Agricultural Waste: Challenges and Solutions, a Review
Abstract
:1. Introduction
2. Definition of Agricultural Waste and Its Types
Supply Chain Stage | Post-Harvest Losses (%) | Corrupting Factors for Losses | Percentage of Losses (Total) |
---|---|---|---|
Harvesting | 20 | Physical factors | 29 |
Handling and storage | 3 | Physiological factors | 4 |
Processing and packaging | 1 | Pathological | 9 |
Distribution and retail marketing | 12 | ||
Consumer stages | 28 |
Country | Losses (%) | Reference |
---|---|---|
Benin | 17 (early April) 70 (mid-June) due to fruit flies | [34] |
Brazil | 28 | [35] |
Costa Rica | 14.1 (dry season) 84.4 (rainy season)—due to anthracnose (fungi-induced plant diseases) | [36] |
Mexico | <10 at home | [37] |
USA | 6–12 due to improper handling, storage, and transportation | [38] |
European Union | 5–15 | [39] |
Pakistan | 31 36.1 | [40] [41] |
3. Burning Agricultural Residues as an Aggravating Factor of Global Warming
4. Agricultural Waste Management
5. Using Agricultural and Livestock Waste in Livestock Feeding
6. Using Agricultural and Livestock Waste via Fermentation
7. Production of Fuel Ethanol as an Energy Source
Production of Biodiesel from Lipids as an Energy Source
8. Preparation of Compost from Waste and Agricultural Residues
- Increasing soil organic matter
- Increasing soil fertility and improving soil productivity
- Quantitative and qualitative increase of agricultural products and ultimately higher farmers’ income and increase in national production
- Lowering the need for chemical fertilizers
- Increasing the efficiency of water consumption
- Reduction of wind and water erosion
9. Preparation of Mulch from Agricultural Waste to Prevent Soil Erosion
10. Expansion of Agro–Industries to Reduce Agricultural Waste
11. Biogas Production from Waste and Agricultural Residues
12. Synthesis Gas Production from Waste Biomass
Substrate | Gas Yield (wt.%) | Reference |
---|---|---|
Sewage sludge | 21.77 | Trabelsi et al. [138,139,140] |
Olive pomace waste | 37 | Aissaoui et al. [141] |
Date palm leaves | 46 | Bensidhom et al. [142] |
Date palm rachis | 39 | Bensidhom et al. [142] |
Empty fruit bunch | 40 | Bensidhom et al. [142] |
Date palm glaich | 43 | Bensidhom et al. [142] |
Walnut shells | 15 | David [143] |
Walnut shells | 8.9 | David [143] |
Pinus radiata (Monterey pine) | 35.6 | Solar et al. [144] |
Pinus radiata | 26.4 | Solar et al. [144] |
Cotton stalk | 28.2 | Xie et al. [145] |
wheat straw | 20.16 | Sedmihradská et al. [146] |
wheat straw | 18.91 | Sedmihradská et al. [146] |
barley straw | 19.1 | Sedmihradská et al. [146] |
barley straw | 20.26 | Sedmihradská et al. [146] |
Medical waste | 37.3 | Ullah et al. [147] |
Waste cooking oil | 15.9 | Trabelsi et al. [148] |
13. Converting Agro-Waste to Biochar
14. Manure, Sewage Sludge and Industrial Organic Waste to Bioplastics and Other Uses
15. Other Solutions to Reduce Agricultural Waste
- Advanced Harvesting Technologies: Utilizing GPS technology, drones, and internet of things (IoT) devices to optimize harvesting times, minimizing crop losses due to over-ripeness or spoilage [167], “Precision Agriculture” is a current trend. Also, Automated Harvesting Equipment is an important innovation, developing and adopting advanced robotic systems for more efficient and timely harvesting, reducing waste from manual harvesting errors [168].
- Post-Harvest Handling and Storage Innovations: Improved Storage Solutions can be created by implementing advanced storage technologies such as controlled atmosphere storage, hermetic storage bags, and smart silos that monitor and adjust conditions to prolong the products’ shelf life [169].Cooling Chain Development by expanding and optimizing cold chain logistics, particularly in developing regions, can be a good means to reduce spoilage of perishable goods during transport and storage [170].
- Circular Economy Practices: Upcycling Agricultural Waste [171]: Converting agricultural by-products into value-added products such as bioplastics [165], dye removal [172], natural dyes [173], and fibers for textile production [174]. For example, banana peels [174] and pineapple leaves [175] can be processed into sustainable textiles.
- Policy and Regulatory Frameworks: Incentives for Waste Reduction can be created by introducing subsidies and tax incentives for farmers and agribusinesses that adopt waste-reducing technologies and practices [176]. Waste Management Regulations can be enforced; Strengthening regulations that require proper disposal and management of agricultural waste, particularly for large-scale farming operations [177], see also the Farm to Fork Strategy of the EU [178].
- Educational and Extension Services: Farmer Education Programs: Expanding outreach programs that educate farmers on best practices for minimizing waste [179]. Extension Services for Waste Management: Providing dedicated extension services that focus on helping farmers implement effective waste management strategies tailored to their specific crops and environments [180].
- Innovative Food Processing Techniques: Zero-Waste Food Processing: Developing and adopting food processing techniques that utilize every part of the crop, such as extracting oils, fibers, and nutrients from traditionally discarded parts of fruits and vegetables [181].Secondary Product Development: Encouraging the creation of secondary products from waste materials, such as jams from overripe fruits [182] or animal feed from crop residues.
- Public-Private Partnerships: Collaboration between Farmers and Tech Companies: Encouraging partnerships between agricultural producers and technology firms to develop and implement innovative waste reduction solutions, such as mobile apps that help farmers connect with food banks or secondary markets. Government and NGO Collaboration: Facilitating partnerships between governments, NGOs, and the private sector to fund and support large-scale waste reduction projects, particularly in regions where waste management infrastructure is lacking [183].
- Sustainable Packaging Solutions: Biodegradable and Edible Packaging: Promoting the use of biodegradable and edible packaging materials made from agro-waste, to reduce plastic waste in the supply chain [166]. Reusable Packaging Systems: Encouraging the adoption of reusable packaging systems that can be returned, sanitized, and reused, reducing the need for single-use packaging [184].
- Consumer Awareness and Behavioral Change: Public Awareness Campaigns: Launching campaigns of how to avoid food waste by consumers [185], such as proper food storage techniques and the benefits of buying imperfect produce. Food Waste Reduction Programs: Implementing programs that encourage consumers to reduce waste, such as “ugly” produce boxes or apps that connect surplus food with those in need.
- Agroforestry and Diversified Farming Systems: Agroforestry Practices [186]: Integrating trees into agricultural systems to enhance biodiversity, improve soil health, and reduce waste by providing additional products such as fruits, nuts, and timber. Diversified Crop Systems: Promoting polyculture [187] and intercropping [188] systems that reduce the risk of total crop failure, ensuring that more produce is harvested and utilized.
