Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (312)

Search Parameters:
Keywords = residual hydrocarbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3142 KiB  
Article
Influence of Biosurfactants on the Efficiency of Petroleum Hydrocarbons Biodegradation in Soil
by Katarzyna Wojtowicz, Teresa Steliga, Tomasz Skalski and Piotr Kapusta
Sustainability 2025, 17(14), 6520; https://doi.org/10.3390/su17146520 - 16 Jul 2025
Viewed by 183
Abstract
Soil contamination with petroleum hydrocarbons is a serious environmental issue, necessitating the development of effective and environmentally friendly remediation methods that align with the principles of sustainable development. This study investigated the impact of selected biosurfactants on the efficiency of the biodegradation of [...] Read more.
Soil contamination with petroleum hydrocarbons is a serious environmental issue, necessitating the development of effective and environmentally friendly remediation methods that align with the principles of sustainable development. This study investigated the impact of selected biosurfactants on the efficiency of the biodegradation of total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) in contaminated soil. Six biosurfactants—poly-γ-glutamic acid (γ-PGA), rhamnolipid, surfactin, a mixture of γ-PGA, rhamnolipids, and surfactin (PSR), as well as two commercial formulations (JBR 425 and JBR 320)—were evaluated in combination with a bacterial consortium. Biodegradation experiments were conducted under laboratory conditions for a 90-day period. The effectiveness of the tested biosurfactants was assessed using respirometric analysis, the chromatographic determination of the residual hydrocarbon content, and toxicity assays. The results showed that the application of a bacterial consortium enriched with a mixture of biosurfactants PSR (a biosurfactant concentration in the inoculating mixture: 5 g/dm3) was the most effective approach, resulting in an oxygen uptake of 5164.8 mgO2/dm3 after 90 days, with TPH and PAH degradation rates of 77.3% and 70.32%, respectively. Phytotoxicity values decreased significantly, with TU values ranging from 6.32 to 4.62 (growth inhibition) and 3.77 to 4.13 (germination). Toxicity also decreased in the ostracodtoxkit test (TU = 4.35) and the Microtox SPT test (TU = 4.91). Among the tested biosurfactants, surfactin showed the least improvement in its bioremediation efficiency. Under the same concentration as in the PSR mixture, the oxygen uptake was 3446.7 mgO2/dm3, with TPH and PAH degradation rates of 60.64% and 52.64%, respectively. In the system inoculated with the bacterial consortium alone (without biosurfactants), the biodegradation efficiency reached 44.35% for TPH and 36.97% for PAHs. The results demonstrate that biosurfactants can significantly enhance the biodegradation of petroleum hydrocarbons in soil, supporting their potential application in sustainable bioremediation strategies. Full article
Show Figures

Figure 1

29 pages, 9532 KiB  
Article
Heterogeneity of the Triassic Lacustrine Yanchang Shale in the Ordos Basin, China, and Its Implications for Hydrocarbon Primary Migration
by Yuhong Lei, Likuan Zhang, Xiangzeng Wang, Naigui Liu, Ming Cheng, Zhenjia Cai and Jintao Yin
Appl. Sci. 2025, 15(13), 7392; https://doi.org/10.3390/app15137392 - 1 Jul 2025
Viewed by 218
Abstract
The pathways and mechanisms of primary hydrocarbon migration, which are still not well understood, are of great significance for evaluating both conventional and unconventional oil and gas resources, understanding the mechanisms of shale oil retention, and predicting sweet spots. To investigate the petrography, [...] Read more.
The pathways and mechanisms of primary hydrocarbon migration, which are still not well understood, are of great significance for evaluating both conventional and unconventional oil and gas resources, understanding the mechanisms of shale oil retention, and predicting sweet spots. To investigate the petrography, geochemistry, and pore systems of organic-rich mudstones and organic-lean sand-silt intervals in core samples from the Yanchang shale in the Ordos Basin, China, we conducted thin-section observation, X-ray diffraction, Rock-Eval pyrolysis, field emission scanning electron microscopy (FE-SEM), and porosity analysis. Sand-silt intervals are heterogeneously developed within the Yanchang shale. The petrology, mineral composition, geochemistry, type, and content of solid organic matter as well as the pore type, pore size, and porosity of these intervals differ significantly from those of mudstones. Compared with mudstones, sand-silt intervals typically have coarser detrital grain sizes, higher contents of quartz, feldspar, and migrated solid bitumen (MSB), larger pore sizes, higher porosity, and higher oil saturation index (OSI). In contrast, they have lower contents of clay minerals, total organic carbon (TOC), free liquid hydrocarbons (S1), and total residual hydrocarbons (S2). The sand-silt intervals in the Yanchang shale serve as both pathways for hydrocarbon primary migration and “micro reservoirs” for hydrocarbon storage. The interconnected inorganic and organic pore systems, organic matter networks, fractures, and sand-silt intervals form the hydrocarbons’ primary migration pathways within the Yanchang shale. A model for the primary migration of hydrocarbons within the Yanchang shale is proposed. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

