Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (228)

Search Parameters:
Keywords = residual soil moisture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2743 KiB  
Article
Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions
by Fernando Sánchez-Suárez, María del Valle Palenzuela, Cristina Campos-Vazquez, Inés M. Santos-Dueñas, Víctor Manuel Ramos-Muñoz, Antonio Rosal and Rafael Andrés Peinado
Agriculture 2025, 15(15), 1604; https://doi.org/10.3390/agriculture15151604 - 25 Jul 2025
Viewed by 267
Abstract
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving [...] Read more.
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving initial thermophilic pre-composting, followed by vermicomposting using Eisenia fetida for 90 days. The conditions were optimized to ensure aerobic decomposition and maintain proper moisture levels (70–85%) and temperature control. This resulted in end products that met the legal standards required for agricultural use. However, population dynamics revealed significantly higher worm reproduction and biomass in the WIR treatment, suggesting superior substrate quality. When applied to grapevines, WIR vermicompost increased soil organic matter, nitrogen availability, and overall fertility. Under rainfed conditions, it improved vegetative growth, yield, and must quality, with increases in yeast assimilable nitrogen (YAN), sugar content, and amino acid levels comparable to those achieved using chemical fertilizers, as opposed to the no-fertilizer trial. Foliar analyses at veraison revealed stronger nutrient uptake, particularly of nitrogen and potassium, which was correlated with improved oenological parameters compared to the no-fertilizer trial. In contrast, WIR + SS compost was less favorable due to lower worm activity and elevated trace elements, despite remaining within legal limits. These results support the use of vermicompost derived solely from wine residues as a sustainable alternative to chemical fertilizers, in line with the goals of the circular economy in viticulture. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

18 pages, 2565 KiB  
Article
Agronomic and Physicochemical Quality of Broccoli Cultivated Under Different Fertilizers and Phosphorus Rates
by Dinamar Márcia da Silva Vieira, Reginaldo de Camargo, Miguel Henrique Rosa Franco, Valdeci Orioli Júnior, Cintia Cristina de Oliveira, Arcângelo Loss, Fausto Antônio Domingos Júnior, Maytê Maria Abreu Pires de Melo Silva and José Luiz Rodrigues Torres
Horticulturae 2025, 11(8), 873; https://doi.org/10.3390/horticulturae11080873 - 25 Jul 2025
Viewed by 287
Abstract
The aim of this study was to evaluate the agronomic performance and physicochemical characteristics of broccoli grown under different doses and sources of special phosphorus (P) fertilizers and their residual effect on the soil, in Cerrado mineiro. A randomized block design arranged in [...] Read more.
The aim of this study was to evaluate the agronomic performance and physicochemical characteristics of broccoli grown under different doses and sources of special phosphorus (P) fertilizers and their residual effect on the soil, in Cerrado mineiro. A randomized block design arranged in a split-plot scheme was employed, where three P sources—T1 = Conventional monoammonium phosphate (CMP); T2 = Polymerized monoammonium phosphate (PCMP); T3 = Granulated organomineral fertilizer (GOF)—along with four P2O5 rates—1–0 (No P); 2–50% (200 kg ha−1 P2O5); 3–75% (300 kg ha−1 P2O5); and 4–100% (400 kg ha−1 P2O5)—were assessed. Evaluations included the number of leaves (NL), head fresh (HFM) and dry mass (HDM), yield (YLD), soil fertility at harvest, plant nutritional status, and the physicochemical quality of the harvested broccoli. It was observed that GOF provided the best agronomic performance (HFM, HDM and YLD) of the broccoli and the greatest residual effect in the soil compared to PCMP and CMP. The moisture, ash, protein, lipid, total titratable acid and ascorbic acid contents were not significantly (p < 0.05) affected by the fertilizers used, on the other hand, total soluble solids and hydrogen potential showed the highest and lowest values, respectively, with CMP. The best agronomic performance, the highest phosphorus content in the soil and plant and the best physical–chemical quality of the broccoli occurred at a dose of 100% (400 kg ha−1 of P2O5) of the recommendation for the crop in all three fertilizers evaluated. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