- Reducing red meat production: Reducing red meat production represents a critical strategy for increasing land efficiency and mitigating environmental impacts. Compared to other livestock, such as poultry or fish, red meat production—particularly beef—requires significantly more resources, including land, water, and feed [189]. For instance, producing one kilogram of beef consumes approximately 15,415 L of water, while chicken requires only 4325 L [190]. Additionally, cattle farming contributes disproportionately to greenhouse gas emissions, primarily through methane released during enteric fermentation and manure management [26].
- Consumer food waste reduction: Reducing consumer-level food waste is essential for addressing inefficiencies in the food supply chain and ensuring resource conservation. Several strategies can be implemented at the household and retail levels to minimize waste, including adjustments in packaging size, optimization of shelf life, and innovative packaging technologies [191].
- R&D in biorefineries: Biorefineries represent an innovative approach to transforming agricultural waste into valuable products, aligning with the principles of the circular economy. These facilities integrate multiple processes to produce biofuels, biochemicals, and biomaterials from biomass feedstocks, mimicking the efficiency of petrochemical refineries. Advanced biorefinery technologies focus on maximizing resource utilization while minimizing waste generation, offering significant environmental and economic benefits [130], e.g., through feedstock flexibilization and cascaded bi
- Highly-efficient unconventional food sources, particularly for protein: In response to growing global demand for protein and concerns over land-use inefficiency in traditional livestock farming, unconventional food sources offer promising alternatives. These innovations focus on producing protein-rich materials with minimal environmental impact, leveraging diverse feedstocks, including agricultural waste.
16. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tchonkouang, R.D.; Onyeaka, H.; Nkoutchou, H. Assessing the vulnerability of food supply chains to climate change-induced disruptions. Sci. Total Environ. 2024, 920, 171047. [Google Scholar] [CrossRef] [PubMed]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public. Health 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Saadatlu, E.A.; Barzinpour, F.; Yaghoubi, S. A sustainable model for municipal solid waste system considering global warming potential impact: A case study. Comput. Ind. Eng. 2022, 169, 108127. [Google Scholar] [CrossRef]
- Tun, M.M.; Juchelkova, D. Assessment of solid waste generation and greenhouse gas emission potential in Yangon city, Myanmar. J. Mater. Cycles Waste Manag. 2018, 20, 1397–1408. [Google Scholar] [CrossRef]
- Tawfik, A.; El-Qelish, M.; Hassan, G.K. Methods to alleviate the inhibition of sludge anaerobic digestion by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 3811–3836. [Google Scholar] [CrossRef]
- Sipra, A.T.; Gao, N.; Sarwar, H. Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts. Fuel Process Technol. 2018, 175, 131–147. [Google Scholar] [CrossRef]
- Mandal, K. Review on evolution of municipal solid waste management in India: Practices, challenges and policy implications. J. Mater. Cycles Waste Manag. 2019, 21, 1263–1279. [Google Scholar]
- Azam, M.; Jahromy, S.S.; Raza, W.; Raza, N.; Lee, S.S.; Kim, K.-H. Status, characterization, and potential utilization of municipal solid waste as renewable energy source: Lahore case study in Pakistan. Environ. Int. 2019, 134, 105291. [Google Scholar] [CrossRef]
- FAO. Building a Common Vision for Sustainable Food and Agriculture; FAO: Rome, Italy, 2014. [Google Scholar]
- Arora, J.; Ramawat, K.G.; Mérillon, J.M. Disposal of Agricultural Waste and Its Effects on the Environment, Production of Useful Metabolites and Energy: Potential and Challenges. In Agricultural Waste: Environmental Impact, Useful Metabolites and Energy Production; Ramawat, K., Mérillon, J.M., Arora, J., Eds.; Springer: Singapore, 2023; Volume 31. [Google Scholar]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Camacho-Ferre, F. The Management of Agricultural Waste Biomass in the Framework of Circular Economy and Bioeconomy: An Opportunity for Greenhouse Agriculture in Southeast Spain. Agronomy 2020, 10, 489. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, C. A Sustainable Bioeconomy; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Yadav, C.; Yadav, P.; Joshi, A.; Meena, M.; Harish; Arora, J. Agricultural Waste and Its Impact on the Environment. In Transforming Agriculture Residues for Sustainable Development; Arora, J., Joshi, A., Ray, R.C., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Wang, Y.; Yuan, Z.W.; Tang, Y. Enhancing food security and environmental sustainability: A critical review of food loss and waste management. Resour. Environ. Sustain. 2021, 4, 100023. [Google Scholar] [CrossRef]
- Kabongo, J.D. Waste Valorization. In Encyclopedia of Corporate Social Responsibility; Idowu, S.O., Capaldi, N., Zu, L., Gupta, A.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- FAO. Global Food Losses and Food Waste–Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Kummu, M.; De Moel, H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P.J. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Panwar, N.L. Biochar from agricultural crop residues: Environmental, production, and life cycle assessment overview. Resour. Conserv. Recycl. Adv. 2023, 19, 200173. [Google Scholar] [CrossRef]
- Rajeswari, S.; Baskaran, D.; Saravanan, P.; Rajasimman, M.; Rajamohan, N.; Vasseghian, Y. Production of ethanol from biomass—Recent research, scientometric review and future perspectives. Fuel 2022, 317, 123448. [Google Scholar] [CrossRef]
- Jarman, A.; Thompson, J.; McGuire, E.; Reid, M.; Rubsam, S.; Becker, K.; Mitcham, E. Postharvest technologies for small-scale farmers in low- and middle-income countries: A call to action. Postharvest Biol. Technol. 2023, 206, 112491. [Google Scholar] [CrossRef]
- Hodges, R.J.; Buzby, J.C.; Bennett, B. Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. J. Agric. Sci. 2011, 149 (Suppl. S1), 37–45. [Google Scholar] [CrossRef]
- Kumar, D.; Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef]
- FAO. Post- Harvest Losses. Available online: https://www.fao.org/4/t0522e/T0522E04.htm (accessed on 1 June 2025).
