Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = resistance to aphid stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1515 KiB  
Article
Expression of Heat Shock Protein 90 Genes Induced by High Temperature Mediated Sensitivity of Aphis glycines Matsumura (Hemiptera: Aphididae) to Insecticides
by Xue Han, Yulong Jia, Changchun Dai, Xiaoyun Wang, Jian Liu and Zhenqi Tian
Insects 2025, 16(8), 772; https://doi.org/10.3390/insects16080772 - 28 Jul 2025
Viewed by 336
Abstract
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), [...] Read more.
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), which are upregulated in response to heat stress to protect aphid development, also confer tolerance to other abiotic stressors, including insecticides. To investigate the role of HSPs in insecticide resistance in A. glycines, we analyzed the expression profiles of three AgHsp90 genes (AgHsp75, AgHsp83, and AgGrp94) following exposure to high temperatures and insecticides. Functional validation was performed using RNA interference (RNAi) to silence AgHsp90 genes. Our results demonstrated that AgHsp90 genes were significantly upregulated under both heat and insecticide stress conditions. Furthermore, after feeding on dsRNA of AgHsp90 genes, mortality rates of A. glycines significantly increased when exposed to imidacloprid and lambda-cyhalothrin. This study provides evidence that AgHsp90 genes play a crucial role in mediating thermal tolerance and insecticide resistance in A. glycines. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

25 pages, 51527 KiB  
Article
Development and Characterization of Synthetic Allotetraploids Between Diploid Species Gossypium herbaceum and Gossypium nelsonii for Cotton Genetic Improvement
by Sevara K. Arslanova, Ziraatkhan A. Ernazarova, Dilrabo K. Ernazarova, Ozod S. Turaev, Asiya K. Safiullina, Abdulqahhor Kh. Toshpulatov, Madina D. Kholova, Laylo A. Azimova, Feruza U. Rafiyeva, Bunyod M. Gapparov, Kuvandik K. Khalikov, Mukhammad T. Khidirov, Abdulloh A. Iskandarov, Davron M. Kodirov, Obidjon Y. Turaev, Salikhjan A. Maulyanov, Joshua A. Udall, John Z. Yu and Fakhriddin N. Kushanov
Plants 2025, 14(11), 1620; https://doi.org/10.3390/plants14111620 - 26 May 2025
Viewed by 844
Abstract
Expanding genetic variability of cultivated cotton (Gossypium hirsutum) is essential for improving fiber quality and pest resistance. This study synthesized allotetraploids through interspecific hybridization between G. herbaceum (A1) and G. nelsonii (G3). Upon chromosome doubling using 0.2% [...] Read more.
Expanding genetic variability of cultivated cotton (Gossypium hirsutum) is essential for improving fiber quality and pest resistance. This study synthesized allotetraploids through interspecific hybridization between G. herbaceum (A1) and G. nelsonii (G3). Upon chromosome doubling using 0.2% colchicine, fertile F1C allotetraploids (A1A1G3G3) were developed. Cytogenetic analysis confirmed chromosome stability of synthetic allotetraploids, and 74 polymorphic SSR markers verified hybridity and parental contributions. The F1C hybrids exhibited enhanced resistance to cotton aphids (Aphis gossypii) and whiteflies (Aleyrodidae), with respective infestation rates of 5.2–5.6% and 5.4–5.8%, lower than those of G. hirsutum cv. Ravnak-1 (22.1% and 23.9%). Superior fiber length (25.0–26.0 mm) was observed in complex hybrids and backcross progeny, confirming the potential for trait introgression into elite cultivars. Phylogenetic analysis based on SSR data clearly differentiated G. herbaceum from Australian wild species, demonstrating successful bridging of divergent genomes. The F1C hybrids consistently expressed dominant G. nelsonii-derived traits regardless of the hybridization direction and clustered phylogenetically closer to the wild parent. These synthetic allotetraploids could broaden the genetic base of G. hirsutum, addressing cultivation constraints through improved biotic stress resilience and fiber quality traits. The study establishes a robust framework for utilizing wild Gossypium species to overcome genetic bottlenecks in conventional cotton breeding programs. Full article
(This article belongs to the Collection Advances in Plant Breeding)
Show Figures