20 pages, 2411 KiB  
Article
Influencing Factors of Hexavalent Chromium Speciation Transformation in Soil from a Northern China Chromium Slag Site
by Shuai Zhu, Junru Chen, Yun Zhu, Baoke Zhang, Jing Jia, Meng Pan, Zhipeng Yang, Jianhua Cao and Yating Shen
Molecules 2025, 30(15), 3076; https://doi.org/10.3390/molecules30153076 - 23 Jul 2025
Viewed by 230
Abstract
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led [...] Read more.
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led to serious Cr(VI) pollution, with Cr(VI) accounting for 13–22% of total chromium and far exceeding national soil risk control standards. To elucidate Cr(VI) transformation mechanisms and elemental linkages, a combined approach of macro-scale condition experiments and micro-scale analysis was employed. Results showed that acidic conditions (pH < 7) significantly enhanced Cr(VI) reduction efficiency by promoting the conversion of CrO42− to HCrO4/Cr2O72−. Among reducing agents, FeSO4 exhibited the strongest effect (reduction efficiency >30%), followed by citric acid and fulvic acid. Temperature variations (−20 °C to 30 °C) had minimal impact on Cr(VI) transformation in the 45-day experiment, while soil moisture (20–25%) indirectly facilitated Cr(VI) reduction by enhancing the reduction of agent diffusion and microbial activity, though its effect was weaker than chemical interventions. Soil grain-size composition influenced Cr(VI) distribution unevenly: larger particles (>0.2 mm) in BC-35 and BC-36-4 acted as main Cr(VI) reservoirs due to accumulated Fe-Mn oxides, whereas BC-36-3 showed increased Cr(VI) in smaller particles (<0.074 mm). μ-XRF and correlation analysis revealed strong positive correlations between Cr and Ca, Fe, Mn, Ni (Pearson coefficient > 0.7, p < 0.01), attributed to adsorption–reduction coupling on iron-manganese oxide surfaces. In contrast, Cr showed weak correlations with Mg, Al, Si, and K. This study clarifies the complex factors governing Cr(VI) behavior in chromium slag soils, providing a scientific basis for remediation strategies such as pH adjustment (4–6) combined with FeSO4 addition to enhance Cr(VI) reduction efficiency. Full article
Show Figures

Graphical abstract

17 pages, 6551 KiB  
Article
Monitoring the Impacts of Human Activities on Groundwater Storage Changes Using an Integrated Approach of Remote Sensing and Google Earth Engine
by Sepide Aghaei Chaleshtori, Omid Ghaffari Aliabad, Ahmad Fallatah, Kamil Faisal, Masoud Shirali, Mousa Saei and Teodosio Lacava
Hydrology 2025, 12(7), 165; https://doi.org/10.3390/hydrology12070165 - 26 Jun 2025
Viewed by 503
Abstract
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. [...] Read more.
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. Although the influence of natural factors on groundwater is well-recognized, the impact of human activities, despite being a major contributor to its change, has been less explored due to the challenges in measuring such effects. To address this gap, our study employed an integrated approach using remote sensing and the Google Earth Engine (GEE) cloud-free platform to analyze the effects of various anthropogenic factors such as built-up areas, cropland, and surface water on groundwater storage in the Lake Urmia Basin (LUB), Iran. Key anthropogenic variables and groundwater data were pre-processed and analyzed in GEE for the period from 2000 to 2022. The processes linking these variables to groundwater storage were considered. Built-up area expansion often increases groundwater extraction and reduces recharge due to impervious surfaces. Cropland growth raises irrigation demand, especially in semi-arid areas like the LUB, leading to higher groundwater use. In contrast, surface water bodies can supplement water supply or enhance recharge. The results were then exported to XLSTAT software2019, and statistical analysis was conducted using the Mann–Kendall (MK) non-parametric trend test on the variables to investigate their potential relationships with groundwater storage. In this study, groundwater storage refers to variations in groundwater storage anomalies, estimated using outputs from the Global Land Data Assimilation System (GLDAS) model. Specifically, these anomalies are derived as the residual component of the terrestrial water budget, after accounting for soil moisture, snow water equivalent, and canopy water storage. The results revealed a strong negative correlation between built-up areas and groundwater storage, with a correlation coefficient of −1.00. Similarly, a notable negative correlation was found between the cropland area and groundwater storage (correlation coefficient: −0.85). Conversely, surface water availability showed a strong positive correlation with groundwater storage, with a correlation coefficient of 0.87, highlighting the direct impact of surface water reduction on groundwater storage. Furthermore, our findings demonstrated a reduction of 168.21 mm (millimeters) in groundwater storage from 2003 to 2022. GLDAS represents storage components, including groundwater storage, in units of water depth (mm) over each grid cell, employing a unit-area, mass balance approach. Although storage is conceptually a volumetric quantity, expressing it as depth allows for spatial comparison and enables conversion to volume by multiplying by the corresponding surface area. Full article
Show Figures