18 pages, 1794 KiB  
Article
Biodegradability of Heavy Oil Using Soil and Water Microbial Consortia Under Aerobic and Anaerobic Conditions
by Shakir Ali, Isha and Young-Cheol Chang
Processes 2025, 13(7), 2057; https://doi.org/10.3390/pr13072057 - 28 Jun 2025
Viewed by 408
Abstract
Heavy oil, due to its complex hydrocarbon structure and resistance to degradation, poses significant environmental challenges. There is a lack of knowledge about the biodegradability of heavy oil in the natural environment under aerobic and anaerobic conditions. In this study, we used microbial [...] Read more.
Heavy oil, due to its complex hydrocarbon structure and resistance to degradation, poses significant environmental challenges. There is a lack of knowledge about the biodegradability of heavy oil in the natural environment under aerobic and anaerobic conditions. In this study, we used microbial communities of water and soil samples to investigate the biodegradation of heavy oil. Gas chromatography (GC) analysis was used to measure residual oil. Under aerobic conditions, soil-derived microorganisms demonstrated significantly higher degradation efficiency—achieving up to 80.3% removal—compared to water-derived samples, which showed a maximum degradation of 52.1%. Anaerobic conditions, on the other hand, clearly slowed down degradation; the maximum degradation rates in water and soil samples were 43.7% and 11.1%, respectively. Although no clear linear relationship was found, the correlation between initial microbial populations and degradation performance revealed that higher counts of heterotrophic and oil-degrading bacteria generally enhanced biodegradation. Under anaerobic conditions, especially, persistent hydrocarbon peaks in both environments suggest the presence of recalcitrant heavy oil fractions such as polycyclic aromatic hydrocarbons. In conclusion, this study emphasizes the crucial roles microbial sources and oxygen availability play in maximizing bioremediation techniques for environments contaminated with heavy oil. Full article
Show Figures

Graphical abstract

13 pages, 2663 KiB  
Article
Solvent Performance Evaluation of Heavy Oil in Coal–Oil Co-Liquefaction
by Guanghua Yang, Juan Ma, Caitao Chen, Tingting Cui, Yingluo He and Ting Liu
Int. J. Mol. Sci. 2025, 26(13), 6048; https://doi.org/10.3390/ijms26136048 - 24 Jun 2025
Viewed by 208
Abstract
In this study, we investigated the solvent performance of six heavy oils from Xinjiang, China, for coal–oil co-liquefaction (COCL). Autoclave experiments revealed that shale oil vacuum residue (SOVR) provided the best liquefaction performance. The oils were characterized using FT-IR, 13C-NMR, 1H-NMR, [...] Read more.
In this study, we investigated the solvent performance of six heavy oils from Xinjiang, China, for coal–oil co-liquefaction (COCL). Autoclave experiments revealed that shale oil vacuum residue (SOVR) provided the best liquefaction performance. The oils were characterized using FT-IR, 13C-NMR, 1H-NMR, and column chromatography, which revealed that they were mainly composed of aliphatic compounds, with minor aromatic and substituted aromatic compounds. The pyrolytic degradation quality indices (PDQIs), solubility parameter (δC), and polycyclic aromatic hydrocarbon content (HA2 + HA3) were calculated and correlated with liquefaction performance. The results showed a strong linear relationship between HA2 + HA3 and oil yield (R2 = 0.90), and the aromatic content (AR) was also positively related to oil yield. This study suggests that AR content and HA2 + HA3 are effective indicators for evaluating the solvent performance of heavy oils in COCL. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science: 2nd Edition)
Show Figures

