The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits
Abstract
:1. Introduction
2. Study Areas and Geological Setting
2.1. Precaspian Depression
2.2. Turan Plate
2.3. The Astrakhan Gas Condensate Field
2.4. The Kumkol Oil and Gas Field
2.5. The Kyzylkiya Oil and Gas Field
2.6. Northern Karazhanbas
2.7. The Streltsovskoye Ore Field
2.8. Uzon Geyser Volcanic–Tectonic Depression and the Kikhpinych Volcanic Massif
3. Materials and Methods
- The physical validity of the Tikhonov–Cagniard plane–wave model, which provides a sufficiently accurate approximation of magnetotelluric relationships.
- The development of methods ensuring stable impedance estimation.
- The transition from scalar to tensor definitions due to the influence of horizontal geoelectrical inhomogeneities.
- The elimination of industrial and model-induced noise, enabling the determination of magnetotelluric transfer functions with high accuracy.
4. Findings
4.1. Ore Mineral Deposits (Streltsovskoye Ore Field)
4.2. Hydrocarbon Fields
4.2.1. The Astrakhan Gas Condensate Field
4.2.2. The Kumkol Oil and Gas Field
4.2.3. The Kyzylkiya Oil and Gas Field
4.2.4. Northern Karazhanbas Oil Field
5. Discussion
5.1. Nature of TCMFCFs
5.1.1. Methane Explosions in Coal Mines
5.1.2. Explosions in Ore Mines
5.1.3. Surface or Near-Surface (High-Temperature, Plasmoid) Explosions
5.1.4. Volcanic Eruptions
- An irregularly shaped ancient shallow-depth crystallized magmatic source (intrusive) of acidic composition in the depth range from 2 to 3 to 10 to 12 km beneath the eastern part of the Uzon–Geizernaya Volcanic–Tectonic Depression (structures 3 and 4, outlined with white dashed lines);
- A magmatic chamber (area of basalt melt concentration) within the depth range of 15–20 km beneath the ancient crystallized source (structure 8).
- A modern peripheral magmatic source (area of basalt melt concentration) beneath the Kikhpinych volcano, within the depth range of 5–10 km (structure 7, outlined by white dotted dashed lines).
- Possible pathways for magma ingress into magmatic sources, gravitating toward the upper boundary of the crystalline basement from deeper horizons (subvertical heterogeneities marked by white dashed lines with arrows).
5.1.5. Discharge of Excess Energy in the Form of Earthquakes
6. Conclusions
- 1.
- Demonstrated that heat–mass transfer and gas emission processes occur in a stepwise manner with energy release, altering the porosity and permeability of rocks under the influences of reservoir pressures and intrastructural diffusion.
- 2.
- Revealed quantum interactions between crustal minerals and inert gases (helium, nitrogen, and hydrogen) under high temperatures and pressures, leading to stress field formation, rock reorganization, and increased porosity.
- 3.
