Plant-Pest Interactions

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Protection and Biotic Interactions".

Deadline for manuscript submissions: closed (30 April 2025) | Viewed by 1361

Special Issue Editors


E-Mail Website
Guest Editor
UF/IFAS Tropical Research and Education Center, Homestead, FL 33031, USA
Interests: molecular breeding; molecular diagnostics; virus–vector relationship; cell culture

E-Mail Website
Guest Editor
Citrus Research and Education Center, Department of Plant Pathology, University of Florida, Lake Alfred, FL 33850, USA
Interests: vector biology; plant pathogen–vector interactions; RNA interference
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Insect pests cause significant losses to crop plants in terms of yield (20–40%) and economics (~USD 220 billion every year), eventually threatening food security. Both plants and pests continue to evolve over time to suppress each other’s defenses, as they are in a never-ending battle to fulfil their respective life cycles. Understanding plant–pest interactions is not only entomologically important but also essential for the development of sustainable crop protection strategies. Additionally, insect vectors transmit many devastating plant pathogens, and the interaction of vectors with plant hosts is crucial for the acquisition and transmission of disease. This Special Issue invites original research and review articles focusing on various aspects of plant–pest interactions. This Special Issue will help us to unravel the biochemistry and molecular pathways involved in insect behavior, emphasize plant defense responses, and highlight relevant crop protection strategies.

Dr. Sumit Jangra
Dr. Nabil Killiny
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant volatiles
  • crop protection
  • biotic stress
  • signaling molecules
  • enzymes and hormones
  • transcriptomics
  • proteomics
  • metabolomics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 2653 KiB  
Article
Puccinia triticina and Salicylic Acid Stimulate Resistance Responses in Triticum aestivum Against Diuraphis noxia Infestation
by Huzaifa Bilal, Willem Hendrik Petrus Boshoff and Lintle Mohase
Plants 2025, 14(3), 420; https://doi.org/10.3390/plants14030420 - 31 Jan 2025
Viewed by 783
Abstract
Wheat plants encounter both biotic and abiotic pressure in their surroundings. Among the biotic stress factors, the Russian wheat aphid (RWA: Diuraphis noxia Kurdjumov) decreases grain yield and quality. The current RWA control strategies, including resistance breeding and the application of aphicides, are [...] Read more.
Wheat plants encounter both biotic and abiotic pressure in their surroundings. Among the biotic stress factors, the Russian wheat aphid (RWA: Diuraphis noxia Kurdjumov) decreases grain yield and quality. The current RWA control strategies, including resistance breeding and the application of aphicides, are outpaced and potentially environmentally harmful. Alternatively, priming can stimulate defence responses to RWA infestation. This study investigated the priming potential of two priming agents, avirulent Puccinia triticina (Pt) isolates and salicylic acid (SA), against RWA infestation. The priming effect of Pt isolates and SA in reducing RWA-induced leaf damage and increased antioxidant activities is an indication of defence responses. Selected South African wheat cultivars and Lesotho landraces, grown under greenhouse conditions, were inoculated with Pt isolates (UVPt13: avirulent, UVPt26: virulent) and treated with SA at the seedling or booting stages. The leaf damage rating score was used for phenotyping. The antioxidant-mediated defence responses were evaluated in three selected cultivars for further priming investigation. Our results revealed that the priming agents significantly reduced the leaf damage in most cultivars at both growth stages, and UVPt13 and SA priming significantly (p ≤ 0.05) increased superoxide dismutase, peroxidase, and ascorbate peroxidase activities. However, catalase activity exhibited a more pronounced decline in plants treated with the UVPt13 isolate. The Pt isolate priming was more efficient than the SA application. However, it is crucial to investigate the potential of effectors from the avirulent Pt isolate to prime wheat plants for resistance against RWA infestation. This could contribute to developing strategies to enhance crop protection and relieve pest pressure in wheat production. Full article
(This article belongs to the Special Issue Plant-Pest Interactions)
Show Figures

Figure 1

Back to TopTop