Figure 1

17 pages, 1400 KiB  
Article
Evaluation of Aspergillus flavus Growth on Weathered HDPE Plastics Contaminated with Diesel Fuel
by Juan Valenzuela, César Sáez-Navarrete, Xavier Baraza, Fernando Martínez and Bastián Márquez
Microorganisms 2025, 13(6), 1418; https://doi.org/10.3390/microorganisms13061418 - 18 Jun 2025
Viewed by 309
Abstract
Plastic containers used for diesel storage represent an underexplored but significant environmental challenge due to hydrocarbon retention and prolonged weathering. This study evaluates the capacity of Aspergillus flavus to colonize and grow on high-density polyethylene (HDPE) surfaces contaminated with weathered and fresh diesel [...] Read more.
Plastic containers used for diesel storage represent an underexplored but significant environmental challenge due to hydrocarbon retention and prolonged weathering. This study evaluates the capacity of Aspergillus flavus to colonize and grow on high-density polyethylene (HDPE) surfaces contaminated with weathered and fresh diesel residues. Circular plastic samples from HDPE tanks exposed to environmental conditions for over two years (weathered) and for less than two months (non-weathered) were inoculated with A. flavus and incubated at 20 °C, 25 °C, and 30 °C. Growth kinetics were assessed through radial expansion and halo formation, quantified via digital imaging and ImageJ analysis. Results showed the most robust fungal growth occurred on weathered diesel-contaminated gray plastics at 30 °C, with colony areas exceeding 350 mm2 and halos over 3000 mm2. Conversely, white HDPE with fresh diesel showed limited and inconsistent growth, likely due to the presence of volatile hydrocarbons and polymer additives. These findings underscore the critical role of diesel aging and polymer characteristics in shaping fungal adaptability, providing a foundation for the development of environmentally sustainable bioremediation strategies targeting diesel-contaminated HDPE plastics. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 6387 KiB  
Article
Degradation of Low-Molecular-Weight Diesel Fractions (C10−C16 Alkane) Drives Cd Stabilization and Pb Activation in Calcareous Soils from Karst Areas
by Yiting Huang, Yankui Tang, Zhenze Xie, Jipeng Wu, Jiajie Huang and Shaojiang Nie
Toxics 2025, 13(6), 496; https://doi.org/10.3390/toxics13060496 - 13 Jun 2025
Viewed by 511
Abstract
The influence of petroleum hydrocarbons (PHCs) on the transport and transformation of heavy metals may limit bioremediation efficiency. The mechanisms by which PHC degradation intermediates control heavy metal distribution in calcareous soils from karst areas require further exploration. This study systematically investigated how [...] Read more.
The influence of petroleum hydrocarbons (PHCs) on the transport and transformation of heavy metals may limit bioremediation efficiency. The mechanisms by which PHC degradation intermediates control heavy metal distribution in calcareous soils from karst areas require further exploration. This study systematically investigated how compositional changes in diesel fuel during aging regulated the fate of Cd and Pb in calcareous soils. The results demonstrated that the low-molecular-weight fractions of diesel fuel (C10−C16) were preferentially degraded. This degradation process altered zeta potential, cation exchange capacity (CEC), and pH, thereby promoting Cd stabilization through electrostatic attraction and speciation transformation. Particularly, reducible Cd content showed a strong positive correlation with C16 content (r = 0.88, p < 0.05). Furthermore, the degradation of C10−C16 fractions caused Pb transformation from residual to bioavailable fractions by stimulating microbial activity. Residual Pb content was positively correlated with C10−C16 fractions (r = 0.55, p < 0.05). Notably, dissolved organic matter (DOM) and CaCO3 content in calcareous soils enhanced Cd and Pb adsorption, thereby weakening the interactions between these metals and C10−C16 fractions. Consequently, multiple linear regression (MLR) models relying exclusively on C10−C16 degradation parameters showed poor fitting coefficients for Cd/Pb mobility. The present work provides scientific guidance for heavy metal bioremediation in calcareous soils. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