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct from Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef]
- Maximilian, L.; Baharak, S.; Chen, W.-Y. Handbook of Climate Change Mitigation and Adaptation, 3rd ed.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding Food Loss and Waste—Why Are We Losing and Wasting Food? Foods 2019, 8, 297. [Google Scholar] [CrossRef]
- Facchini, F.; Silvestri, B.; Digiesi, S.; Lucchese, A. Agri-food loss and waste management: Win-win strategies for edible discarded fruits and vegetables sustainable reuse. Innov. Food Sci. Emerg. Technol. 2023, 83, 103235. [Google Scholar] [CrossRef]
- Yang, L.; Xiao, X.; Gu, K. Agricultural Waste Recycling Optimization of Family Farms Based on Environmental Management Accounting in Rural China. Sustainability 2021, 13, 5515. [Google Scholar] [CrossRef]
- Hoehn, D.; Vázquez-Rowe, I.; Kahhat, R.; Margallo, M.; Laso, J.; Fernández-Ríos, A.; Ruiz-Salmón, I.; Aldaco, R. A critical review on food loss and waste quantification approaches: Is there a need to develop alternatives beyond the currently widespread pathways? Resour. Conserv. Recycl. 2023, 188, 106671. [Google Scholar] [CrossRef]
- Bradford, K.J.; Dahal, P.; Van Asbrouck, J.; Kunusoth, K.; Bello, P.; Thompson, J.; Wu, F. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci. Technol. 2018, 71, 84–93. [Google Scholar] [CrossRef]
- Kiaya, V. Post-Harvest Losses and Strategies to Reduce Them; Action Contre la Faim (ACF): Paris, France, 2014; 25p. [Google Scholar]
- Vayssieres, J.; Korie, S.; Coulibaly, O.; Temple, L.; Boueyi, S.P. The mango tree in central and northern Benin: Cultivar inventory, yield assessment, infested stages and loss due to fruit flies (Diptera tephritidae). Fruits 2008, 63, 335–348. [Google Scholar] [CrossRef]
- Choudhury, M.-M.; da Costa, T.S. Perdas na cadeia de comercialização da manga (Losses in the commercialization network of mango). Doc. Embrapa Semi Arid. 2004, 186, 41. [Google Scholar]
- Arauz, L.F.; Wang, A.; Duran, J.A.; Monterrey, M. Causas de pérdidas poscosecha de mango a nivel mayorista en Costa Rica (Factors causing postharvest losses of mango fruit at central distribution market in Costa Rica). Agron. Costarric. 1994, 18, 47–51. [Google Scholar]
- Baez-Sanudo, R.; Rodriguez-Felix, A.; Siller, J.H.; Bringas-Taddei, E.; Baez, M.A.; Camarena-Gomez, G.; Martinez-Antunez, R. Hábitos de compra, consume y perdidas de mango a nivel consumidor (Purchasing habits, consumption and loss of mango at the consumer level). Proc. Interam. Soc. Trop. Hort. 1994, 38, 28–31. [Google Scholar]
- USDA Economic Research Service. Postharvest Losses in the United States: A Review. Available online: https://www.ers.usda.gov/ (accessed on 15 October 2024).
- European Commission. Study on Food Waste Across the EU-27. Available online: https://www.eea.europa.eu/data-and-maps/data/external/preparatory-study-on-food-waste (accessed on 15 October 2024).
- Mushtaq, K.; Javed, M.S.; Bari, A. Postharvest Losses in Mango: The Case of Pakistani Punjab. In Proceedings of the International Conference on Postharvest Technology and Quality Management in Arid Tropics, Muscat, Oman, 31 January–2 February 2005; pp. 89–94. [Google Scholar]
- Malik, A.U.; Mazhar, M.S. Evaluation of Postharvest Losses in Mango; Australian Center for International Agricultural Research: Bruce, ACT, Australia, 2008; 8p. [Google Scholar]
- Kaur, M.; Malik, D.P.; Malhi, G.S.; Singh, G.; Singh, S.; Singh, J.; Singh, P.; Singh, R.; Singh, A.; Singh, V.; et al. Rice residue management in the Indo-Gangetic Plains for climate and food security. A review. Agron. Sustain. Dev. 2022, 42, 92. [Google Scholar] [CrossRef]
- Bajracharya, S.B.; Mishra, A.; Maharjan, A. Determinants of crop residue burning practice in the Terai region of Nepal. PLoS ONE 2021, 16, e0253939. [Google Scholar] [CrossRef]
- Kumar, P.; Joshi, L. Pollution Caused by Agricultural Waste Burning and Possible Alternate Uses of Crop Stubble: A Case Study of Punjab. In Knowledge Systems of Societies for Adaptation and Mitigation of Impacts of Climate Change; Nautiyal, S., Rao, K., Kaechele, H., Raju, K., Schaldach, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ravindra, K.; Singh, T.; Mor, S. Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. J. Clean. Prod. 2019, 208, 261–273. [Google Scholar] [CrossRef]
- Bălă, G.P.; Râjnoveanu, R.M.; Tudorache, E.; Motișan, R.; Oancea, C. Air pollution exposure—The (in)visible risk factor for respiratory diseases. Environ. Sci. Pollut. Res. Int. 2021, 28, 19615–19628. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef] [PubMed]
- Wani, N.R.; Rather, R.A.; Farooq, A.; Padder, S.A.; Baba, T.R.; Sharma, S.; Mubarak, N.M.; Khan, A.H.; Singh, P.; Ara, S. New insights in food security and environmental sustainability through waste food management. Environ. Sci. Pollut. Res. 2024, 31, 17835–17857. [Google Scholar] [CrossRef] [PubMed]
- Begna, R.; Masho, W. Valuation of livestock population and national feed security to enhance livestock productivity in Ethiopia. Vet. Med. Sci. 2024, 10, e1415. [Google Scholar] [CrossRef] [PubMed]
- Maghsoud, B.; Akbar, T.; Hossein, J.; Ali, M.G. Evaluation of some by-products using in situ and In vitro Gas Production Techniques. Am. J. Anim. Vet. Sci. 2008, 3, 7–12. [Google Scholar] [CrossRef]
- Szebiotko, K. Utilization of agroindustrial by-products and crop residues by monogastric species in Europe. Ther. Adv. Gastroenterol. 2011, 4, 177–184. [Google Scholar]
- Bampidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: A review. Anim. Feed. Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Brunetti, L.; Leuci, R.; Colonna, M.A.; Carrieri, R.; Celentano, F.E.; Bozzo, G.; Loiodice, F.; Selvaggi, M.; Tufarelli, V.; Piemontese, L. Food Industry Byproducts as Starting Material for Innovative, Green Feed Formulation: A Sustainable Alternative for Poultry Feeding. Molecules 2022, 27, 4735. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Y.; Yu, Z.; Xu, Q.; Zheng, N.; Zhao, S.; Huang, G.; Wang, J. Ruminal microbiota-host interaction and its effect on nutrient metabolism. Anim. Nutr. 2021, 7, 49–55. [Google Scholar] [CrossRef]
- Gržinić, G.; Piotrowicz-Cieślak, A.; Klimkowicz-Pawlas, A.; Górny, R.L.; Ławniczek-Wałczyk, L.; Piechowicz, L.; Olkowska, E.; Potrykus, M.; Tankiewicz, M.; Krupka, M.; et al. Intensive poultry farming: A review of the impact on the environment and human health. Sci. Total Environ. 2023, 858, 160014. [Google Scholar] [CrossRef]
- Ørskov, E.R. Protein Nutrition in Ruminant, 2nd ed.; Academic Press: Cambridge, MA, USA, 1992; pp. 51–58. [Google Scholar]
- Chuang, W.-Y.; Lin, L.-J.; Shih, H.-D.; Shy, Y.-M.; Chang, S.-C.; Lee, T.-T. The Potential Utilization of High-Fiber Agricultural By-Products as Monogastric Animal Feed and Feed Additives: A Review. Animals 2021, 11, 2098. [Google Scholar] [CrossRef]