Figure 1

22 pages, 15870 KiB  
Article
Spatiotemporal Dynamics of the Grassland Cover in Xinjiang, China, from 2000 to 2023
by Chengchi Zhang, Yuexin Zhang, Xiuzhi Ma, Yongchun Hua, Zhichao Hu and Huifang Yao
Sustainability 2025, 17(12), 5654; https://doi.org/10.3390/su17125654 - 19 Jun 2025
Viewed by 430
Abstract
A systematic understanding of the spatial and temporal changes of grassland fractional vegetation cover (FVC) in Xinjiang and its drivers provide scientific reference for regional ecological restoration. In this study, we used MODIS EVI data from 2000 to 2023 and the Pixel binary [...] Read more.
A systematic understanding of the spatial and temporal changes of grassland fractional vegetation cover (FVC) in Xinjiang and its drivers provide scientific reference for regional ecological restoration. In this study, we used MODIS EVI data from 2000 to 2023 and the Pixel binary model to estimate the grassland FVC value of Xinjiang; analyze its spatiotemporal dynamics with combination of trend and persistence detection methods; and explore its driving factors with ridge regression and residual analysis. The results show the following: (1) From 2000 to 2020, the grassland FVC in Xinjiang experienced an upward trend on the whole, yet a significant decrease after 2020. Spatially, the distribution characteristics are high in the northwest and low in the southeast, decreasing from mountains to basins. (2) Precipitation and soil moisture affected FVC positively, with contributions of 18.6% and 38.3%, respectively, while air temperature and solar radiation affected it negatively, with contributions of 22.9% and 20.2%, respectively. (3) The change in the grassland FVC in Xinjiang resulted from a combination of climatic factors and human activity, whose relative contribution rates were 57.2% and 42.8%, respectively; furthermore, the areas with positive effects on the FVC were smaller than those with negative effects. (4) While the FVCs of most grassland types in Xinjiang were dominantly influenced by both climatic factors and human activity, climatic conditions were the dominant drivers of the FVCs of temperate typical grasslands and temperate desert grasslands, whereas human activities had more influence on the FVC of temperate meadow grasslands. This study provides a scientific basis and guidance for optimizing the ecological barrier function and regulating vegetation coverage in arid areas by analyzing the spatiotemporal dynamics of grassland coverage in Xinjiang and quantifying the impact of different environmental factors on it. Full article
Show Figures

Figure 1

29 pages, 4817 KiB  
Article
Comprehensive Analysis of the Driving Forces Behind NDVI Variability in China Under Climate Change Conditions and Future Scenario Projections
by Ao Li, Shuai Yin, Nan Li and Chong Shi
Atmosphere 2025, 16(6), 738; https://doi.org/10.3390/atmos16060738 - 17 Jun 2025
Viewed by 446
Abstract
Climate change has a significant impact on vegetation development. While existing studies provide some insights, long-term trend analysis and multifactor driver assessments for China are still lacking. At the same time, research on the future vegetation development under different climate change scenarios needs [...] Read more.
Climate change has a significant impact on vegetation development. While existing studies provide some insights, long-term trend analysis and multifactor driver assessments for China are still lacking. At the same time, research on the future vegetation development under different climate change scenarios needs further strengthening. In response to these issues, this study analyzed China’s normalized difference vegetation index (NDVI) data from 2001 to 2023, exploring vegetation cover trends, driving factors, and predicting the impact of future climate change. Firstly, this study decomposed the time series data into seasonal, trend, and residual components using the Seasonal–Trend decomposition using Loess (STL) decomposition method, quantifying vegetation changes across different climate zones. Partial least squares (PLS) regression analysis was then used to examine the relationship between NDVI and driving factors, and the contribution of these factors to NDVI variation was determined through the variable importance in projection (VIP) score. The results show that NDVI has significantly increased over the past two decades, especially since 2010. Further analysis revealed that vegetation growth is primarily influenced by soil moisture, shortwave radiation, and total precipitation (VIP scores > 0.8). Utilizing machine learning with Coupled Model Intercomparison Project Phase 6 (CMIP6) multimodel data, this study predicts NDVI trends from 2023 to 2100 under four emission scenarios (SSP126, SSP245, SSP370, SSP585), quantifying future meteorological factors such as temperature, precipitation, and radiation to NDVI. Findings indicate that under high-emission scenarios, the vegetation greenness in some regions may experience improved vegetation conditions despite global warming challenges. Future land management strategies must consider climate change impacts on ecosystems to ensure sustainability and enhance ecosystem services. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