17 pages, 8353 KiB  
Article
Restoration of the Denudation Volume in the Tankou Area Based on a Tectonic Strain Analysis
by Hao Yang, Tao Li and Junjie Chang
Processes 2025, 13(6), 1781; https://doi.org/10.3390/pr13061781 - 4 Jun 2025
Viewed by 481
Abstract
The Tankou area is a vital production capacity replacement area in the Jianghan oilfield. The recovery of the amount of erosion in Qianjiang Formation and Jinghezhen Formation is significant for studying this area’s tectonic evolution and geothermal history. The target layer, characterised by [...] Read more.
The Tankou area is a vital production capacity replacement area in the Jianghan oilfield. The recovery of the amount of erosion in Qianjiang Formation and Jinghezhen Formation is significant for studying this area’s tectonic evolution and geothermal history. The target layer, characterised by well-developed plastic materials, intense tectonic deformation, and insufficient well data, fails to meet the applicability criteria of the conventional denudation estimation methods. This study proposes a novel approach based on the structural strain characteristics. The method estimates the stratigraphic denudation by analysing residual formation features and fault characteristics. First, a stress analysis is performed using the fault characteristics, and the change law for the thickness of the target layer is summarised based on the characteristics of the residual strata to recover the amount of erosion in the profile. Second, a grid of the stratigraphic lines in the profiles of the main line and the tie line is used to complete the recovery of the amount of erosion in the plane through interpolation, and the results of the profile recovery are corrected again. Finally, the evolution results of the geological equilibrium method and the stress–strain analysis are compared to analyse the reasonableness of their differences and verify the accuracy of the erosion recovery results. The area of erosion in each layer increases from bottom to top. The amount of denudation in each layer gradually increases from the denudation area near the southern slope to the surrounding area. It converges to 0 at the boundary of the denudation area. The maximum amount of erosion is distributed in the erosion area close to the side of the residual layer with a low dip angle. The specific denudation results are as follows: Qian1 Member + Jinghezhen Formation has a denudation area of 6.3 km2 with a maximum denudation thickness of 551 m; Qian2 Member has a denudation area of 2.6 km2 with a maximum denudation thickness of 164 m; Qian3 Member has a denudation area of 2.3 km2 with a maximum denudation thickness of 215 m; Upper Qian4 Submember has a denudation area of 1.54 km2 with a maximum denudation thickness of 191 m; and Lower Qian4 Submember has a denudation area of 1.2 km2 with a maximum denudation thickness of 286 m. This method overcomes the conventional denudation restoration approaches’ reliance on well logging and geochemical parameters. Using only seismic interpretation results, it achieves relatively accurate denudation restoration in the study area, thereby providing reliable data for timely analyses of the tectonic evolution, sedimentary facies, and hydrocarbon distribution patterns. In particular, the fault displacement characteristics can be employed to promptly examine how reasonable the results on the amount of denudation between faults are during the denudation restoration process. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 33244 KiB  
Article
The Sedimentary Distribution and Evolution of Middle Jurassic Reefs and Carbonate Platform on the Middle Low Uplift in the Chaoshan Depression, Northern South China Sea
by Ming Sun, Hai Yi, Zhongquan Zhao, Changmao Feng, Guangjian Zhong and Guanghong Tu
J. Mar. Sci. Eng. 2025, 13(6), 1025; https://doi.org/10.3390/jmse13061025 - 23 May 2025
Viewed by 472
Abstract
The Chaoshan Depression, situated in the northern South China Sea, is a Mesozoic residual depression beneath the Cenozoic Pearl River Mouth Basin. Borehole LF35-1-1 has confirmed the existence of marine Jurassic layers rich in organic carbon within this depression. However, the understanding of [...] Read more.
The Chaoshan Depression, situated in the northern South China Sea, is a Mesozoic residual depression beneath the Cenozoic Pearl River Mouth Basin. Borehole LF35-1-1 has confirmed the existence of marine Jurassic layers rich in organic carbon within this depression. However, the understanding of petroleum geology in this area is limited due to the complex interplay of Mesozoic and Cenozoic tectonic activities and the poor quality of seismic imaging from previous surveys, which have obstructed insights into the characteristics of Mesozoic reservoirs and the processes of oil and gas accumulation. Recent quasi-3D seismic data have allowed for the identification of Mesozoic bioherms and carbonate platforms in the Middle Low Uplift of the Chaoshan Depression. This research employs integrated geophysical data (MCS, gravity, magnetic) and well data to explore the factors that influenced Middle Jurassic reef development and their implications for reservoir formation. The seismic reflection patterns of reefs and carbonate platforms are primarily characterized by high-amplitude discontinuous to chaotic reflections, with occasional blank reflections or weak, sub-parallel reflections, as well as significant high-velocity, high Bouguer gravity and low reduced-to-pole (RTP) magnetic anomalies. Atolls, stratiform reefs, and patch reefs are located on the local topographic highs of the platform. Three vertical evolutionary stages have been identified based on the size of atolls and fluctuations in relative sea level: initiation, growth, and submergence. The location of bioherms and carbonate platforms was influenced by paleotectonic topography, while their horizontal distribution was affected by variations in relative sea level. Furthermore, the reef limestone reservoirs from the upper member of the Middle Jurassic, combined with the mudstone source rocks from the Lower Jurassic and the lower section of the Middle Jurassic, as well as the bathyal mudstone caprocks from the lower part of the Late Jurassic, create highly favorable conditions for hydrocarbon accumulation. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