- Grasser, L.A.; Fadel, J.O.; Depeters, E.J. Quantity and economic importance of nine selected by-products used in California Dairy rations. ITEA Proc. Anim. 1995, 88, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Nasserian, A.A. Effect of Dietary Fat Supplementation on Food Digestion and Milk Protein Production by Lactating Cows and Goat. Ph.D. Thesis, University of Queensland: Brisbane, QLD, Australia, 1996. [Google Scholar]
- Hristov, A.N.; Bannink, A.; Crompton, L.A.; Huhtanen, P.; Kreuzer, M.; McGee, M.; Nozière, P.; Reynolds, C.K.; Bayat, A.R.; Yáñez-Ruiz, D.R.; et al. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J. Dairy. Sci. 2019, 102, 5811–5852. [Google Scholar] [CrossRef] [PubMed]
- García Martínez, J.B.; Pearce, J.M.; Throup, J.; Cates, J.; Lackner, M.; Denkenberger, D.C. Methane Single Cell Protein: Potential to Secure a Global Protein Supply Against Catastrophic Food Shocks. Front. Bioeng. Biotechnol. 2022, 10, 906704. [Google Scholar] [CrossRef] [PubMed]
- Niazifar, M.; Besharati, M.; Jabbar, M.; Ghazanfar, S.; Asad, M.; Palangi, V.; Eseceli, H.; Lackner, M. Slow-release non-protein nitrogen sources in animal nutrition: A review. Heliyon 2024, 10, e33752. [Google Scholar] [CrossRef]
- Lackner, M.; Costa, P.; Koller, M.; Zinn, M. More than PHB—the PHAmily of Copolymers: Justifications for Broader Use and Summary of Biodegradation Facts on Polyhydroxyalkanoates (PHA)—A Review. Chem. Biochem. Eng. Q. 2024, 38, 265–291. [Google Scholar] [CrossRef]
- Taghizadeh-Alisaraei, A.; Assar, H.A.; Ghobadian, B.; Motevali, A. Potential of biofuel production from pistachio waste in Iran. Renew. Sustain. Energy Rev. 2017, 72, 510–522. [Google Scholar] [CrossRef]
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and biomass-based energy supply and demand. New Biotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef]
- Afilal, M.E.; Bakx, A.; Belakhdar, N.; Membrez, Y. Evaluation of the biogas potential of organic waste in the northern provinces of Morocco. Rev. Energ. Renouvelables 2010, 13, 249–255. [Google Scholar] [CrossRef]
- Vitali, F.; Parmigiani, S.; Vaccari, M.; Collivignarelli, C. Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries. Waste Manag. 2013, 33, 2762–2770. [Google Scholar] [CrossRef]
- Shyam, K.R.; Ganesh, M.I.; Rajeswari, R.; Harikrishnan, H. Utilization of waste ripe banana, and peels for bio ethanol production. J. Biosci. Res. 2011, 2, 67–71. [Google Scholar]
- Ishwar, C.; Saxena, A.; Bandyopadhyay, K.K.; Saxena, S.; Prajapati, P.; Jain, P.; Dhawan, S. Bioethanol production by Zymomonas mobilis MTCC No. 2427 using orange peels as low-cost substrates. Int. J. ChemTech. Res. 2013, 5, 2787–2792. [Google Scholar]
- Hamdi, G.M.H.; Abbas, M.N.; Ali, S.A.K. Bioethanol production from agricultural waste: A review. J. Eng. Sustain. Dev. 2024, 28, 233–252. [Google Scholar] [CrossRef]
- Xu, P.; Shu, L.; Li, Y.; Zhou, S.; Zhang, G.; Wu, Y.; Yang, Z. Pretreatment and composting technology of agricultural organic waste for sustainable agricultural development. Heliyon 2023, 9, e16311. [Google Scholar] [CrossRef] [PubMed]
- Banković-Ilić, I.B.; Miladinović, M.R.; Stamenković, O.S.; Veljković, V.B. Application of nano CaO–based catalysts in biodiesel synthesis. Renew. Sustain. Energy Rev. 2017, 72, 746–760. [Google Scholar] [CrossRef]
- Canakci, M.; Van Gerpen, J. Biodiesel production from oils and fats with high free fatty acids. Trans. ASAE 2001, 44, 1429. [Google Scholar] [CrossRef]
- Adib, R.; Murdock, H.E.; Appavou, F.; Brown, A.; Epp, B.; Leidreiter, A.; Lins, C.; Murdock, H.E.; Musolino, E.; Petrichenko, K. Renewables 2015 Global Status Report; REN21: Paris, France, 2015; p. 162. [Google Scholar]
- International Renewable Energy Agency. Renewable Energy Target Setting; IRENA: Abu Dhabi, UAE, 2015. [Google Scholar]
- Stafford, W.; Lotter, A.; Brent, A.; von Maltitz, G. Biofuels Technology: A Look Forward; UNU-WIDER: Helsinki, Finland, 2017. [Google Scholar]
- Manuel, J. Battle of the biofuels. Environ. Health Perspect. 2007, 15, 92–95. [Google Scholar] [CrossRef]
- Gerhard, K.; Luis, F.R. Biodiesel fuels. Prog. Energy Combust. Sci. 2017, 58, 36–59. [Google Scholar]
- Bull, O.S.; Obunwo, C.C. Bio-diesel production from oil of orange (Citrus sinensis) peels as feedstock. J. Appl. Sci. Environ. Manag. 2014, 18, 371–374. [Google Scholar]
- Maroušek, J.; Maroušková, A.; Gavurová, B.; Tuček, D.; Strunecký, O. Competitive algae biodiesel depends on advances in mass algae cultivation. Bioresour. Technol. 2023, 374, 128802. [Google Scholar] [CrossRef]
- Kumar, M.; Sun, Y.; Rathour, R.; Pandey, A.; Thakur, I.S.; Tsang, D.C.W. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Sci. Total Environ. 2020, 716, 137116. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Wołejko, E.; Ernazarovna, M.D.; Głowacka, A.; Sokołowska, G.; Wydro, U. Using Algae for Biofuel Production: A Review. Energies 2023, 16, 1758. [Google Scholar] [CrossRef]
- Hassan, N.Y.I.; Badawi, E.M.Y.M.; Mostafa, D.E.A.S. Composting: An eco-friendly solution for organic waste management to mitigate the effects of climate change. Innovare J. Social. Sci. 2023, 11, 1–7. [Google Scholar] [CrossRef]
- Rehman, S.U.; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Jouquet, E.P.; Bloquel, E.; Doan, T.T.; Ricoy, M.; Orange, D.; Rumpel, C.; Duc, T.T. Do Compost and Vermicompost Improve Macronutrient Retention and Plant Growth in Degraded Tropical Soils? Compost. Sci. Util. 2011, 19, 15–24. [Google Scholar] [CrossRef]
- Raza, S.T.; Wu, J.; René, E.R.; Ali, Z.; Chen, Z. Reuse of agricultural wastes, manure, and biochar as an organic amendment: A review on its implications for vermicomposting technology. J. Clean. Prod. 2022, 360, 132200. [Google Scholar] [CrossRef]
- Fornes, F.; Mendoza-Hernández, D.; García-de-la-Fuente, R.; Abad, M.; Belda, R.M. Composting versus vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Bioresour. Technol. 2012, 118, 296–305. [Google Scholar] [CrossRef]
- Richardson, M.L.; Arlotta, C.G.; Lopez, F.B. The potential for using wood mulch for agricultural production. Renew. Agric. Food Syst. 2023, 38, e47. [Google Scholar] [CrossRef]
- Nath, J.C.; Sarma, R. Effect of Organic Mulches on Growth and Yield of Assam Lemon (Citrus limon Burm). Hortic. J. 1992, 5, 19–23. [Google Scholar]
- Rossi, G.; Beni, C.; Neri, U. Organic Mulching: A Sustainable Technique to Improve Soil Quality. Sustainability 2024, 16, 10261. [Google Scholar] [CrossRef]
- Mahesh, K.U.; Blackshaw, R.E. Non-Chemical Weed Management: Principles, Concepts and Technology; CAB International: Cambridge, MA, USA, 2007; p. 135. [Google Scholar]
- Galloway, D. Lifehacker. Get Your New Garden Ready for Spring with Old Carpet. 2016. Available online: https://lifehacker.com/home/how-to-build-garden-bed-that-will-last (accessed on 1 June 2025).