32 pages, 2113 KiB  
Review
Agricultural Waste: Challenges and Solutions, a Review
by Maximilian Lackner and Maghsoud Besharati
Waste 2025, 3(2), 18; https://doi.org/10.3390/waste3020018 - 3 Jun 2025
Cited by 1 | Viewed by 2471
Abstract
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such [...] Read more.
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such as those from sugarcane, rice, and wheat, contribute to pollution when improperly disposed of through burning or burying, contaminating soil, water, and air. However, these residues also represent untapped resources for bioenergy production, composting, mulching, and the creation of value-added products like biochar, bioplastics, single-cell protein and biobased building blocks. The paper highlights various solutions, including integrating agricultural waste into livestock feed formulations to reduce competition for human food crops, producing biofuels like ethanol and biodiesel from lignocellulosic materials, and adopting circular economy practices to upcycle waste into high-value products. Technologies such as anaerobic digestion for biogas production and gasification for synthesis gas offer renewable energy alternatives and ample feedstocks for gas fermentation while addressing waste management issues. Composting and vermicomposting enhance soil fertility, while mulching improves moisture retention and reduces erosion. Moreover, the review emphasizes the importance of policy frameworks, public-private partnerships, and farmer education in promoting effective waste management practices. By implementing these strategies, agricultural waste can be transformed into a resource, contributing to food security, environmental conservation, and economic growth. Full article
Show Figures

Figure 1

32 pages, 6649 KiB  
Article
Elevated Growth Temperature Modifies Drought and Shade Responses of Fagus sylvatica Seedlings by Altering Growth, Gas Exchange, Water Relations, and Xylem Function
by Faustino Rubio, Ismael Aranda, Rosana López and Francisco Javier Cano
Plants 2025, 14(10), 1525; https://doi.org/10.3390/plants14101525 - 19 May 2025
Viewed by 1230
Abstract
Climate change is increasing global temperatures and imposing new constraints on tree regeneration, especially in late-successional species exposed to simultaneous drought and low-light conditions. To disentangle the effects of warming from those of atmospheric drought, we conducted a multifactorial growth chamber experiment on [...] Read more.
Climate change is increasing global temperatures and imposing new constraints on tree regeneration, especially in late-successional species exposed to simultaneous drought and low-light conditions. To disentangle the effects of warming from those of atmospheric drought, we conducted a multifactorial growth chamber experiment on Fagus sylvatica seedlings, manipulating temperature (25 °C and +7.5 °C above optimum), soil moisture (well-watered vs. water-stressed), and light intensity (high vs. low), while maintaining constant vapor pressure deficit (VPD). We assessed growth, biomass allocation, leaf gas exchange, water relations, and xylem hydraulic traits. Warming significantly reduced total biomass, leaf area, and water-use efficiency, while increasing transpiration and residual conductance, especially under high light. Under combined warming and drought, seedlings exhibited impaired osmotic adjustment, reduced leaf safety margins, and diminished hydraulic performance. Unexpectedly, warming under shade promoted a resource-acquisitive growth strategy through the production of low-cost leaves. These results demonstrate that elevated temperature, even in the absence of increased VPD, can compromise drought tolerance in beech seedlings and shift their ecological strategies depending on light availability. The findings underscore the need to consider multiple, interacting stressors when evaluating tree regeneration under future climate conditions. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 4029 KiB  
Article
Virginia Mallow: The Lost Fiber of the Future?
by Gabriela Vanja, Sandra Bischof and Zorana Kovačević
Fibers 2025, 13(5), 63; https://doi.org/10.3390/fib13050063 - 13 May 2025
Viewed by 1453
Abstract
Virginia mallow or Sida hermaphrodita (L.) Rusby (SH) is a perennial plant from the Malvaceae family (mallows) that is used for medicinal purposes, reducing soil erosion, cleaning soil, and most recently for energy production. The potential of sustainable lignocellulosic agro-waste is immense as [...] Read more.
Virginia mallow or Sida hermaphrodita (L.) Rusby (SH) is a perennial plant from the Malvaceae family (mallows) that is used for medicinal purposes, reducing soil erosion, cleaning soil, and most recently for energy production. The potential of sustainable lignocellulosic agro-waste is immense as it represents Earth’s most abundant organic compound. This paper explores fibers isolated from SH stems, a plant with significant industrial application potential, including technical textiles and biocomposites. The fibers were harvested in January, March, and November of 2020 and in January and March of 2021, and their yield, mechanical properties, moisture content, and density were thoroughly analyzed. The fiber yield showed slight variations depending on the harvest time, with consistent results observed across different years, suggesting stable productivity. The SH fibers demonstrated a favorable moisture content, making them suitable for storage and processing, and their density ranged between 1.52 and 1.58 g/cm3, comparable to that of other natural fibers. According to this research, the best mechanical properties were observed in the winter harvest. Furthermore, the high percentage of solid residue left after fiber extraction shows promise for sustainable utilization, primarily for biofuel production. This study underscores the versatility and sustainability of SH fibers, positioning them as a valuable resource for a wide range of industrial applications. Full article
Show Figures