31 pages, 4555 KiB  
Article
The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits
by Farida Issatayeva, Auez Abetov, Gulzada Umirova, Aigerim Abdullina, Zhanibek Mustafin and Oleksii Karpenko
Geosciences 2025, 15(6), 190; https://doi.org/10.3390/geosciences15060190 - 22 May 2025
Viewed by 539
Abstract
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of [...] Read more.
In this article, we consider the roles of transcrustal magma- and fluid-conducting faults (TCMFCFs) in the formation of mineral deposits, showing the importance of deep sources of heat and hydrothermal solutions in the genesis and history of deposit formation. As a result of the impact on the lithosphere of mantle plumes rising along TCMFCFs, intense block deformations and tectonic movements are generated; rift systems, and volcanic–plutonic belts spatially combined with them, are formed; and intrusive bodies are introduced. These processes cause epithermal ore formation as a consequence of the impact of mantle plumes rising along TCMFCF to the lithosphere. At hydrocarbon fields, they play extremely important roles in conductive and convective heat, as well as in mass transfer to the area of hydrocarbon generation, determining the relationship between the processes of lithogenesis and tectogenesis, and activating the generation of hydrocarbons from oil and gas source rock. Detection of TCMFCFs was carried out using MMSS (the method of microseismic sounding) and MTSM (the magnetotelluric sounding method), in combination with other geological and geophysical data. Practical examples are provided for mineral deposits where subvertical transcrustal columns of increased permeability, traced to considerable depths, have been found; the nature of these unique structures is related to faults of pre-Paleozoic emplacement, which determined the fragmentation of the sub-crystalline structure of the Earth and later, while developing, inherited the conditions of volumetric fluid dynamics, where the residual forms of functioning of fluid-conducting thermohydrocolumns are granitoid batholiths and other magmatic bodies. Experimental modeling of deep processes allowed us to identify the quantum character of crystal structure interactions of minerals with “inert” gases under elevated thermobaric conditions. The roles of helium, nitrogen, and hydrogen in changing the physical properties of rocks, in accordance with their intrastructural diffusion, has been clarified; as a result of low-energy impact, stress fields are formed in the solid rock skeleton, the structures and textures of rocks are rearranged, and general porosity develops. As the pressure increases, energetic interactions intensify, leading to deformations, phase transitions, and the formation of chemical bonds under the conditions of an unstable geological environment, instability which grows with increasing gas saturation, pressure, and temperature. The processes of heat and mass transfer through TCMFCFs to the Earth’s surface occur in stages, accompanied by a release of energy that can manifest as explosions on the surface, in coal and ore mines, and during earthquakes and volcanic eruptions. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