- Gu, H.; Geng, H.; Wang, D.; Li, W. A new method for the treatment of kitchen waste: Converting it into agronomic sprayable mulch film. Waste Manag. 2021, 126, 527–535. [Google Scholar] [CrossRef]
- Babcock, D.L.; McLaughlin, R. Erosion control effectiveness of straw, hydromulch, and polyacrylamide in a rainfall simulator. J. Soil. Water Conserv. 2013, 68, 221–227. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ding, F.; Flury, M.; Wang, Z.; Xu, L.; Li, S.; Jones, D.L.; Wang, J. Macro- and microplastic accumulation in soil after 32 years of plastic film mulching. Environ. Pollut. 2022, 300, 118945. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, T.; Tian, X.; Wang, X.; Li, M.; Wang, S.; Wang, Z. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. Field Crop Res. 2015, 172, 53–58. [Google Scholar] [CrossRef]
- Kaur, B.; Mansi; Dimri, S.; Singh, J.; Mishra, S.; Chauhan, N.; Kukreti, T.; Sharma, B.; Singh, S.P.; Arora, S.; et al. Insights into the harvesting tools and equipment’s for horticultural crops: From then to now. J. Agric. Food Res. 2023, 14, 100814. [Google Scholar] [CrossRef]
- Kumar, S.S.; Wani, O.A.; Prasad, B.; Banuve, A.; Mua, P.; Sharma, A.C.; Prasad, S.; Malik, A.R.; El-Hendawy, S.; Mattar, M.A. Effects of Mulching on Soil Properties and Yam Production in Tropical Region. Sustainability 2024, 16, 7787. [Google Scholar] [CrossRef]
- Du, C.; Li, L.; Effah, Z. Effects of Straw Mulching and Reduced Tillage on Crop Production and Environment: A Review. Water 2022, 14, 2471. [Google Scholar] [CrossRef]
- Dissanayaka, D.M.N.S.; Udumann, S.S.; Dissanayake, D.K.R.P.L.; Nuwarapaksha, T.D.; Atapattu, A.J. Review on Aquatic Weeds as Potential Source for Compost Production to Meet Sustainable Plant Nutrient Management Needs. Waste 2023, 1, 264–280. [Google Scholar] [CrossRef]
- Albiach, R.; Canet, R.; Pomares, F.; Ingelmo, F. Organic Matter Components and Aggregate Stability After the Application of Different Amendments to a Horticultural Soil. Bioresour. Technol. 2001, 76, 125–129. [Google Scholar] [CrossRef]
- Muehlfeld, K.; Weitzel, U.; Witteloostuijn, A. Mergers and Acquisitions in the Global Food Processing Industry in 1986–2006. Food Policy 2011, 4, 466–479. [Google Scholar] [CrossRef]
- HPDRC. Comprehensive Utilization of Agricultural Residues in Henan Province. Zhengzhou, China; Henan Province Development Commission: Zhengzhou, China, 2011; pp. 3847–3861. [Google Scholar]
- Batidzirai, B.; Valk, M.; Wicke, B.; Junginger, M.; Daioglou, V.; Euler, W.; Faaij, A.P.C. Current and Future Technical, Economic and Environmental Feasibility of Maize and Wheat Residue Supply for Biomass Energy Application: Illustrated for South Africa. Biomass Bioenergy 2016, 92, 106–129. [Google Scholar] [CrossRef]
- Ameur, W.; Frija, A.; Abdeladhim, M.A.; Thabet, C. Patterns of Use of Residue Biomass in Cereal-Sheep Production Systems of North Africa: Case of Tunisia. Agriculture 2021, 11, 612. [Google Scholar] [CrossRef]
- Baudron, F.; Delmotte, S.; Corbeels, M.; Herrera, J.M.; Tittonell, P. Multi-Scale Trade-Off Analysis of Cereal Residue Use for Livestock Feeding vs. Soil Mulching in the Mid-Zambezi Valley, Zimbabwe. Agric. Syst. 2015, 134, 97–106. [Google Scholar] [CrossRef]
- Valbuena, D.; Tui, S.H.K.; Erenstein, O.; Teufel, N.; Duncan, A.; Abdoulaye, T.; Swain, B.; Mekonnen, K.; Germaine, I.; Gérard, B. Identifying Determinants, Pressures and Trade-Offs of Crop Residue Use in Mixed Smallholder Farms in Sub-Saharan Africa and South Asia. Agric. Syst. 2015, 134, 107–118. [Google Scholar] [CrossRef]
- Appels, L.; Lauwers, J.; Degrève, J.; Helsen, L.; Lievens, B.; Willems, K.; Van Impe, J.; Dewil, R. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew. Sustain. Energy Rev. 2011, 15, 4295–4301. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Lei, T.-Z.; Yan, X.-Y.; Li, Y.-L.; He, X.-F.; Zhu, J.-L. Assessment and Utilization of Agricultural Residues in Henan Province China. BioResources 2012, 7, 3847–3861. [Google Scholar] [CrossRef]
- Liu, T.; McConkey, B.; Huffman, T.; Smith, S.; MacGregor, B.; Yemshanov, D.; Kulshreshtha, S. Potential and impacts of renewable energy production from agricultural biomass in Canada. Appl. Energy 2014, 130, 222–229. [Google Scholar] [CrossRef]
- Agronomy Research. Available online: https://agronomy.emu.ee/wp-content/uploads/2018/11/AR_2018_004.pdf (accessed on 1 June 2025).