Graphical abstract

26 pages, 46466 KiB  
Article
Experimental Investigation of Mechanical Properties and Pore Characteristics of Hipparion Laterite Under Freeze–Thaw Cycles
by Tengfei Pan, Zhou Zhao, Jianquan Ma and Fei Liu
Appl. Sci. 2025, 15(9), 5202; https://doi.org/10.3390/app15095202 - 7 May 2025
Viewed by 492
Abstract
The Loess Plateau region of China has an anomalous climate and frequent geological disasters. Hipparion laterite in seasonally frozen regions exhibits heightened susceptibility to freeze–thaw (F-T) cycling, which induces progressive structural weakening and significantly elevates the risk of slope instability through mechanisms including [...] Read more.
The Loess Plateau region of China has an anomalous climate and frequent geological disasters. Hipparion laterite in seasonally frozen regions exhibits heightened susceptibility to freeze–thaw (F-T) cycling, which induces progressive structural weakening and significantly elevates the risk of slope instability through mechanisms including pore water phase transitions, aggregate disintegration, and shear strength degradation. This study focuses on the slip zone Hipparion laterite from the Nao panliang landslide in Fugu County, Shaanxi Province. We innovatively integrated F-T cycling tests with ring-shear experiments to establish a hydro-thermal–mechanical coupled multi-scale evaluation framework for assessing F-T damage in the slip zone material. The microstructural evolution of soil architecture and pore characteristics was systematically analyzed through scanning electron microscopy (SEM) tests. Quantitative characterization of mechanical degradation mechanisms was achieved using advanced microstructural parameters including orientation frequency, probabilistic entropy, and fractal dimensions, revealing the intrinsic relationship between pore network anisotropy and macroscopic strength deterioration. The experimental results demonstrate that Hipparion laterite specimens undergo progressive deterioration with increasing F-T cycles and initial moisture content, predominantly exhibiting brittle deformation patterns. The soil exhibited substantial strength degradation, with total reduction rates of 51.54% and 43.67% for peak and residual strengths, respectively. The shear stress–displacement curves transitioned from strain-softening to strain-hardening behavior, indicating plastic deformation-dominated shear damage. Moisture content critically regulates pore microstructure evolution, reducing micropore proportion to 23.57–28.62% while promoting transformation to mesopores and macropores. At 24% moisture content, the areal porosity, probabilistic entropy, and fractal dimension increased by 0.2263, 0.0401, and 0.0589, respectively. Temperature-induced pore water phase transitions significantly amplified mechanical strength variability through cyclic damage accumulation. These findings advance the theoretical understanding of Hipparion laterite’s engineering geological behavior while providing critical insights for slope stability assessment and landslide risk mitigation strategies in loess plateau regions. Full article
Show Figures