16 pages, 2462 KiB  
Article
Study on the Combustion Behavior and Kinetic Characteristics of Semi-Coke from Oil Shale
by Fajun Zhao, Lei Zhang, Sen Liu, Tianyu Wang, Peiyong Xue, Mingxuan Wu and Jiankang Yun
Appl. Sci. 2025, 15(11), 5797; https://doi.org/10.3390/app15115797 - 22 May 2025
Viewed by 645
Abstract
This study systematically investigates the combustion behavior and kinetic characteristics of oil shale semi-coke. Thermogravimetric analysis (TGA) experiments, combined with both model-free and model-based methods, were used to explore the thermal characteristics, kinetic parameters, and reaction mechanisms of the combustion process. The results [...] Read more.
This study systematically investigates the combustion behavior and kinetic characteristics of oil shale semi-coke. Thermogravimetric analysis (TGA) experiments, combined with both model-free and model-based methods, were used to explore the thermal characteristics, kinetic parameters, and reaction mechanisms of the combustion process. The results show that the combustion process of oil shale semi-coke can be divided into three stages: a low-temperature stage (50–310 °C), a mid-temperature stage (310–670 °C), and a high-temperature stage (670–950 °C). The mid-temperature stage is the core of the combustion process, accounting for approximately 28–37% of the total mass loss, with the released energy concentrated and exhibiting significant thermal chemical activity. Kinetic parameters calculated using the model-free methods (OFW and KAS) and the model-based Coats–Redfern method reveal that the activation energy gradually increases with the conversion rate, indicating a multi-step reaction characteristic of the combustion process. The F2-R3-F2 model, with its segmented mechanism (boundary layer + second-order reaction), better fits the physicochemical changes during semi-coke combustion, and the analysis of mineral phase transformations is more reasonable. Therefore, the F2-R3-F2 model is identified as the optimal model in this study and provides a scientific basis for the optimization of oil shale semi-coke combustion processes. Furthermore, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were conducted on oil shale semi-coke samples before and after combustion to study the changes in the combustion residues. SEM images show that after combustion, the surface of the semi-coke sample exhibits a large number of irregular holes, with increased pore size and a honeycomb-like structure, indicating that the carbonaceous components were oxidized and decomposed during combustion, forming a porous structure. XRD analysis shows that the characteristic peaks of quartz (Q) are enhanced after combustion, while those of calcite (C) and pyrite (P) are weakened, suggesting that the mineral components underwent decomposition and transformation during combustion, particularly the decomposition of calcite into CO2 at high temperatures. Infrared spectroscopy (IR) analysis reveals that after combustion, the amount of hydrocarbons in the semi-coke decreases, while aromatic compounds and incompletely decomposed organic materials are retained, further confirming the changes in organic matter during combustion. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

18 pages, 3981 KiB  
Article
Initial Characterization of Low Molecular Weight Hydrocarbons in an Oil Sands Pit Lake
by Han Bao, Chenlu Wang, Bridget S. H. Steven and Greg F. Slater
Earth 2025, 6(2), 44; https://doi.org/10.3390/earth6020044 - 20 May 2025
Viewed by 818
Abstract
Water-capped tailings technology (WCTT) is a strategy where oil sand tailings are sequestered within a mined-out pit and overlayed with a layer of water in order to sequester tailings with the aim that the resulting pit lake will support aquatic plants and organisms [...] Read more.
Water-capped tailings technology (WCTT) is a strategy where oil sand tailings are sequestered within a mined-out pit and overlayed with a layer of water in order to sequester tailings with the aim that the resulting pit lake will support aquatic plants and organisms over time. The Base Mine Lake Demonstration (BML) is the first full-scale demonstration of a pit lake in the Athabasca Oil Sands Region (AOSR). In the BML, the release of methane from the fluid tailings influences several key processes, including the flux of greenhouse gases, microbial oxygen consumption in the water column, and ebullition-facilitated transport of organics from the fluid tailings to the lake surface. It is hypothesized that the residual low molecular weight hydrocarbons (LMWHCs) derived from diluent naphtha used during bitumen extraction processes are the carbon sources fueling ongoing microbial methanogenesis within the BML. The aims of this study were to identify the LMWHCs in the BML fluid tailings, to elucidate their sources, and to assess the extent of biogeochemical cycling affecting them. A headspace GC/MS analysis identified 84, 44, and 56 LMWHCs (C4–C10) present in naphtha, unprocessed bitumen ore, and fluid tailings, respectively. Equilibrium mass balance assessment indicated that the vast majority (>95%) of LMWHCs were absorbed within residual bitumen rather than dissolving into tailings pore water. Such absorbed compounds would not be readily available to in situ microbial communities but would represent a long-term source for methanogenesis. Chromatographic analysis revealed that most biodegradable compounds (n-alkanes and BTEX) were present in the naphtha but not in fluid tailings or bitumen ore, implying they are sourced from the naphtha and have been preferentially biodegraded after being deposited. Among the LMWHCs observed in bitumen ore, naphtha, and fluid tailings, C2-cyclohexanes had the highest relative abundance in tailings samples, implying their relatively high recalcitrance to in situ biodegradation. Full article
Show Figures