- Maghanaki, M.M.; Ghobadian, B.; Najafi, G.; Galogah, R.J. Potential of biogas production in Iran. Renew. Sustain. Energy Rev. 2013, 28, 702–714. [Google Scholar] [CrossRef]
- Pfluger, A.; Coontz, J.; Zhiteneva, V.; Gulliver, T.; Cherry, L.; Cavanaugh, L.; Figueroa, L. Anaerobic digestion and biogas beneficial use at municipal wastewater treatment facilities in Colorado: A case study examining barriers to widespread implementation. J. Clean. Prod. 2019, 206, 97–107. [Google Scholar] [CrossRef]
- Jameel, M.K.; Mustafa, M.A.; Ahmed, H.S.; Mohammed, A.J.; Ghazy, H.; Shakir, M.N.; Lawas, A.M.; Mohammed, S.K.; Idan, A.H.; Mahmoud, Z.H.; et al. Biogas: Production, properties, applications, economic and challenges: A review. Results Chem. 2024, 7, 101549. [Google Scholar] [CrossRef]
- Benyahya, Y.; Fail, A.; Alali, A.; Sadik, M. Recovery of Household Waste by Generation of Biogas as Energy and Compost as Bio-Fertilizer—A Review. Processes 2022, 10, 81. [Google Scholar] [CrossRef]
- Philp, J.C.; Ritchie, R.J.; Allan, J.E.M. Biobased chemicals: The convergence of green chemistry with industrial biotechnology. Trends Biotechnol. 2013, 31, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Raposo, F.; De la Rubia, M.A.; Fernández-Cegrí, V.; Borja, R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 2012, 16, 861–877. [Google Scholar] [CrossRef]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Biogas generation through anaerobic digestion process—An overview. Res. J. Chem. Environ. 2014, 18, 5. [Google Scholar]
- Dionisi, D.; Silva, I.M.O. Production of ethanol, organic acids and hydrogen: An opportunity for mixed culture biotechnology? Rev. Environ. Sci. Bio/Technol. 2016, 15, 213–242. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef]
- Abdeshahian, P.; Lim, J.S.; Ho, W.S.; Hashim, H.; Lee, C.T. Potential of biogas production from farm animal waste in Malaysia. Renew. Sustain. Energy Rev. 2016, 60, 714–723. [Google Scholar] [CrossRef]
- Melnyk, N. Agricultural potential in the production of biofuels in Ukraine. Agric. Resour. Econ. Int. Sci. 2019, 5, 92–106. [Google Scholar] [CrossRef]
- Chen, X.H.; Tee, K.; Elnahass, M.; Ahmed, R. Assessing the environmental impacts of renewable energy sources: A case study on air pollution and carbon emissions in China. J. Environ. Manag. 2023, 345, 118525. [Google Scholar] [CrossRef]
- Lackner, M.; Fei, Q.; Guo, S.; Yang, N.; Guan, X.; Hu, P. Biomass gasification as a scalable, green route to combined heat and power (CHP) and synthesis gas for materials: A review. Fuels 2024, 5, 625–649. [Google Scholar] [CrossRef]
- Cormos, C.C. Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis. Energy 2023, 270, 126926. [Google Scholar] [CrossRef]
- Uddin, M.; Techato, K.; Taweekun, J.; Rahman, M.; Rasul, M.; Mahlia, T.; Ashrafur, S. An overview of recent developments in biomass pyrolysis technologies. Energies 2018, 11, 3115. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: Experimental and thermodynamic modeling. Energy Convers. Manag. 2020, 208, 112545. [Google Scholar] [CrossRef]
- Aaliya, B.; Sunooj, K.V.; Lackner, M. Biopolymer composites: A review. Int. J. Biobased Plast. 2021, 3, 40–84. [Google Scholar] [CrossRef]
- Zhou, Y.; Trabelsi, A.; El Mankibi, M. A review on the properties of straw insulation for buildings. Constr. Build. Mater. 2022, 330, 127215. [Google Scholar] [CrossRef]
- Luterbacher, J.S.; Froling, M.; Vogel, F.; Maréchal, F.; Tester, J.W. Hydrothermal gasification of waste biomass: Process design and life cycle assessment. Environ. Sci. Technol. 2009, 43, 1578–1583. [Google Scholar] [CrossRef]
- Kruse, A.; Maniam, P.; Spieler, F. Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds. Ind. Eng. Chem. Res. 2007, 46, 87–96. [Google Scholar] [CrossRef]
- Chin, C.S.; Nepal, B. Material Properties of Agriculture Straw Fibre-Reinforced Concrete. In Ecological Wisdom Inspired Restoration Engineering; Achal, V., Mukherjee, A., Eds.; Springer: Singapore, 2019; pp. 142–153. [Google Scholar]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Waldner, M.H.; Vogel, F. Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Ind. Eng. Chem. Res. 2005, 44, 4543–4551. [Google Scholar] [CrossRef]
- Xu, X.; Cao, X.; Zhao, L. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere 2013, 92, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, A.B.H.; Ghrib, A.; Zaafouri, K.; Friaa, A.; Ouerghi, A.; Naoui, S.; Belayouni, H. Hydrogen-Rich Syngas Production from Gasification and Pyrolysis of Solar Dried Sewage Sludge: Experimental and Modeling Investigations. BioMed Res. Int. 2017, 2017, 7831470. [Google Scholar] [CrossRef]
- Quan, L.M.; Kamyab, H.; Yuzir, A.; Ashokkumar, V.; Hosseini, S.E.; Balasubramanian, B.; Kirpichnikova, I. Review of the application of gasification and combustion technology and waste-to-energy technologies in sewage sludge treatment. Fuel 2022, 316, 123199. [Google Scholar] [CrossRef]
- Kong, G.; Zhang, X.; Wang, K.; Zhou, L.; Wang, J.; Zhang, X.; Han, L. Tunable H2/CO syngas production from co-gasification integrated with steam reforming of sewage sludge and agricultural biomass: A experimental study. Appl. Energy 2023, 342, 121195. [Google Scholar] [CrossRef]
- Aissaoui, M.H.; Trabelsi, A.B.H.; Bensidhom, G.; Ceylan, S.; Leahy, J.J.; Kwapinski, W. Sustainable Valorization of Olive Pomace Waste to Renewable Biofuels, Biomaterials and Biochemicals via Pyrolysis Process: Experimental and Numerical Investigation. Available online: https://www.researchgate.net/publication/354942727_Sustainable_Valorization_of_Olive_Pomace_Waste_to_Renewable_Biofuels_Biomaterials_and_Biochemicals_Via_Pyrolysis_Process_Experimental_and_Numerical_Investigation (accessed on 20 March 2023).