Figure 1

15 pages, 2783 KiB  
Article
Sustainable Management of the Organic Fraction of Municipal Solid Waste: Microbiological Quality Control During Composting and Its Application in Agriculture on a Pilot Scale
by Natividad Miguel, Andrea López, Sindy Dayana Jojoa-Sierra, Jairo Gómez and María P. Ormad
Sustainability 2025, 17(9), 4169; https://doi.org/10.3390/su17094169 - 5 May 2025
Viewed by 553
Abstract
Within the Life-NADAPTA project (LIFE16 IPC/ES/000001), and in the framework of sustainable waste management, a study was carried out on the microbiological evolution during the composting process of the organic fraction of municipal solid waste (FORSU) using aerated static piles and their agricultural [...] Read more.
Within the Life-NADAPTA project (LIFE16 IPC/ES/000001), and in the framework of sustainable waste management, a study was carried out on the microbiological evolution during the composting process of the organic fraction of municipal solid waste (FORSU) using aerated static piles and their agricultural application on a pilot scale. This is necessary to ensure effective sanitization of the compost and that its application does not pose any risk. The microbiological parameters considered were as follows: Salmonella sp., Escherichia coli, total coliforms, and Enterococcus sp. The physicochemical parameters moisture, total solids, organic matter, nitrogen, phosphorus, and heavy metals were also evaluated. Salmonella sp. was not detected throughout the process, and the concentration of the three microbiological indicators decreased to the sanitary conditions recommended by legislation. As a result, the compost obtained complied with the requirements set out in the regulations on fertilizer products and was highly stabilized and mature for application on agricultural land. Tests were carried out on the soil before, during and after the vegetative cycle of the crop and on the irrigation water. The soil results showed that the addition of the organic amendment did not alter the populations of the tested micro-organisms at the end of the crop growing cycle. Thus, an adequate treatment of the residues allows them to be used in a sustainable way, but an adequate monitoring of the operational parameters is necessary to ensure this. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Graphical abstract

30 pages, 4548 KiB  
Article
Effects of Auricularia heimuer Residue Amendment on Soil Quality, Microbial Communities, and Maize Growth in the Black Soil Region of Northeast China
by Ying Wang, Jionghua Wang, Keqing Qian, Yuting Feng, Jiangyan Ao, Yinzhen Zhai, Yu Li, Xiao Li, Bo Zhang and Han Yu
Agriculture 2025, 15(8), 879; https://doi.org/10.3390/agriculture15080879 - 17 Apr 2025
Viewed by 555
Abstract
This study reveals how microbial diversity relates to soil properties in Auricularia heimuer residue–chicken manure composting, presenting sustainable waste recycling solutions. These microbial-straw strategies are adaptable to various agroecological regions, offering flexible residue valorization approaches for local conditions, crops, and resources. This study [...] Read more.
This study reveals how microbial diversity relates to soil properties in Auricularia heimuer residue–chicken manure composting, presenting sustainable waste recycling solutions. These microbial-straw strategies are adaptable to various agroecological regions, offering flexible residue valorization approaches for local conditions, crops, and resources. This study examined the effects of composting Auricularia heimuer residue and chicken manure at three ratios (6:4, 7:3, 8:2) on soil properties, lignocellulose content, enzyme activity, microbial diversity, and maize growth. The compost was mixed into potting soil at different proportions (0:10 to 10:0). During composting, the temperature remained above 50 °C for more than 14 days, meeting safety and sanitation requirements. The composting process resulted in a pH range of 7–8, a stable moisture content of 60%, a color change from brown to gray-brown, the elimination of unpleasant odors, and the formation of loose aggregates. Lignocellulose content steadily decreased, while lignocellulosic enzyme activity and actinomycete abundance increased, indicating suitability for field application. Compared with the control (CK), total nitrogen, total phosphorus, and total potassium in the soil increased by 57.81–77.91%, 4.5–19.28%, and 301.09–577.2%, respectively. Lignin, cellulose, and hemicellulose increased 50.6–83.49%, 59.6–340.33%, and 150.86–310.5%, respectively. The activities of lignin peroxidase, cellulase, and hemicellulase increased by 9.05–36.31%, 6.7–36.66%, and 37.39–52.16%, respectively. Maize root weight, plant biomass, and root number increased by 120.87–138.59%, 117.83–152.86%, and 29.03–75.81%, respectively. In addition, composting increased the relative abundance of actinomycetes while decreasing the abundance of ascomycetes and ascomycetes. The relative abundance of Sphingomonas and Gemmatimonas increased, whereas pathogenic fungi such as Cladosporium and Fusarium decreased. Compost application also enhanced bacterial and fungal diversity, with bacterial diversity indices ranging from 6.744 to 9.491 (B1), 5.122 to 9.420 (B2), 8.221 to 9.552 (B3), and 6.970 to 9.273 (CK). Fungal diversity indices ranged from 4.811 to 8.583 (B1), 1.964 to 9.160 (B2), 5.170 to 9.022 (B3), and 5.893 to 7.583 (CK). Correlation analysis of soil physicochemical properties, lignocellulose content, enzymes, microbial community composition, and diversity revealed that total nitrogen, total phosphorus, total potassium, and lignocellulose content were the primary drivers of rhizosphere microbial community dynamics. These factors exhibited significant correlations with the dominant bacterial and fungal taxa. Additionally, bacterial and fungal diversity increased with the incorporation of Auricularia heimuer residue. In conclusion, this study elucidates the relationships between microbial diversity and soil properties across different proportions of Auricularia heimuer residue and chicken manure composting, offering alternative strategies for waste recycling and sustainable agricultural development. At present, the production of biobiotics using waste culture microorganisms is still in the laboratory research stage, and no expanded experiments have been carried out. Therefore, how to apply waste bacterial bran to the production of biocontrol biotics on a large scale needs further research. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

