Spatiotemporal Dynamics of the Grassland Cover in Xinjiang, China, from 2000 to 2023
Abstract
1. Introduction
2. Research Area Overview
3. Data Acquisition and Preprocessing
4. Research Methodology
4.1. Maximum Value Synthesis Method
4.2. Pixel Binary Model
4.3. Analysis on the Changing Trend of FVC in Grassland
4.4. Hurst Exponent
4.5. Partial Correlation Analysis
4.6. Ridge Regression Analysis
5. Results
5.1. Temporal Dynamics of Grassland FVC
5.2. Spatial Patterns of Grassland FVC in Xinjiang
5.2.1. Spatial Distribution of Grassland FVC in Xinjiang
5.2.2. Spatial Changes in Grassland FVC in Xinjiang
5.2.3. Future Changes in Grassland FVC in Xinjiang
5.3. Analysis of Drivers of Grassland FVC Change in Xinjiang
5.3.1. Climatic Influences on Grassland FVC Dynamics in Xinjiang
5.3.2. Impact of Climate and Human on Grassland FVC
6. Discussion
6.1. Spatiotemporal Dynamics Characteristics of Xinjiang Grassland FVC
6.2. Impact of Climate Change on Grassland FVC
6.3. Impact of Climate Change and Human Activities on Grassland FVC
6.4. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Zheng, J.; Guan, J.; Han, W.; Liu, Y. Grassland cover dynamics and their relationship with climatic factors in China from 1982 to 2021. Sci. Total Environ. 2023, 905, 167067. [Google Scholar] [CrossRef]
- Liu, W.; Mo, X.; Liu, S.; Lu, C. Impacts of climate change on grassland fractional vegetation cover variation on the Tibetan Plateau. Sci. Total Environ. 2024, 939, 173320. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Li, G.; Yu, P.; Zhou, D. Impacts of grassland types and vegetation cover changes on surface air temperature in the regions of temperate grassland of China. Theor. Appl. Climatol. 2016, 126, 141–150. [Google Scholar] [CrossRef]
- Fu, B.; Yang, W.; Yao, H.; He, H.; Lan, G.; Gao, E.; Qin, J.; Fan, D.; Chen, Z. Evaluation of spatio-temporal variations of FVC and its relationship with climate change using GEE and Landsat images in Ganjiang River Basin. Geocarto Int. 2022, 37, 13658–13688. [Google Scholar] [CrossRef]
- Otto, M.; Höpfner, C.; Curio, J.; Maussion, F.; Scherer, D. Assessing vegetation response to precipitation in northwest Morocco during the last decade: An application of MODIS NDVI and high resolution reanalysis data. Theor. Appl. Climatol. 2016, 123, 23–41. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef] [PubMed]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Minh, V.Q.; Trung, N.H. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agric. For. Meteorol. 2014, 197, 52–64. [Google Scholar] [CrossRef]
- Zarei, A.; Asadi, E.; Ebrahimi, A.; Jafari, M.; Malekian, A.; Nasrabadi, H.M.; Chemura, A.; Maskell, G. Prediction of future grassland vegetation cover fluctuation under climate change scenarios. Ecol. Indic. 2020, 119, 106858. [Google Scholar] [CrossRef]
- Zhou, Y.; Batelaan, O.; Guan, H.; Liu, T.; Duan, L.; Wang, Y.; Li, X. Assessing long-term trends in vegetation cover change in the Xilin River Basin: Potential for monitoring grassland degradation and restoration. J. Environ. Manag. 2024, 349, 119579. [Google Scholar] [CrossRef]
- Yang, Y.H.; Piao, S.L. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau. Chin. J. Plant Ecol. 2006, 30, 1–8. [Google Scholar]
- Wang, Z.; Liu, C.; Alfredo, H. From AVHRR-NDVI to MODIS-EVI: Advances in vegetation index research. Acta Ecol. Sin. 2003, 23, 979–987. [Google Scholar]
- Wang, G.; Mao, J.; Fan, L.; Ma, X.; Li, Y. Effects of climate and grazing on the soil organic carbon dynamics of the grasslands in Northern Xinjiang during the past twenty years. Glob. Ecol. Conserv. 2022, 34, 2039. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Chen, X.; Zhang, R.; Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Glob. Planet. Change 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Li, G.; Liang, J.; Wang, S.; Zhou, M.; Sun, Y.; Wang, J.; Fan, J. Characteristics and Drivers of Vegetation Change in Xinjiang, 2000–2020. Forests 2024, 15, 231. [Google Scholar] [CrossRef]
- Liang, S.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar]
- Lou, A.R.; Zhou, G.F. Relationships Between Environment and Spatial Pattern of Vegetation Types in the Mid Tianshan Mountains. Chin. J. Plant Ecol. 2001, 25, 385–391. [Google Scholar]