Figure 1

14 pages, 1598 KiB  
Article
Plant-Growth-Promoting Rhizobacteria and Known Interactions with Plant Phytophagous Insects: A Meta-Analysis
by Roberto Rafael Ruiz-Santiago, Horacio Salomón Ballina-Gómez, Esaú Ruíz-Sánchez, Laura Yesenia Solís-Ramos and Jairo Cristóbal-Alejo
Stresses 2025, 5(2), 35; https://doi.org/10.3390/stresses5020035 - 20 May 2025
Cited by 1 | Viewed by 1798
Abstract
Plant-growth-promoting rhizobacteria (PGPR) influence soil fertility, plant growth, tolerance to abiotic stress, resistance to herbivorous insects, and plant interactions with other organisms. While the effects of PGPR on plant growth, fruit yield, and induced defense responses have been extensively studied, the consistent positive [...] Read more.
Plant-growth-promoting rhizobacteria (PGPR) influence soil fertility, plant growth, tolerance to abiotic stress, resistance to herbivorous insects, and plant interactions with other organisms. While the effects of PGPR on plant growth, fruit yield, and induced defense responses have been extensively studied, the consistent positive outcomes have fueled rapid expansion in this research field. To evaluate PGPR impacts on plant growth and interactions with phytophagous insects, we conducted a systematic meta-analysis using publications from electronic databases (e.g., PubMed, Web of Science) that reported PGPR effects on plants and insects. Effects were categorized by plant family, PGPR genus, insect feeding guild, and insect–host specialization. Our analysis revealed that PGPR generally enhanced plant growth across most plant families; however, the magnitude and direction of these effects varied significantly among PGPR genera, indicating genus-specific interactions with host plants. When assessing PGPR-mediated reductions in phytophagous insects, we found that Pseudomonas, Rhizobium, and Bacillus exhibited the weakest negative effects on insect populations. PGPR significantly reduced both monophagous and polyphagous insects, with the most pronounced negative impacts on sucking insects (e.g., aphids, whiteflies). This study highlights critical patterns in PGPR-mediated plant growth promotion across taxa and the related differential effects on phytophagous insect activity. These insights advance our understanding of PGPR applications in agroecological production systems, particularly for integrated pest management and sustainable crop productivity. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

20 pages, 2653 KiB  
Article
Puccinia triticina and Salicylic Acid Stimulate Resistance Responses in Triticum aestivum Against Diuraphis noxia Infestation
by Huzaifa Bilal, Willem Hendrik Petrus Boshoff and Lintle Mohase
Plants 2025, 14(3), 420; https://doi.org/10.3390/plants14030420 - 31 Jan 2025
Viewed by 975
Abstract
Wheat plants encounter both biotic and abiotic pressure in their surroundings. Among the biotic stress factors, the Russian wheat aphid (RWA: Diuraphis noxia Kurdjumov) decreases grain yield and quality. The current RWA control strategies, including resistance breeding and the application of aphicides, are [...] Read more.
Wheat plants encounter both biotic and abiotic pressure in their surroundings. Among the biotic stress factors, the Russian wheat aphid (RWA: Diuraphis noxia Kurdjumov) decreases grain yield and quality. The current RWA control strategies, including resistance breeding and the application of aphicides, are outpaced and potentially environmentally harmful. Alternatively, priming can stimulate defence responses to RWA infestation. This study investigated the priming potential of two priming agents, avirulent Puccinia triticina (Pt) isolates and salicylic acid (SA), against RWA infestation. The priming effect of Pt isolates and SA in reducing RWA-induced leaf damage and increased antioxidant activities is an indication of defence responses. Selected South African wheat cultivars and Lesotho landraces, grown under greenhouse conditions, were inoculated with Pt isolates (UVPt13: avirulent, UVPt26: virulent) and treated with SA at the seedling or booting stages. The leaf damage rating score was used for phenotyping. The antioxidant-mediated defence responses were evaluated in three selected cultivars for further priming investigation. Our results revealed that the priming agents significantly reduced the leaf damage in most cultivars at both growth stages, and UVPt13 and SA priming significantly (p ≤ 0.05) increased superoxide dismutase, peroxidase, and ascorbate peroxidase activities. However, catalase activity exhibited a more pronounced decline in plants treated with the UVPt13 isolate. The Pt isolate priming was more efficient than the SA application. However, it is crucial to investigate the potential of effectors from the avirulent Pt isolate to prime wheat plants for resistance against RWA infestation. This could contribute to developing strategies to enhance crop protection and relieve pest pressure in wheat production. Full article
(This article belongs to the Special Issue Plant-Pest Interactions)
Show Figures