22 pages, 4821 KiB  
Article
Evaluation of Film-Forming Properties of α-1,3-Glucan Obtained from “Chicken of the Woods” Mushroom (Laetiporus sulphureus): Film Development, Characterization, and Biodegradation Assessment
by Kowalczyk Dariusz, Barbara Gieroba, Katarzyna Niedźwiadek, Mikołaj Krysa, Anna Sroka-Bartnicka, Adam Waśko, Ewa Ozimek, Aleksandra Ściegienna, Monika Basiura-Cembala, Waldemar Kazimierczak and Adrian Wiater
Molecules 2025, 30(7), 1619; https://doi.org/10.3390/molecules30071619 - 4 Apr 2025
Viewed by 885
Abstract
Unlike many biopolymers, α-1,3-glucan (α-1,3-GLU) is water-insoluble, making it a promising candidate for the production of moisture-resistant films with applications in biodegradable packaging, biomedicine, and cosmetics. This study aimed to characterize the structural, physicochemical (water affinity, optical, mechanical), and biodegradation properties of a [...] Read more.
Unlike many biopolymers, α-1,3-glucan (α-1,3-GLU) is water-insoluble, making it a promising candidate for the production of moisture-resistant films with applications in biodegradable packaging, biomedicine, and cosmetics. This study aimed to characterize the structural, physicochemical (water affinity, optical, mechanical), and biodegradation properties of a film made from α-1,3-GLU extracted from Laetiporus sulphureus. The film was fabricated through alkaline dissolution, casting, drying, washing to remove residual NaOH, and re-plasticization with a glycerol solution. FTIR and Raman spectroscopy confirmed the polysaccharide nature of the film, with predominant α-glycosidic linkages. The film exhibited a semi-crystalline structure and high opacity due to surface roughness resulting from polymer coagulation. Owing to re-plasticization, the film showed a high moisture content (~47%), high water solubility (81.95% after 24 h), and weak mechanical properties (tensile strength = 1.28 MPa, elongation at break ≈ 10%). Its water vapor permeability (53.69 g mm m−2 d−1 kPa−1) was comparable to other glycerol-plasticized polysaccharide films reported in the literature. The film supported the adhesion of soil microorganisms and target bacteria and was susceptible to degradation by Trichoderma harzianum and endo- and exo-α-1,3-glucanases, indicating its biodegradability. The limitations in its mechanical strength and excessive hydration indicate the need for improvements in the composition and methods of producing α-1,3-GLU films. Full article
Show Figures