- Zhao, Y.; Chen, Y.; Wu, C.; Li, G.; Ma, M.; Fan, L.; Zheng, H.; Song, L.; Tang, X. Exploring the contribution of environmental factors to evapotranspiration dynamics in the Three-River-Source region, China. J. Hydrol. 2023, 626, 130222. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; Monson, R.K.; et al. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J. Geophys. Res. Biogeosci. 2006, 111, G04015. [Google Scholar] [CrossRef]
- Yang, H.; Mu, S.; Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. Catena 2014, 115, 85–95. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Shen, Y.; Li, X.; Xu, J. Spatial and temporal trends of climate change in Xinjiang, China. J. Geogr. Sci. 2011, 21, 1007–1018. [Google Scholar] [CrossRef]
- Zhang, X.S. Vegetation Map of the People’s Republic of China (1:1 000 000); Geology Press: Beijing, China, 2007. [Google Scholar]
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China Multi-Period Land Use Remote Sensing Monitoring Dataset (CNLUCC); Resource and Environmental Science Data Registration and Publishing System: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void-filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Karabulut, M. An examination of relationships between vegetation and rainfall using maximum value composite AVHRR-NDVI data. Turk. J. Bot. 2003, 27, 93–101. [Google Scholar]
- Li, F.; Chen, W.; Zeng, Y.; Zhao, Q.; Wu, B. Improving estimates of grassland fractional vegetation cover based on a pixel dichotomy model: A case study in Inner Mongolia, China. Remote Sens. 2014, 6, 4705–4722. [Google Scholar] [CrossRef]
- Chen, C.B.; Li, G.Y.; Peng, J. Spatio-temporal variation characteristics of grassland NDVI and its response to climate change in Xinjiang from 1981 to 2018. Acta Ecol. Sin. 2023, 43, 1537–1552. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Sur, K.; Chauhan, P. Dynamic trend of land degradation/restoration along Indira Gandhi Canal command area in Jaisalmer District, Rajasthan, India: A case study. Environ. Earth Sci. 2019, 78, 472. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid. Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- McDonald, G.C. Ridge regression. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 93–100. [Google Scholar] [CrossRef]
- Chen, M.; Xue, Y.; Xue, Y.; Peng, J.; Guo, J.; Liang, H. Assessing the effects of climate and human activity on vegetation change in Northern China. Environ. Res. 2024, 247, 118233. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, J.; Peng, J.; Li, G.; Han, W.; Liu, L. Remote sensing monitoring and influencing factors analysis of grassland degradation in Xinjiang from 2001 to 2020. Bull. Surv. Mapp. 2024, 1–7. [Google Scholar] [CrossRef]
- Wu, X.; Cheng, H.; Tong, X.; Zhang, X. Response of Vegetation Changes to Meteorological Drought in Xinjiang Tianshan Mountain Area. Arid Land Geography. Available online: http://kns.cnki.net/kcms/detail/65.1103.X.20250326.1557.005.html (accessed on 17 June 2025).
- Wang, S.; Liu, Q.; Huang, C. Vegetation change and its response to climate extremes in the arid region of Northwest China. Remote Sens. 2021, 13, 1230. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Niu, Y.; Li, X.; Cao, L.; Feng, R.; He, Q.; Pan, Y. Evolution and climate drivers of NDVI of natural vegetation during the growing season in the arid region of northwest China. Forests 2022, 13, 1082. [Google Scholar] [CrossRef]
- James, S.E.; Pärtel, M.; Wilson, S.D.; Peltzer, D.A. Temporal heterogeneity of soil moisture in grassland and forest. J. Ecol. 2003, 91, 234–239. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.; Feng, Q. The relationships between grasslands and soil moisture on the Loess Plateau of China: A review. Catena 2016, 145, 56–67. [Google Scholar] [CrossRef]
- Luo, N.; Mao, D.; Wen, B.; Liu, X. Climate change affected vegetation dynamics in the northern Xinjiang of China: Evaluation by SPEI and NDVI. Land 2020, 9, 90. [Google Scholar] [CrossRef]
- Qin, G.; Meng, Z.; Fu, Y. Drought and water-use efficiency are dominant environmental factors affecting greenness in the Yellow River Basin, China. Sci. Total Environ. 2022, 834, 155479. [Google Scholar] [CrossRef]
- Fitter, A.H.; Graves, J.D.; Self, G.K.; Brown, T.K.; Bogie, D.S.; Taylor, K. Root production, turnover and respiration under two grassland types along an altitudinal gradient: Influence of temperature and solar radiation. Oecologia 1998, 114, 20–30. [Google Scholar] [CrossRef]