Figure 1

17 pages, 4346 KiB  
Article
Impact of Grass Endophyte on Leaf Spot in Perennial Ryegrass Caused by Bipolaris sorokiniana and Subsequent Aphids’ Feeding Preference
by Ziyuan Ma, Jia He, Youlei Shen, Yingde Li, Ping Wang and Tingyu Duan
Agriculture 2025, 15(2), 116; https://doi.org/10.3390/agriculture15020116 - 7 Jan 2025
Viewed by 1438
Abstract
Grass endophytes (Epichloë) are important symbiotic microorganisms of perennial ryegrass, playing a vital role in plant resistance against various stresses. This study investigated the effects of grass endophyte on leaf spot disease caused by fungal pathogen Bipolaris sorokiniana and subsequent feeding [...] Read more.
Grass endophytes (Epichloë) are important symbiotic microorganisms of perennial ryegrass, playing a vital role in plant resistance against various stresses. This study investigated the effects of grass endophyte on leaf spot disease caused by fungal pathogen Bipolaris sorokiniana and subsequent feeding preferences of aphids (Rhopalosiphum maidis) on perennial ryegrass, with a particular focus on how grass endophyte influence the interactions between pathogens and aphids. The results indicated that grass endophytes significantly increased the net photosynthetic efficiency of perennial ryegrass. The interactions among grass endophytes, pathogen, and aphids affected the activities of superoxide dismutase (SOD), peroxidases (POD), and catalase (CAT). Grass endophytes enhanced SOD and CAT activities in pathogen-infected ryegrass. While pathogen infection and aphid infestation decreased jasmonic acid (JA) and salicylic acid (SA) concentrations, grass endophyte increased SA levels. Correlation analysis revealed a negative relationship between shoot dry weight and plant transpiration rate, SOD, and CAT activities. Aphid feeding choice showed that grass endophytes attracted more aphid feeding when co-infected with pathogens. This preference correlated positively with H2O2 and SA levels but negatively with NO and JA concentrations. Overall, grass endophytes enhance perennial ryegrass resistance to leaf spot pathogens and aphids, offering a novel pest and disease management strategy in agriculture. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

16 pages, 6152 KiB  
Article
Genome-Wide Identification and Analysis of the MYC Gene Family in Cotton: Evolution and Expression Profiles During Normal Growth and Stress Response
by Jingxi Chen, Long Wang, Xiufang Wang, Lu Lu, Peng Han, Caidie Zhang, Min Han, Siyu Xiang, Haibiao Wang, Lizhong Xuan, Zhibo Li, Hairong Lin, Xinhui Nie and Yuanlong Wu
Genes 2025, 16(1), 20; https://doi.org/10.3390/genes16010020 - 26 Dec 2024
Cited by 1 | Viewed by 1102
Abstract
Background: The gene family of myelomatosis (MYC), serving as a transcription factor in the jasmonate (JA) signaling pathway, displays a significant level of conservation across diverse animal and plant species. Cotton is the most widely used plant for fiber production. Nevertheless, there is [...] Read more.
Background: The gene family of myelomatosis (MYC), serving as a transcription factor in the jasmonate (JA) signaling pathway, displays a significant level of conservation across diverse animal and plant species. Cotton is the most widely used plant for fiber production. Nevertheless, there is a paucity of literature reporting on the members of MYCs and how they respond to biotic stresses in cotton. Methods: Bioinformatics analysis was used to mine the MYC gene family in cotton based on InterPro, cottongen, etc. Results: The gene structure, conserved motifs, and upstream open reading frames of 32 GhMYCs in Gossypium hirsutum were identified. Moreover, it was anticipated that the GT1-motif is the most abundant in GhMYCs, indicating that the GT1-motif plays a significant role in light-responsive GhMYCs. The expression patterns of GhMYCs under biotic stresses including V. dahliae and Aphid gossypii were evaluated, suggesting that GhMYCs in class-1 and -3 GhMYCs, which function as negative regulators, are involved in resistance to verticillium wilt and aphids. The class-3 GhMYCs genes were found to be mostly expressed in female tissues. Interestingly, it was also determined that the homeologous expression bias within GhMYCs in cotton was uncovered, and results showed that the gene expression of class-1A and class-2 GhMYCs in the Dt sub-genome may have a direct impact on gene function. Conclusions: This study provides a research direction for researchers and breeders to enhance cotton traits through manipulating individual or multiple homeologs, which laid a foundation for further study of the molecular characteristics and biological functions of GhMYC gene. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