- Bensidhom, G.; Hassen-Trabelsi, A.B.; Alper, K.; Sghairoun, M.; Zaafouri, K.; Trabelsi, I. Pyrolysis of Date Palm Waste in a Fixed-Bed Reactor: Characterization of Pyrolytic Products. Bioresour. Technol. 2017, 247, 363–369. [Google Scholar] [CrossRef]
- David, E. Evaluation of Hydrogen Yield Evolution in Gaseous Fraction and Biochar Structure Resulting from Walnut Shells Pyrolysis. Energies 2020, 13, 6359. [Google Scholar] [CrossRef]
- Solar, J.; Caballero, B.M.; López-Urionabarrenechea, A.; Acha, E.; Arias, P.L. Pyrolysis of Forestry Waste in a Screw Reactor with Four Sequential Heating Zones: Influence of Isothermal and Nonisothermal Profiles. Ind. Eng. Chem. Res. 2021, 60, 18627–18639. [Google Scholar] [CrossRef]
- Xie, Y.; Zeng, K.; Flamant, G.; Yang, H.; Liu, N.; He, X.; Yang, X.; Nzihou, A.; Chen, H. Solar Pyrolysis of Cotton Stalk in Molten Salt for Bio-Fuel Production: Review. Energy 2019, 179, 1124–1132. [Google Scholar] [CrossRef]
- Sedmihradská, A.; Pohorelý, M.; Jevic, P.; Skoblia, S.; Beno, Z.; Farták, J.; Cech, B.; Hartman, M. Pyrolysis of Wheat and Barley Straw. Res. Agric. Eng. 2020, 66, 8–17. [Google Scholar] [CrossRef]
- Ullah, F.; Zhang, L.; Ji, G.; Irfan, M.; Ma, D.; Li, A. Experimental Analysis on Products Distribution and Characterization of Medical Waste Pyrolysis with a Focus on Liquid Yield Quantity and Quality. Sci. Total Environ. 2022, 829, 154692. [Google Scholar] [CrossRef]
- Trabelsi, A.B.H.; Zaafouri, K.; Baghdadi, W.; Naoui, S.; Ouerghi, A. Second generation biofuels production from waste cooking oil via pyrolysis process. Renew. Energy 2018, 126, 888–896. [Google Scholar] [CrossRef]
- Tong, X.-J.; Li, J.-Y.; Yuan, J.-H.; Xu, R.-K. Adsorption of Cu(II) by biochars generated from three crop straws. Chem. Eng. J. 2011, 172, 828–834. [Google Scholar] [CrossRef]
- Elaigwu, S.E.; Rocher, V.; Kyriakou, G.; Greenway, G.M. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell. J. Ind. Eng. Chem. 2014, 20, 3467–3473. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 2012, 200, 673–680. [Google Scholar] [CrossRef]
- Ulmanu, M.; Marañón, E.; Fernández, Y.; Castrillón, L.; Anger, I.; Dumitriu, D. Removal of copper and cadmium ions from diluted aqueous solutions by low-cost and waste material adsorbents. Water Air Soil Pollut. 2003, 142, 357–373. [Google Scholar] [CrossRef]
- Sun, L.; Wan, S.; Luo, W. Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies. Bioresour. Technol. 2013, 140, 406–413. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef]
- Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.W.; Steiner, C.; Das, K.C.; Ahmedna, M.; Rehrah, D.; Watts, D.W.; Busscher, W.J.; et al. Designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 2009, 3, 195–206. [Google Scholar]
- Tan, X.; Wang, H.; Guo, X.; Ho, S.-H. Customized high-value agricultural residue conversion: Applications in wastewater treatment. Catalysts 2023, 13, 1247. [Google Scholar] [CrossRef]
- Lamastra, L.; Suciu, N.A.; Trevisan, M. Sewage sludge for sustainable agriculture: Contaminants’ contents and potential use as fertilizer. Chem. Biol. Technol. Agric. 2018, 5, 10. [Google Scholar] [CrossRef]
- Clark, J.W.; Viessman, W.; Hammer, M.J. Water Supply and Pollution Control, 3rd ed.; Harper & Row Pub.: New York, NY, USA, 1977. [Google Scholar]
- Olejnik, D. Evaluation of the heavy metals content in sewage sludge from selected rural and urban wastewater treatment plants in Poland in terms of its suitability for agricultural use. Sustainability 2024, 16, 5198. [Google Scholar] [CrossRef]
- Cheng, H.; Xu, W.; Liu, J.; Zhao, Q.; He, Y.; Chen, G. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth. Ecol. Eng. 2007, 29, 96–104. [Google Scholar] [CrossRef]
- Jose de Melo, W.; de Stefani Aguiar, P.; Peruca de Melo, G.M.; Peruca de Melo, V. Nickel in a tropical soil treated with sewage sludge and cropped with maize in a long-term field study. Soil Biol. Biochem. 2007, 39, 1341–1347. [Google Scholar] [CrossRef]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef]
- Yongjie, W.; Yangsheng, L. Effects of sewage sludge compost application on crops and cropland in a 3-year field study. Chemosphere 2005, 59, 1257–1265. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Kadhom, M.; Albayati, N.; Alalwan, H.; Al-Furaiji, M. Removal of dyes by agricultural waste. Sustain. Chem. Pharm. 2020, 16, 100259. [Google Scholar] [CrossRef]
- Camps-Posino, L.; Batlle-Bayer, L.; Bala, A.; Song, G.; Qian, H.; Aldaco, R.; Xifré, R.; Fullana-i-Palmer, P. Potential climate benefits of reusable packaging in food delivery services: A Chinese case study. Sci. Total Environ. 2021, 794, 148570. [Google Scholar] [CrossRef]
- Navas, E.; Fernández, R.; Sepúlveda, D.; Armada, M.; Gonzalez-de-Santos, P. Soft grippers for automatic crop harvesting: A review. Sensors 2021, 21, 2689. [Google Scholar] [CrossRef]
- Munarso, S.J.; Widayanti, S.M. Postharvest handling and storage innovations. IOP Conf. Ser. Earth Environ. Sci. 2022, 1024, 012001. [Google Scholar] [CrossRef]
- Khosla, R.; Miranda, N.D.; Trotter, P.A.; Mazzone, A.; Renaldi, R.; McElroy, C.; Cohen, F.; Jani, A.; Perera-Salazar, R.; McCulloch, M. Cooling for sustainable development. Nat. Sustain. 2021, 4, 201–208. [Google Scholar] [CrossRef]
- Alammar, A.; Hardian, R.; Szekely, G. Upcycling agricultural waste into membranes: From date seed biomass to oil and solvent-resistant nanofiltration. Green Chem. 2022, 24, 365. [Google Scholar] [CrossRef]
- Danial, A.W.; Hamdy, S.M.; Alrumman, S.A.; Gad El-Rab, S.M.F.; Shoreit, A.A.M.; Hesham, A.E.-L. Bioplastic production by Bacillus wiedmannii AS-02 OK576278 using different agricultural wastes. Microorganisms 2021, 9, 2395. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Meng, C.; Zhang, G. Agricultural waste of Ipomoea batatas leaves as a source of natural dye for green coloration and bio-functional finishing for textile fabrics. Ind. Crops Prod. 2022, 177, 114440. [Google Scholar] [CrossRef]
- Provin, A.P.; d’Alva, A.M.; de Aguiar Dutra, A.R.; de Andrade, J.B.S.O.; Cubas, A.L.V. Closing the cycle: Circular economy strategies for the textile industry using banana farming waste. J. Clean. Prod. 2024, 470, 143352. [Google Scholar] [CrossRef]
- Hamzah, A.F.; Hamzah, M.H.; Che Man, H.; Jamali, N.S.; Siajam, S.I.; Ismail, M.H. Recent updates on the conversion of pineapple waste (Ananas comosus) to value-added products, future perspectives and challenges. Agronomy 2021, 11, 2221. [Google Scholar] [CrossRef]
- Srivastava, P. Government initiative and policy for agricultural waste utilization as biofuel. In Emerging Trends and Techniques in Biofuel Production from Agricultural Waste. Clean Energy Production Technologies; Singh, P., Ed.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Curelop, A. Something Stinks: The Need for Stronger Agricultural Waste Regulations. Wash. Lee Law. Rev. 2022, 79, 1541. [Google Scholar]
- European Commission. Farm to Fork Strategy. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 13 October 2024).