- Hardy, C.C.; Burgan, R.E. Evaluation of NDVI for monitoring live moisture in three vegetation types of the western US. Photogramm. Eng. Remote Sens. 1999, 65, 603–610. [Google Scholar]
- Ma, Y.J.; Shi, F.Z.; Hu, X.; Li, X.Y. Climatic constraints to monthly vegetation dynamics in desert areas over the silk road economic belt. Remote Sens. 2021, 13, 995. [Google Scholar] [CrossRef]
- Li, C.; Wang, R.; Ning, H.; Luo, Q. Characteristics of meteorological drought pattern and risk analysis for maize production in Xinjiang, Northwest China. Theor. Appl. Climatol. 2018, 133, 1269–1278. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, Y.; Chen, Y.; Yu, X.; Zhang, R. Multi-scale assessments of droughts: A case study in Xinjiang, China. Sci. Total Environ. 2018, 630, 444–452. [Google Scholar] [CrossRef]
- Yan, Y.; Su, Y.; Zhou, H.; Wang, S.; Yao, L.; Batmunkh, D. Anthropogenic and Climate-Induced Water Storage Dynamics over the Past Two Decades in the China–Mongolia Arid Region Adjacent to Altai Mountain. Remote. Sens. 2025, 17, 1949. [Google Scholar] [CrossRef]
- Wu, X.; Luo, M.; Meng, F. Newcharacteristics of spatio-temporal evolution of extreme climate events in Xinjiang under the background of warm and humid climate. Arid. Zone Res. 2022, 39, 1695–1705. [Google Scholar]
- Wu, X.; Zhang, J.; Yu, X.; Mayila, M. Comprehensive risk assessment and zoning of drought disasters in Tianshan Mountains, Xinjiang Uygur Autonomous Region. J. Meteorol. Environ. 2022, 38, 161–167. [Google Scholar]
- Zhou, Y.; Li, Y.; Li, W.; Li, F.; Xin, Q. Ecological responses to climate change and human activities in the arid and semi-arid regions of Xinjiang in China. Remote Sens. 2022, 14, 3911. [Google Scholar] [CrossRef]
- Yang, H.; Yao, L.; Wang, Y.; Li, J. Relative contribution of climate change and human activities to vegetation degradation and restoration in North Xinjiang, China. Rangel. J. 2017, 39, 289–302. [Google Scholar] [CrossRef]
Data | Product | Spatial Resolution | Temporal Resolution | Period | Source |
---|---|---|---|---|---|
EVI | MODIS EVI | 250 m | 16 days | 2000–2023 | https://doi.org/10.5067/MODIS/MOD13Q1.061 (accessed on 17 June 2025) |
Climatic factors | Precipitation Temperature Solar radiation Soil moisture | 4 km | Monthly | 2000–2023 | https://www.climatologylab.org/terraclimate.html (accessed on 17 June 2025) |
Grassland distribution | CNLUCC | 1 km | / | 2020 | http://www.resdc.cn/DOI (accessed on 17 June 2025) |
Grassland species | Vegetation Atlas of China | 10 km | / | / | https://www.plantplus.cn/cn (accessed on 17 June 2025) |
Dem | SRTM | 30 m | / | 2024 | https://srtm.csi.cgiar.org/ (accessed on 17 June 2025) |
β | Z | Trend Features |
---|---|---|
Β > 0 | Z < 2.58 1.96 < Z ≤ 2.58 1.65 < Z ≤ 1.96 Z ≤ 1.65 | Extremely significant increase (ESI) Significant increase (SI) Slightly significant increase (SSI) Non-significant increase (NSI) |
β = 0 | Z | Monotony (M) |
Β < 0 | Z ≤ 1.65 1.65 < Z ≤ 1.96 1.96 < Z ≤ 2.58 Z < 2.58 | Non-significant decrease (NSD) Slightly significant decrease (SSD) Significant decrease (SD) Extremely significant decrease (ESD) |
β | Hurst | Trend Features |
---|---|---|
Β > 0 | 0 < Hurst ≤ 0.5 0.5 < Hurst ≤ 1 | Anti-persistence increase (APD) Persistence increase (PI) |
Β < 0 | 0 < Hurst ≤ 0.5 0.5 < Hurst ≤ 1 | Anti-persistence decrease (APD) Persistence decrease (PD) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhang, Y.; Ma, X.; Hua, Y.; Hu, Z.; Yao, H. Spatiotemporal Dynamics of the Grassland Cover in Xinjiang, China, from 2000 to 2023. Sustainability 2025, 17, 5654. https://doi.org/10.3390/su17125654
Zhang C, Zhang Y, Ma X, Hua Y, Hu Z, Yao H. Spatiotemporal Dynamics of the Grassland Cover in Xinjiang, China, from 2000 to 2023. Sustainability. 2025; 17(12):5654. https://doi.org/10.3390/su17125654
Chicago/Turabian StyleZhang, Chengchi, Yuexin Zhang, Xiuzhi Ma, Yongchun Hua, Zhichao Hu, and Huifang Yao. 2025. "Spatiotemporal Dynamics of the Grassland Cover in Xinjiang, China, from 2000 to 2023" Sustainability 17, no. 12: 5654. https://doi.org/10.3390/su17125654
APA StyleZhang, C., Zhang, Y., Ma, X., Hua, Y., Hu, Z., & Yao, H. (2025). Spatiotemporal Dynamics of the Grassland Cover in Xinjiang, China, from 2000 to 2023. Sustainability, 17(12), 5654. https://doi.org/10.3390/su17125654