17 pages, 8848 KiB  
Article
A CsWRKY48 Gene from Tea Plants Intercropped with Chinese Chestnut Plays an Important Role in Resistance to Biotic and Abiotic Stresses
by Jianzhao Wang, Yikai Gong, Meng Li, Yan Bai and Tian Wu
Int. J. Mol. Sci. 2024, 25(24), 13526; https://doi.org/10.3390/ijms252413526 - 17 Dec 2024
Viewed by 943
Abstract
Tea plant (Camellia sinensis) is an important horticultural crop. The quality and productivity of tea plants is always threatened by various adverse environmental factors. Numerous studies have shown that intercropping tea plants with other plants can greatly improve the quality of [...] Read more.
Tea plant (Camellia sinensis) is an important horticultural crop. The quality and productivity of tea plants is always threatened by various adverse environmental factors. Numerous studies have shown that intercropping tea plants with other plants can greatly improve the quality of their products. The intercropping system of Chinese chestnut (Castanea mollissima) and tea plants is an agricultural planting model in which the two species are grown on the same piece of land following a specific spacing and cultivation method. Based on a comparative transcriptome analysis between Chinese chestnut tea intercropped plantations and a pure tea plantation, it was found that the expression levels of the WRKY genes were significantly upregulated under the intercropping pattern. In this study, we cloned a candidate gene, CsWRKY48, and verified its functions in tobacco (Nicotiana tabacum) via heterologous transformation. The contents of protective enzyme activities and osmoregulatory substances were significantly increased, and the trichomes length and density were improved in the transgenic tobacco lines. This phenotype offered an enhanced resistance to both low temperatures and aphids for transgenic lines overexpressing CsWRKY48. Further analysis indicated that the CsWRKY48 transcription factor might interact with other regulators, such as CBF, ERF, MYC, and MYB, to enhance the resistance of tea plants to biotic and abiotic stresses. These findings not only confirm the elevated resistance of tea plants under intercropping, but also indicate a potential regulatory network mediated by the WRKY transcription factor. Full article
(This article belongs to the Special Issue Plant Responses to Biotic and Abiotic Stresses)
Show Figures

Figure 1

19 pages, 3073 KiB  
Article
Function Analysis of Heme Peroxidase Genes, MpPxd2 and MpPxd4, Under Thiacloprid Exposure in the Neonicotinoid-Resistant Myzus persicae (Sulzer)
by Wenhua Rao, Feng Chen, Xianzhi Zhou, Jun Wang, Lei Lin, Guocheng Fan and Jinfeng Hu
Antioxidants 2024, 13(12), 1453; https://doi.org/10.3390/antiox13121453 - 27 Nov 2024
Viewed by 941
Abstract
The green peach aphid, Myzus persicae, is a notorious pest worldwide. We collected a field population of the pest (FZQ-F) that exhibited high resistance to neonicotinoids. Exposure to neonicotinoids can induce oxidative damage in animals; however, it remains unclear whether antioxidant enzymes [...] Read more.
The green peach aphid, Myzus persicae, is a notorious pest worldwide. We collected a field population of the pest (FZQ-F) that exhibited high resistance to neonicotinoids. Exposure to neonicotinoids can induce oxidative damage in animals; however, it remains unclear whether antioxidant enzymes contribute to the innate immune response of neonicotinoid-resistant pests against high doses of insecticides. Treatment with sublethal doses of thiacloprid (LC10 and LC25) for 3, 6, 12, 24, 48, and 72 h resulted in significantly increased reactive oxygen species (ROS), including H2O2 content, in FZQ-F adults, indicating insecticide-induced oxidative stress. Additionally, the peroxidase activity in FZQ-F adults increased after thiacloprid exposure. Using comparative genomics, we identified 31 heme peroxidases in M. persicae with a typical “2Cys” structure, and phylogenetic analyses divided them into five groups. Comparative transcriptomes revealed that MpPxd2 and MpPxd4 were significantly upregulated in thiacloprid-treated aphids. Thiacloprid exposure significantly induced MpPxd2 and MpPxd4 expression levels, consistent with high H2O2 content and peroxidase activity. The knockdown of MpPxd2 or MpPxd4 in FZQ-F increased their susceptibility to imidacloprid, thiacloprid, and thiamethoxam, verifying the protective role of the heme peroxidases against neonicotinoids in aphids. The knockdown of MpPxd2 or MpPxd4 also led to shorter longevity and a low fecundity of adult aphids at 31 °C compared to controls. The results show that MpPxd2 or MpPxd4 is important in how cells respond to oxidative stress and may help resistant M. persicae pests to handle neonicotinoids. Full article
Show Figures