Graphical abstract

18 pages, 4846 KiB  
Article
Evaluation of Vacuum Residue Decomposition Kinetics with a Catalyst by Thermogravimetric Analysis
by Daulet Makenov, Almas Tusipkhan, Akmaral Zh. Sarsenbekova, Murzabek Baikenov, Nazerke Balpanova, Darzhan Aitbekova, Alma Tateeva, Dariya Izbastenova, Bibimariyam Kokzhalova and Fengyun Ma
Catalysts 2025, 15(5), 493; https://doi.org/10.3390/catal15050493 - 20 May 2025
Viewed by 582
Abstract
The study of thermal developments of heavy oil feedstock, vacuum residue in particular, is a relevant factor for the development of technologies for the processing and production of petroleum products. This paper investigates the process of thermal decomposition of the vacuum residue in [...] Read more.
The study of thermal developments of heavy oil feedstock, vacuum residue in particular, is a relevant factor for the development of technologies for the processing and production of petroleum products. This paper investigates the process of thermal decomposition of the vacuum residue in the manufacturing of catalyst and polymer material using thermal analysis methods, including thermogravimetric analysis (TGA) in isothermal and dynamic modes. Particular attention is paid to the measurement of kinetic parameters of thermolysis using model and non-model methods, which allows us to assess the output power and other kinetic characteristics of decomposition. The results obtained can be used for the development of new oil refining technologies for significantly increasing the efficiency and safety of processes. During the course of this study, experimental and theoretical activation energy values were obtained for the vacuum residue without a catalyst (experimentally: 91.54 kJ mol−1/theoretically: 91.35 kJ mol−1) and a sample with the presence of a catalyst (experimentally: 89.68 kJ mol−1/theoretically: 90.87 kJ mol−1). The reduction in activation energy in the presence of the catalyst confirms its catalytic activity and potential for processing heavy hydrocarbon feedstock. Full article
Show Figures

Graphical abstract

16 pages, 3156 KiB  
Article
Adsorptive Behavior of Corn-Cob- and Straw-Derived Biochar for Polycyclic Aromatic Hydrocarbon Removal from Aqueous Systems
by Jelena Beljin, Marijana Kragulj Isakovski, Jasmina Agbaba, Maja Vujić, Snežana Maletić and Aleksandra Tubić
Processes 2025, 13(5), 1521; https://doi.org/10.3390/pr13051521 - 15 May 2025
Viewed by 563
Abstract
This study investigates the potential of biochar derived from agricultural residues—corn cob and wheat straw—for removing polycyclic aromatic hydrocarbons (PAHs) from aqueous systems. Biochars were produced via pyrolysis at 700 °C and characterized using BET, SEM, EDS, FTIR, and pXRD to evaluate physicochemical [...] Read more.
This study investigates the potential of biochar derived from agricultural residues—corn cob and wheat straw—for removing polycyclic aromatic hydrocarbons (PAHs) from aqueous systems. Biochars were produced via pyrolysis at 700 °C and characterized using BET, SEM, EDS, FTIR, and pXRD to evaluate physicochemical properties. Adsorption experiments with naphthalene, fluorene, fluoranthene, and pyrene revealed high adsorption affinities (Log Kd = 4.35–5.69 L/kg), with Freundlich isotherm modeling indicating nonlinear behavior (n = 0.732–0.923), suggesting a combination of pore filling and chemical interactions such as π-π stacking and hydrogen bonding. Corn-cob biochar, rich in lignin, exhibited a higher surface area (111 m2/g) and greater affinity for fluorene, while wheat-straw biochar, with a higher oxygen content and more functional groups, performed better for naphthalene and pyrene. FTIR and pXRD confirmed aromatic and graphitic structures facilitating PAH interactions. These results underscore the importance of feedstock selection and pyrolysis conditions in tailoring biochar properties for specific pollutants. While both biochars compare favorably with conventional adsorbents like activated carbon, further research on long-term stability in complex matrices is needed. Overall, the findings support the development of cost-effective, scalable, and eco-friendly biochar-based technologies for water remediation. Full article
(This article belongs to the Special Issue Green Conversion Processes of Waste and Biomass Materials)
Show Figures