- Dharmawan, M.; Sari, L.D.; Gunawan, J.P.; Antriyandarti, E.; Duong, A. An Android-based farmer education platform for agricultural waste management. J. Ilm. Tek. Elektro Komput. Dan Inform. 2023, 9, 174–184. [Google Scholar] [CrossRef]
- Yanfika, H.; Effendi, I.; Sumaryo; Ansari, A. The role of agricultural extension services on supporting circular bioeconomy in Indonesia. Front. Sustain. Food Syst. 2024, 8, 1428069. [Google Scholar] [CrossRef]
- Blasi, A.; Verardi, A.; Sangiorgio, P. The zero-waste economy: From food waste to industry. In Membrane Engineering in the Circular Economy; Iulianelli, A., Cassano, A., Conidi, C., Petrotos, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 63–100. ISBN 9780323852531. [Google Scholar] [CrossRef]
- Oluwakemi, B.G.; Adejuyitan, J.A.A. Quality evaluation of jam produced from matured overripe plantain (Musa paradisiaca) during storage. Ann. Food Sci. Technol. 2019, 20, 527–533. [Google Scholar]
- Agarwal, V.; Malhotra, S.; Dagar, V. Coping with public-private partnership issues: A path forward to sustainable agriculture. Socio Econ. Plan. Sci. 2023, 89, 101703. [Google Scholar] [CrossRef]
- Galgano, F. Biodegradable packaging and edible coating for fresh-cut fruits and vegetables. Ital. J. Food Sci. 2015, 27, 1–20. [Google Scholar] [CrossRef]
- Zamri, G.B.; Azizal, N.K.A.; Nakamura, S.; Okada, K.; Nordin, N.H.; Othman, N.; Akhir, F.N.M.; Sobian, A.; Kaida, N.; Hara, H. Delivery, impact and approach of household food waste reduction campaigns. J. Clean. Prod. 2020, 246, 118969. [Google Scholar] [CrossRef]
- Nerlich, K.; Graeff-Hönninger, S.; Claupein, W. Agroforestry in Europe: A review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agroforest Syst. 2013, 87, 475–492. [Google Scholar] [CrossRef]
- Adamczewska-Sowińska, K.; Sowiński, J. Polyculture management: A crucial system for sustainable agriculture development. In Soil Health Restoration and Management; Meena, R., Ed.; Springer: Singapore, 2020. [Google Scholar]
- Mazzafera, P.; Favarin, J.L.; Andrade, S.A.L. Intercropping systems in sustainable agriculture. Front. Sustain. Food Syst. 2021, 5, 634361. [Google Scholar] [CrossRef]
- Ahmed, M.W.; Haque, M.A.; Mohibbullah, M.; Khan, M.S.I.; Islam, M.A.; Mondal, M.H.T.; Ahmmed, R. A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges. Food Packag. Shelf Life 2022, 33, 100913. [Google Scholar] [CrossRef]
- Xu, J.; Shen, Y.; Zheng, Y.; Smith, G.; Sun, X.S.; Wang, D.; Li, Y. Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Rev. Int. 2021, 39, 3620–3634. [Google Scholar] [CrossRef]
- Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. [Google Scholar] [CrossRef]
- Li, Y.P.; Ahmadi, F.; Kariman, K.; Lackner, M. Recent advances and challenges in single-cell protein (SCP) technologies for food and feed production. NPJ Sci. Food 2024, 8, 66. [Google Scholar] [CrossRef]
- Morais, T.; Inácio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Seaweed potential in animal feed: A review. J. Mar. Sci. Eng. 2020, 8, 559. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, S.Y.; Jung, J.W.; Kim, J.H.; Oh, D.H.; Kim, H.W.; Hur, S.J. Review of technology and materials for the development of cultured meat. Crit. Rev. Food Sci. Nutr. 2022, 63, 8591–8615. [Google Scholar] [CrossRef] [PubMed]
- Anoop, A.A.; Pillai, P.K.S.; Nickerson, M.; Ragavan, K.V. Plant leaf proteins for food applications: Opportunities and challenges. Compr. Rev. Food Sci. Food Saf. 2023, 22, 473–501. [Google Scholar] [CrossRef] [PubMed]
- IEA Bioenergy Blog. 2023 Billion Ton Report: An Assessment of U.S. Renewable Carbon Resource. Available online: https://www.ieabioenergy.com/blog/publications/2023-billion-ton-report-an-assessment-of-u-s-renewable-carbon-resource/ (accessed on 15 October 2024).
- Lackner, M.; Fei, Q.; Guo, S.; Yang, N.; Guan, X.; Hu, P. Biomass energy potential from agricultural production in Sudan. Erciyes Tarım Hayvan Bilim. Dergisi 2019, 2, 35–38. [Google Scholar]
Residue | Current Use (Animal Species) |
---|---|
Maize Bran | Pigs |
Rice Bran | Pigs, Poultry, Rabbits, Sheep, Goats, Cattle |
Rice Polishings | Sheep, Goats |
Brewer’s Wet Grains | All species |
Coffee Pulp | Pigs |
Cottonseed Meal | All species |
Palm Kernel Meal | All species |
Residue | Examples |
---|---|
Agricultural by-products | Cereal straws: wheat, oat |
Husk and hulls: Risk husk, sunflower husk, peanut hull, rice hull Leaves and stems: Cassava leaves, carrot tops Cobs and stalks: corn cob, sorghum stalk, cotton stalk, banana pseudostem Prunings and orchard residues: gravevine prunings, olive tree prunings | |
Oilseed meal: cottonseed and soybean meal, jatropha press cake | |
Food factory by-products | Industrial streams from fermentation: yeast cells, fermentation broth Industrial streams from food processing industries: corn gluten, nut shells Brewing: Distillers dried grains with solubles (DDGS) |
By-products of sugar production: sugar beet pulp, bagasse, molasse | |
By-products from juice and paste factories: tomato pomace, fruit pomace. Starch residues: potato peel Sugar industry: vinasse | |
By-products from cheese production: whey | |
By-products of slaughterhouses | Blood, fish offal, livestock offal, bones; hides, skins, hair, horns |
Animal waste | Pig slurry, Cow feces, chicken manure, chicken feathers, deceased animals, insect frass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lackner, M.; Besharati, M. Agricultural Waste: Challenges and Solutions, a Review. Waste 2025, 3, 18. https://doi.org/10.3390/waste3020018
Lackner M, Besharati M. Agricultural Waste: Challenges and Solutions, a Review. Waste. 2025; 3(2):18. https://doi.org/10.3390/waste3020018
Chicago/Turabian StyleLackner, Maximilian, and Maghsoud Besharati. 2025. "Agricultural Waste: Challenges and Solutions, a Review" Waste 3, no. 2: 18. https://doi.org/10.3390/waste3020018
APA StyleLackner, M., & Besharati, M. (2025). Agricultural Waste: Challenges and Solutions, a Review. Waste, 3(2), 18. https://doi.org/10.3390/waste3020018