Figure 1

21 pages, 6259 KiB  
Article
Rapid and Visual Screening of Virus Infection in Sugar Beets Through Polerovirus-Induced Gene Silencing
by Heemee Devi Bunwaree, Elodie Klein, Guillaume Saubeau, Bruno Desprez, Véronique Ziegler-Graff and David Gilmer
Viruses 2024, 16(12), 1823; https://doi.org/10.3390/v16121823 - 23 Nov 2024
Viewed by 1385
Abstract
Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on [...] Read more.
Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on multiple infections and other stresses, there is an urgent need for fast screening tests to evaluate resistance/tolerance traits in sugar beet accessions. To address this issue, we exploited the virus-induced gene silencing (VIGS) system, by introducing a fragment of a Beta vulgaris gene involved in chlorophyll synthesis in the BMYV genome. This recombinant virus was able to generate early clear vein chlorosis symptoms in infected sugar beets, allowing easy and rapid visual discernment of infected plants across five sugar beet lines. The recombinant virus displayed similar infectivity as the wild-type, and the insert remained stable within the viral progeny. We demonstrated that the percentage of VIGS-symptomatic plants was representative of the infection rate of each evaluated line, and depending on the susceptibility of the line to BMYV infection, VIGS symptoms may last over months. Our work provides a polerovirus-based VIGS system adapted to sugar beet crop allowing visual and rapid large-scale screens for resistance or functional genomic studies. Full article
(This article belongs to the Special Issue Application of Genetically Engineered Plant Viruses)
Show Figures

Graphical abstract

13 pages, 2323 KiB  
Article
The Interplay of Nitric Oxide and Nitrosative Modifications in Maize: Implications for Aphid Herbivory and Drought Stress
by Hubert Sytykiewicz, Paweł Czerniewicz, Magdalena Ruszczyńska and Katarzyna Kmieć
Int. J. Mol. Sci. 2024, 25(20), 11280; https://doi.org/10.3390/ijms252011280 - 20 Oct 2024
Cited by 2 | Viewed by 1287
Abstract
Nitric oxide (NO) and other reactive nitrogen species (RNS) are considered to be signaling molecules in higher plants involved in the regulation of growth and development processes. However, the molecular mechanisms of their formation, removal, and participation in plant responses to adverse environmental [...] Read more.
Nitric oxide (NO) and other reactive nitrogen species (RNS) are considered to be signaling molecules in higher plants involved in the regulation of growth and development processes. However, the molecular mechanisms of their formation, removal, and participation in plant responses to adverse environmental stimuli remain largely unclear. Therefore, the aim of this study was to assess the influence of selected single stresses and combined stresses (i.e., Rhopalosiphum padi L. aphid infestation, drought, aphid infestation, and drought) and post-stress recovery on the contents of NO and peroxynitrite anion (ONOO), as well as the levels of mRNA and protein nitration (i.e., the 8-nitroguanine and protein 3-nitrotyrosine amounts, respectively), in maize seedlings (Zea mays L.). Moreover, the expression patterns of the two tested genes (nos-ip, encoding nitric oxide synthase-interacting protein, and nr1, encoding nitrate reductase 1) involved in NO metabolism in maize plants were quantified. We identified significant intervarietal, time-course, and stress-dependent differences in the levels of the quantified parameters. Under the investigated stress conditions, the aphid-resistant Waza cv. seedlings were characterized by a higher and earlier NO accumulation and mRNA nitration level and an increased expression of the two target genes (nos-ip and nr1), compared to the aphid-susceptible Złota Karłowa cv. seedlings. Conversely, the Złota Karłowa plants responded with a greater elevation in the content of ONOO and protein 3-nitrotyrosine than the Waza cv. plants The multifaceted role of NO and its derivatives in maize plants challenged by single and combined stresses, as well as during post-stress recovery, is discussed. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Abiotic Stress Tolerance: 2nd Edition)
Show Figures