Figure 1

18 pages, 3713 KiB  
Article
Estimation of Biomass Burning Emissions in South and Southeast Asia Based on FY-4A Satellite Observations
by Yajun Wang, Yu Tian and Yusheng Shi
Atmosphere 2025, 16(5), 582; https://doi.org/10.3390/atmos16050582 - 13 May 2025
Cited by 1 | Viewed by 624
Abstract
In recent years, frequent open biomass burning (OBB) activities such as agricultural residue burning and forest fires have led to severe air pollution and carbon emissions across South and Southeast Asia (SSEA). We selected this area as our study area and divided it [...] Read more.
In recent years, frequent open biomass burning (OBB) activities such as agricultural residue burning and forest fires have led to severe air pollution and carbon emissions across South and Southeast Asia (SSEA). We selected this area as our study area and divided it into two sub-regions based on climate characteristics and geographical location: the South Asian Subcontinent (SEAS), which includes India, Laos, Thailand, Cambodia, etc., and Equatorial Asia (EQAS), which includes Indonesia, Malaysia, etc. However, existing methods—primarily emission inventories relying on burned area, fuel load, and emission factors—often lack accuracy and temporal resolution for capturing fire dynamics. Therefore, in this study, we employed high-resolution fire point data from China’s Feng Yun-4A (FY-4A) geostationary satellite and the Fire Radiative Power (FRP) method to construct a daily OBB emission inventory at a 5 km resolution in this region for 2020–2022. The results show that the average annual emissions of carbon (C), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), non-methane organic gases (NMOGs), hydrogen (H2), nitrogen oxide (NOX), sulfur dioxide (SO2), fine particulate matter (PM2.5), total particulate matter (TPM), total particulate carbon (TPC), organic carbon (OC), black carbon (BC), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), non-methane hydrocarbons (NMHCs), and particulate matter ≤ 10 μm (PM10) are 178.39, 598.10, 33.11, 1.44, 4.77, 0.81, 1.02, 0.28, 3.47, 5.58, 2.29, 2.34, 0.24, 0.58, 0.43, 0.99, 1.87, and 3.84 Tg/a, respectively. Taking C emission as an example, 90% of SSEA’s emissions come from SEAS, especially concentrated in Laos and western Thailand. Due to the La Niña climate anomaly in 2021, emissions surged, while EQAS showed continuous annual growth at 16.7%. Forest and woodland fires were the dominant sources, accounting for over 85% of total emissions. Compared with datasets such as the Global Fire Emissions Database (GFED) and the Global Fire Assimilation System (GFAS), FY-4A showed stronger sensitivity and regional adaptability, especially in SEAS. This work provides a robust dataset for carbon source identification, air quality modeling, and regional pollution control strategies. Full article
Show Figures

Figure 1

29 pages, 18050 KiB  
Article
Simulating Oil Spill Evolution and Environmental Impact with Specialized Software: A Case Study for the Black Sea
by Dinu Atodiresei, Catalin Popa and Vasile Dobref
Sustainability 2025, 17(9), 3770; https://doi.org/10.3390/su17093770 - 22 Apr 2025
Viewed by 1072
Abstract
Oil spills represent a significant environmental hazard, particularly in marine ecosystems, where their impacts extend to coastal infrastructure, biodiversity, and economic activities. This study utilizes GNOME v.47.2 (General NOAA Operational Modeling Environment) and ADIOS2 v.2.10.2 (Automated Data Inquiry for Oil Spills) to simulate [...] Read more.
Oil spills represent a significant environmental hazard, particularly in marine ecosystems, where their impacts extend to coastal infrastructure, biodiversity, and economic activities. This study utilizes GNOME v.47.2 (General NOAA Operational Modeling Environment) and ADIOS2 v.2.10.2 (Automated Data Inquiry for Oil Spills) to simulate and analyze oil spill dynamics in the Romanian sector of the Black Sea, focusing on trajectory prediction, hydrocarbon weathering, and shoreline contamination risk assessment. The research explores multiple spill scenarios involving different hydrocarbon types (light vs. heavy oils), vessel dynamics, and real-time environmental variables (wind, currents, temperature). The findings reveal that lighter hydrocarbons (e.g., gasoline, aviation fuel) tend to evaporate quickly, while heavier fractions (e.g., crude oil, fuel oil #6) persist in the marine environment and pose a higher risk of coastal pollution. In the first case study, a spill of 10,000 metric tons of medium oil (Arabian Medium EXXON) was simulated using GNOME v.47.2, showing that after 22 h, the slick reached the shoreline. Under forecasted hydro-meteorological conditions, 27% evaporated, 1% dispersed, and 72% remained for mechanical or chemical intervention. In the second simulation, 10,000 metric tons of gasoline were released, and within 6 h, 98% evaporated, with only minor residues reaching the shore. A real-world validation case was also conducted using the December 2024 Kerch Strait oil spill incident, where the model accurately predicted the early arrival of light fractions and delayed coastal contamination by fuel oil carried by subsurface currents. These results emphasize the need for future research focused on the vertical dispersion dynamics of heavier hydrocarbon fractions. Full article
Show Figures

Figure 1

Back to TopTop