Figure 1

18 pages, 2691 KiB  
Article
Dissipation of Two Acidic Herbicides in Agricultural Soil: Impact of Green Compost Application, Herbicide Rate, and Soil Moisture
by Jesús M. Marín-Benito, María Soledad Andrades, María J. Sánchez-Martín and María Sonia Rodríguez-Cruz
Agriculture 2025, 15(5), 552; https://doi.org/10.3390/agriculture15050552 - 4 Mar 2025
Cited by 1 | Viewed by 827
Abstract
The residues of the herbicides aminopyralid and iodosulfuron-methyl-sodium are phytotoxic to rotational crops. Their behaviour therefore needs to be studied under different agronomic practises and climatic conditions. The objective of this work was to use controlled laboratory conditions to study the effect of [...] Read more.
The residues of the herbicides aminopyralid and iodosulfuron-methyl-sodium are phytotoxic to rotational crops. Their behaviour therefore needs to be studied under different agronomic practises and climatic conditions. The objective of this work was to use controlled laboratory conditions to study the effect of the following: (i) the application of green compost (GC) to agricultural soil, (ii) herbicide dose, (iii) soil moisture, and (iv) soil microbial activity on the degradation rate of aminopyralid and iodosulfuron-methyl-sodium. Moreover, the formation of two iodosulfuron-methyl-sodium metabolites (metsulfuron-methyl and 2-amino-4-methyl-4-methoxy methyl-triazine) and the dissipation mechanism of labelled 14C-iodosulfuron-methyl-sodium under the same conditions were also studied. Aminopyralid and iodosulfuron-methyl showed slower degradation and half-life values (DT50) that were up to 4.6 and 1.4 times higher, respectively, in soil amended with GC, as the higher organic carbon (OC) content of this soil increased herbicide adsorption. The DT50 values were up to 2.6 and 1.9 times higher for aminopyralid and iodosulfuron-methyl sodium, respectively, in soils treated with the double herbicide dose compared to soils treated with the agronomic dose. The DT50 values for aminopyralid were up to 2.3 times higher in soils with moisture equal to 25% (H25%) of their water-holding capacity (WHC) than in soils with H50%. However, the DT50 values for iodosulfuron-methyl-sodium were slightly lower in soils with H25% than in soils with H50%, due to the formation of bound residues. A biodegradation process significantly contributes to the dissipation of both herbicides. Higher amounts of metabolite metsulfuron-methyl were formed in the GC-amended soil in all cases. The percentages of 14C extractable in soils treated with both doses of herbicide under H25% were slightly higher than in soils under higher soil moisture (H50%) over time, due to the slower degradation of 14C-(iodosulfuron-methyl+metabolites). The higher persistence of the herbicides and their metabolites when the doses were applied at a high rate in soil amended with GC and under low moisture content may have negative consequences for the rotational crop. In the case of adverse conditions leading to the persistence of herbicides in the soil during the primary crop, the intervals for crop rotation should be increased. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

16 pages, 441 KiB  
Article
Cheese Whey Characterization for Co-Composting with Solid Organic Wastes and the Agronomic Value of the Compost Obtained
by Steven Ramos-Romero, Irene Gavilanes-Terán, Julio Idrovo-Novillo, Alessandro Idrovo-Gavilanes, Víctor Valverde-Orozco and Concepción Paredes
Agriculture 2025, 15(5), 513; https://doi.org/10.3390/agriculture15050513 - 27 Feb 2025
Viewed by 919
Abstract
Cheese production generates a large amount of liquid waste called cheese whey (CW). The management of CW is not optimized in Ecuador since a large proportion of it is discharged into the soil or effluents, causing significant environmental impacts. For this reason, the [...] Read more.
Cheese production generates a large amount of liquid waste called cheese whey (CW). The management of CW is not optimized in Ecuador since a large proportion of it is discharged into the soil or effluents, causing significant environmental impacts. For this reason, the co-composting of whey with solid organic wastes can be a suitable method for its treatment for small companies generating this liquid waste due to its effectiveness and low cost. In this study, we analyzed 10 CW samples from different small companies in the Mocha canton (Tungurahua, Ecuador) to determine specific physicochemical and chemical parameters. Subsequently, a waste pile was formed with crop residues (corn and beans) and cow manure, which was composted using the turned pile composting system. Throughout the composting process, the temperature of the pile was controlled, its moisture was maintained between 40 and 60% by adding whey, and several physicochemical, chemical, and biological properties were determined. The results showed that the CW presented a high organic load, notable macronutrient content, and low heavy metal concentrations, all of which are beneficial for its co-composting with other organic solid wastes. The only limiting factors involved in using large amounts of whey in the composting process were the low pH values of the acid CW and the high concentrations of salts. It was also observed that co-composting CW with agro-livestock wastes was a viable strategy to treat these wastes and produce compost with stabilized and humified organic matter and remarkable agricultural value. Full article
Show Figures

Figure 1

Back to TopTop