Figure 1

15 pages, 3038 KiB  
Article
Stress Response of Aphid Population Under Combined Stress of Cadmium and Lead and Its Effects on Development of Harmonia axyridis
by Shasha Wang, Qimei Li, Yan Li, Sijing Wan, Zhenjuan Yin, Shan Zhao, Xiaoyan Dai, Ruijuan Wang, Shigui Wang, Yifan Zhai, Xiaoling Tan and Bin Tang
Int. J. Mol. Sci. 2024, 25(20), 11145; https://doi.org/10.3390/ijms252011145 - 17 Oct 2024
Cited by 3 | Viewed by 1317
Abstract
Heavy metal pollution is a serious global environmental issue. It threatens human and ecological health. Heavy metals can accumulate in the soil over extended periods and inevitably transfer through the food chain to herbivorous insects and their natural enemies, leading to various adverse [...] Read more.
Heavy metal pollution is a serious global environmental issue. It threatens human and ecological health. Heavy metals can accumulate in the soil over extended periods and inevitably transfer through the food chain to herbivorous insects and their natural enemies, leading to various adverse effects. This study aimed to investigate the stress responses and biochemical metabolic changes of aphids and one of aphids’ predators, ladybugs, under cadmium (Cd) and lead (Pb) stress by constructing a food chain of Vicia faba L., Megoura crassicauda, and Harmonia axyridis. The results showed that aphids and ladybugs had a notable accumulation of Cd2+ and Pb2+. Insects can adapt to heavy metal stress by regulating their energy metabolism pathways. Glycogen content in the first filial generation (F1) aphids decreased significantly, glucose content in the second filial generation (F2) to the fourth filial generation (F4) adult aphids significantly increased, and trehalose content in the F1 adult aphids increased significantly. Moreover, the relative expression levels of trehalase (TRE) and trehalose-6-phosphate synthase (TPS) in the F1 adult aphids were significantly higher than those in the control group, and the expression levels of TPS genes in the second filial generation to the fifth filial generation (F2 to F5) aphids decreased, suggesting that insects can resist heavy metal stress by regulating trehalose metabolism. The fertility of female aphids in all treatment groups was reduced compared to the control group. Additionally, the relative expression level of vitellogenin (Vg) was down-regulated in all aphid generations except the F1 aphids. There was interaction between heavy metal concentration and aphid generation, and it significantly affected the number of aphids’ offspring and the expression of the aphid Vg gene. The developmental duration of the ladybugs from the second to fourth instars was prolonged, and the weight decreased significantly from the prepupa to the adult stages. These results contribute to understanding the effects of Cd2+–Pb2+ accumulation on phytophagous insects and higher trophic levels’ natural enemies, laying the foundation for protecting natural enemies and maintaining ecosystem stability. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

