. The quadratic equation was determined using central composite design. The FTIR examination revealed that the functional groups, hydroxyl groups (OH), peaked around 3300–3500 cm−1, and carboxyl groups (COOH) peaked around 1700 cm−1. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

33 pages, 4819 KiB  
Review
Hydrogels Modulating the Microbiome: Therapies for Tissue Regeneration with Infection Control
by Germán Reynaldo Jiménez-Gastelum, Carlos Esteban Villegas-Mercado, Juan Luis Cota-Quintero, Silvia Ivonne Arzola-Rodríguez, Rosalío Ramos-Payán and Mercedes Bermúdez
Gels 2025, 11(8), 584; https://doi.org/10.3390/gels11080584 - 29 Jul 2025
Viewed by 334
Abstract
This review explores the emerging role of functionalized hydrogels in modulating the microbiome for therapeutic applications in tissue regeneration and infection control. The skin and gut microbiomes play crucial roles in maintaining tissue homeostasis, regulating immune responses, and influencing the healing process. Disruptions [...] Read more.
This review explores the emerging role of functionalized hydrogels in modulating the microbiome for therapeutic applications in tissue regeneration and infection control. The skin and gut microbiomes play crucial roles in maintaining tissue homeostasis, regulating immune responses, and influencing the healing process. Disruptions in microbial balance—such as those observed in chronic wounds, autoimmune conditions, or post-surgical environments—can impair regeneration and increase susceptibility to infection. Hydrogels, due to their tunable physical and chemical properties, serve as versatile platforms for delivering probiotics, prebiotics, antimicrobials, and immune-modulatory agents. The encapsulation of beneficial bacteria, such as Lactobacillus plantarum or Prevotella histicola, within hydrogels could enhance bacterial viability, targeted delivery, and immune tolerance. Additionally, hydrogels functionalized with silver nanoparticles, nitric oxide donors, and bacteriocins have demonstrated effective biofilm disruption and pathogen clearance. These systems also promote favorable immune responses, such as M2 macrophage polarization and the induction of regulatory T cells, which are essential for tissue repair. Innovative approaches, including 3D bioprinting, self-healing materials, and photothermal-responsive hydrogels, expand the clinical versatility of these systems. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
Show Figures

Figure 1

49 pages, 8322 KiB  
Review
Research Progress on the Application of Novel Wound Healing Dressings in Different Stages of Wound Healing
by Lihong Wang, Xinying Lu, Yikun Wang, Lina Sun, Xiaoyu Fan, Xinran Wang and Jie Bai
Pharmaceutics 2025, 17(8), 976; https://doi.org/10.3390/pharmaceutics17080976 - 28 Jul 2025
Viewed by 295
Abstract
The complex microenvironment of wounds, along with challenges such as microbial infections, tissue damage, and inflammatory responses during the healing process, renders wound repair a complex medical issue. Owing to their ease of administration, effective outcomes, and painless application, biomacromolecule-based wound dressings have [...] Read more.
The complex microenvironment of wounds, along with challenges such as microbial infections, tissue damage, and inflammatory responses during the healing process, renders wound repair a complex medical issue. Owing to their ease of administration, effective outcomes, and painless application, biomacromolecule-based wound dressings have become a focal point in current clinical research. In recent years, hydrogels, microneedles, and electrospun nanofibers have emerged as three novel types of wound dressings. By influencing various stages of healing, they have notably enhanced chronic wound healing outcomes and hold considerable potential for wound repair applications. This review describes the preparation methods, classification, and applications of hydrogels, microneedles, and electrospun nanofibers around the various stages of wound healing, clarifying the healing-promoting mechanisms and characteristics of the three methods in different stages of wound healing. Building upon this foundation, we further introduce smart responsiveness, highlighting the application of stimuli-responsive wound dressings in dynamic wound management, aiming to provide insights for future research. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

Back to TopTop