17 pages, 7479 KiB  
Article
Influences of Salt Stress on Cotton Metabolism and Its Consequential Effects on the Development and Fecundity of Aphis gossypii Glover
by Wangquan Jiao, Bingmei Song, Hongsheng Pan and Xiaoning Liu
Insects 2024, 15(9), 713; https://doi.org/10.3390/insects15090713 - 18 Sep 2024
Viewed by 1438
Abstract
The degree of global soil salinization is gradually deepening, which will inevitably affect agricultural ecology. It has been found that salt stress induces the resistance of host plants to phytophagous pests. However, little is known about the effects of salt-stressed cotton plants on [...] Read more.
The degree of global soil salinization is gradually deepening, which will inevitably affect agricultural ecology. It has been found that salt stress induces the resistance of host plants to phytophagous pests. However, little is known about the effects of salt-stressed cotton plants on the fitness of cotton aphids (Aphis gossypii Glover). In this study, we investigated the differences between cotton metabolomes under mild (75 mM NaCl) and moderate (150 mM NaCl) salinity conditions and their effects on the fitness of cotton aphids. The results showed that 49 metabolites exhibited significant upregulation, while 86 metabolites were downregulated, with the increasing NaCl concentration. The duration of nymphal aphids under 150 mM NaCl significantly extended to 6.31 days when compared with the control (0 mM NaCl, 4.10 days). Meanwhile, the longevity of adult aphids decreased significantly under 75 and 150 mM NaCl, with an average of 10.38 days (0 mM NaCl) reduced to 8.55 and 4.89 days, respectively. Additionally, the total reproduction number of single females decreased from 31.31 (0 mM NaCl) to 21.13 (75 mM NaCl) and 10.75 (150 mM NaCl), whereas the survival rate of aphids decreased from 81.25% (0 mM NaCl) to 56.25% (75 mM NaCl) and 34.38% (150 mM NaCl) on the 12th day. These results support the hypothesis that plants growing under salt stress are better defended against herbivores. Furthermore, 49 differential metabolites were found to be negatively correlated with the longevity and fecundity of adult aphids, while 86 different metabolites showed the opposite trend. These results provide insights into the occurrence and control of cotton aphids amidst the escalating issue of secondary salinization. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

14 pages, 3479 KiB  
Article
Genome-Wide Identification of Sorghum Paclobutrazol-Resistance Gene Family and Functional Characterization of SbPRE4 in Response to Aphid Stress
by Yongchao Guo, Zhifang Wang, Zhiyin Jiao, Guang Yuan, Li Cui, Pengwei Duan, Jingtian Niu, Peng Lv, Jinping Wang and Yannan Shi
Int. J. Mol. Sci. 2024, 25(13), 7257; https://doi.org/10.3390/ijms25137257 - 1 Jul 2024
Viewed by 1537
Abstract
Sorghum (Sorghum bicolor), the fifth most important cereal crop globally, serves as a staple food, animal feed, and a bioenergy source. Paclobutrazol-Resistance (PRE) genes play a pivotal role in the response to environmental stress, yet the understanding of their [...] Read more.
Sorghum (Sorghum bicolor), the fifth most important cereal crop globally, serves as a staple food, animal feed, and a bioenergy source. Paclobutrazol-Resistance (PRE) genes play a pivotal role in the response to environmental stress, yet the understanding of their involvement in pest resistance remains limited. In the present study, a total of seven SbPRE genes were found within the sorghum BTx623 genome. Subsequently, their genomic location was studied, and they were distributed on four chromosomes. An analysis of cis-acting elements in SbPRE promoters revealed that various elements were associated with hormones and stress responses. Expression pattern analysis showed differentially tissue-specific expression profiles among SbPRE genes. The expression of some SbPRE genes can be induced by abiotic stress and aphid treatments. Furthermore, through phytohormones and transgenic analyses, we demonstrated that SbPRE4 improves sorghum resistance to aphids by accumulating jasmonic acids (JAs) in transgenic Arabidopsis, giving insights into the molecular and biological function of atypical basic helix-loop-helix (bHLH) transcription factors in sorghum pest resistance. Full article
(This article belongs to the Special Issue Plant Hormone Signaling)
Show Figures

Figure 1

17 pages, 4926 KiB  
Article
Genomic Identification of Callose Synthase (CalS) Gene Family in Sorghum (Sorghum bicolor) and Comparative In Silico Expression Analysis under Aphid (Melanaphis sacchari) Infestation
by Kunliang Zou, Yang Liu, Tonghan Wang, Minghui Guan, Xiaofei Li, Jieqin Li, Haibing Yu, Degong Wu and Junli Du
Agronomy 2024, 14(7), 1393; https://doi.org/10.3390/agronomy14071393 - 27 Jun 2024
Cited by 2 | Viewed by 1555
Abstract
Callose is widely present in higher plants and plays a significant role in plant growth, development, and response to various stresses. Although numerous studies have highlighted the importance of the callose synthase (CalS) genes, their role in the resistance of sorghum [...] Read more.
Callose is widely present in higher plants and plays a significant role in plant growth, development, and response to various stresses. Although numerous studies have highlighted the importance of the callose synthase (CalS) genes, their role in the resistance of sorghum (Sorghum bicolor) to aphids (Melanaphis sacchari) remains limitedly understood. This study identified 11 sorghum callose synthase genes (SbCalS), unevenly distributed across four chromosomes of sorghum. All SbCalS proteins contain glucan synthase and Fks1 domains, with segmental duplication playing a major role in gene diversification. Cis-element prediction revealed the presence of numerous stress-responsive elements, indicating that this gene family is primarily involved in stress resistance. Using published RNA-seq data, we discovered the differential expression of the SbCalS5 gene between resistant and susceptible sorghum varieties. Real-time quantitative PCR (qPCR) analysis confirmed the relative expression levels of all SbCalS members under aphid stress. To further verify the role of callose in sorghum, we measured the callose content in both resistant and susceptible sorghum varieties. The results indicated that callose plays a critical role in aphid resistance in sorghum, particularly the SbCalS5 gene. This study provides a reference for further investigation into the role of callose synthase genes in sorghum aphid resistance. Full article
(This article belongs to the Special Issue New Insights into Plants’ Defense Mechanisms against Stresses)
Show Figures

Figure 1

33 pages, 6120 KiB  
Article
Genome-Wide Transcriptomic and Metabolomic Analyses Unveiling the Defence Mechanisms of Populus tremula against Sucking and Chewing Insect Herbivores
by Filip Pastierovič, Kanakachari Mogilicherla, Jaromír Hradecký, Alina Kalyniukova, Ondřej Dvořák, Amit Roy and Ivana Tomášková
Int. J. Mol. Sci. 2024, 25(11), 6124; https://doi.org/10.3390/ijms25116124 - 1 Jun 2024
Cited by 2 | Viewed by 2137
Abstract
Plants and insects coevolved as an evolutionarily successful and enduring association. The molecular arms race led to evolutionary novelties regarding unique mechanisms of defence and detoxification in plants and insects. While insects adopt mechanisms to conquer host defence, trees develop well-orchestrated and species-specific [...] Read more.
Plants and insects coevolved as an evolutionarily successful and enduring association. The molecular arms race led to evolutionary novelties regarding unique mechanisms of defence and detoxification in plants and insects. While insects adopt mechanisms to conquer host defence, trees develop well-orchestrated and species-specific defence strategies against insect herbivory. However, current knowledge on the molecular underpinnings of fine-tuned tree defence responses against different herbivore insects is still restricted. In the current study, using a multi-omics approach, we unveiled the defence response of Populus tremula against aphids (Chaitophorus populialbae) and spongy moths (Lymantria dispar) herbivory. Comparative differential gene expression (DGE) analyses revealed that around 272 and 1203 transcripts were differentially regulated in P. tremula after moth and aphid herbivory compared to uninfested controls. Interestingly, 5716 transcripts were differentially regulated in P. tremula between aphids and moth infestation. Further investigation showed that defence-related stress hormones and their lipid precursors, transcription factors, and signalling molecules were over-expressed, whereas the growth-related counterparts were suppressed in P. tremula after aphid and moth herbivory. Metabolomics analysis documented that around 37% of all significantly abundant metabolites were associated with biochemical pathways related to tree growth and defence. However, the metabolic profiles of aphid and moth-fed trees were quite distinct, indicating species-specific response optimization. After identifying the suitable reference genes in P. tremula, the omics data were further validated using RT-qPCR. Nevertheless, our findings documented species-specific fine-tuning of the defence response of P. tremula, showing conservation on resource allocation for defence overgrowth under aphid and moth herbivory. Such findings can be exploited to enhance our current understanding of molecular orchestration of tree responses against herbivory and aid in developing insect pest resistance P. tremula varieties. Full article
(This article belongs to the Special Issue New Insights into Plants and Insects Interactions)
Show Figures

Figure 1

Back to TopTop