- It confirmed the stepwise migration of fluids (helium, nitrogen, and hydrogen as indicators of deep-seated heat–mass transfer) and mechanisms of deep energy release along transcrustal fluid- and magma-conducting faults during earthquakes, volcanic activity, and the formation of magmatic chambers, as well as explosions in coal and ore mines and surface outbursts due to deep energy emissions correlated with degassing zones.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bi, H.; Fang, H.; Zhang, P.; Sudholz, Z.; Miller, M.S.; Yu, P.; Gao, R. Seismic Evidence for a Transcrustal Magmatic Pathway Contributing to Critical Metal Deposits. Geophys. Res. Lett. 2024, 51, e2023GL104935. [Google Scholar] [CrossRef]
- Bailey, L.R.; Kirk, J.; Hemming, S.R.; Krantz, R.W.; Reiners, P.W. Eocene fault-controlled fluid flow and mineralization in the Paradox Basin, United States. Geology 2021, 50, 326–330. [Google Scholar] [CrossRef]
- Jørgensen, T.R.C.; Gibson, H.L.; Roots, E.A.; Vayavur, R.; Hill, G.J.; Snyder, D.B.; Naghizadeh, M. The implications of crustal architecture and transcrustal upflow zones on the metal endowment of a world-class mineral district. Sci. Rep. 2022, 12, 14710. [Google Scholar] [CrossRef]
- Li, Y.; Pan, J.-Y.; Wu, L.-G.; He, S.; Bachmann, O.; Li, X.-H. Transient tin mineralization from cooling of magmatic fluids in a long-lived system. Geology 2023, 51, 305–309. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Wang, X.; Li, Q.; Liu, Y.; Tang, G. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints. Sci. China Ser. D Earth Sci. 2009, 52, 1262–1278. [Google Scholar] [CrossRef]
- Brovarone, A.V.; Wong, K.; Giovannelli, D.; Pins, B.; Gaillard, F.; Massuyeau, M.; Nestola, F.; Pamato, M.G.; Daniel, I. Forms and fluxes of carbon: Surface to deep. In Treatise on Geochemistry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 647–698. ISBN 9780323997638. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, D.; Liu, Q.; Jiang, S.; Wang, X.; Wang, Y.; Ma, C.; Wu, A.; Zhang, K.; Ma, Y. Magmatism and hydrocarbon accumulation in sedimentary basins: A review. Earth-Science Rev. 2023, 244, 104531. [Google Scholar] [CrossRef]
- Qteishat, A.; El-Shafeiy, M.; Farouk, S.; Ahmad, F.; Al-Kahtany, F.; Gentzis, T.; Hamdy, D. Organic geochemical characterization and hydrocarbon generation modeling of Paleozoic-Paleogene shales, Wadi Sirhan basin, south-eastern Jordan. Mar. Pet. Geol. 2024, 170, 107152. [Google Scholar] [CrossRef]
- Peshkov, G.A.; Chekhonin, E.M.; Rüpke, L.H.; Musikhin, K.A.; Bogdanov, O.A.; Myasnikov, A.V. Impact of differing heat flow solutions on hydrocarbon generation predictions: A case study from West Siberian Basin. Mar. Pet. Geol. 2020, 124, 104807. [Google Scholar] [CrossRef]
- Nuzzo, M.; Tomonaga, Y.; Schmidt, M.; Valadares, V.; Faber, E.; Piñero, E.; Reitz, A.; Haeckel, M.; Tyroller, L.; Godinho, E.; et al. Formation and migration of hydrocarbons in deeply buried sediments of the Gulf of Cadiz convergent plate boundary—Insights from the hydrocarbon and helium isotope geochemistry of mud volcano fluids. Mar. Geol. 2019, 410, 56–69. [Google Scholar] [CrossRef]
- Belyaev, E.V. Endogenous Ore Formation—Kazan (Volga Region); Federal University: Kazan, Russia, 2024; 45p, UDC: 553.3+553.6. [Google Scholar]
- Kovalev, A.A.; Leonenko, E.I. Minerageny of Sedimentary Basins of Continents and Pericontinental Areas (Methodological Guide, Collection); Roskomnedra: Moscow, Russia, 1998; 590p. [Google Scholar]
- Rundkvist, D.V. Global Metallogeny. In Smirnov Collection—95 (Scientific and Literary Almanac); VINITI Publishing House: Moscow, Russia, 1995; pp. 92–123. [Google Scholar]
- Gufeld, I.L.; Novoselov, O.N. Planetary Hydrogen Degassing Controlling a Self-Sustaining Triggered Seismic Process Across a Wide Depth Range. Dyn. Process. Geospheres 2022, 14, 118–129. [Google Scholar] [CrossRef]
- Glagolev, K.V.; Morozov, A.N. Physical Thermodynamics, 2nd ed.; Publishing House of Moscow State Technical University: Moscow, Russia, 2007; 270p, ISBN 978-5-7038-3026-0. [Google Scholar]
- Pospelov, G.L.; Lapukhov, A.S. Structure and Development of Ore-Forming Fluid Dynamic Systems with Polymorphic Zonality (on the example of the Salair Ore Field). In Physical and Physicochemical Processes in Dynamic Ore-Forming Systems; Nauka, Siberian Branch: Novosibirsk, Russia, 1971; pp. 8–55. [Google Scholar]
- Kotova, N.P. Geotectonic Features of Formation and Mineralogenic Zoning of Eastern Transbaikalia for Fluorite. Vestnik of ZabSU. 2011. No. 12. Available online: https://cyberleninka.ru/article/n/geotektonicheskie-osobennosti-formirovaniya-i-mineragenicheskoe-rayonirovanie-vostochnogo-zabaykalya-na-flyuorit (accessed on 10 February 2024).
- Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences. Fault Formation and Seismicity in the Lithosphere: Tectonophysical Concepts and Consequences. In Proceedings of the Materials of the All-Russian Conference (Irkutsk, Russia, 18–21 August 2009); Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences: Irkutsk, Russia, 2009; Volume 2, 227p. [Google Scholar]
- Ringwood, A.E. Composition and Petrology of the Earth’s Mantle; Translated from English; MacGraw-Hill: New York, NY, USA, 1970; 584p. [Google Scholar]
- Samsonov, Y.a.P.; Savelyev, A.K. Geology of Deposits of Fluorine-Containing Raw Material; MacGraw-Hill: New York, NY, USA, 1980; 216p. [Google Scholar]
- Alieva, O.Z.; Koplus, A.V. Evolutionary model of ore potential formation of fluorite epithermal mineralization. In Proceedings of the III International Conference “New Ideas in Earth Sciences”: Report Summary, Moscow, Russia, 10–13 April 1997. [Google Scholar]
- Harland, W.B.; Armstrong, R.L.; Cox, A.W. A Geologic Time Scale; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Iskandarov, M.K.; Abdullaev, G.S.; Mirzaev, A.U.; Khakimzyanov, I.N.; Umarov, S.H.A. Scientific and innovative research of oil and gas formation processes in Ustyurt oil and gas region. Oil Prov. 2022, 3, 23–55. [Google Scholar] [CrossRef]
- Laverov, N.P.; Velichkin, V.I.; Vlasov, B.P.; Aleshin, A.P.; Petrov, V.A. Uranium and Molybdenum-Uranium Deposits in Areas of Development of Continental Intracrustal Magmatism: Geology, Geodynamic and Physicochemical Conditions of Formation; IFZ RAS, IGEM RAS: Moscow, Russia, 2012; 320p. [Google Scholar]
- Belousov, V.V.; Volvovsky, B.S.; Volvovsky, I.S.; Kaila, K.; Marusey, A.; Khamrabaev, K.I. Deep Structure of Central Asia Along the Geotraverse Tien Shan—Pamir—Himalayas. In Proceedings of the 27th International Geological Congress, Moscow, Russia, 4–14 August 1984; Tectonics of Asia: Proceedings. Nauka: Moscow, Russia, 1984; Volume 5, pp. 24–42. [Google Scholar]
- Milanovsky, E.E. Geology of the USSR.—Part 2. The Ural-Mongolian Belt and Adjacent Metaplatform Areas; Moscow State University Publishing House: Moscow, Russia, 1989; 271p, ISBN 5-211-00433-7. Available online: https://www.geokniga.org/bookfiles/geokniga-geologiya-sssr-chast-2-uralo-mongolskiy-podvizhnyy-poyas-i-smezhnye-metaplatfo.pdf (accessed on 1 March 2024).
- Pavlenko, Y.U.V. Deep Structure and Minerageny of Southeastern Transbaikalia: Monograph; Chita State University: Chita, Russia, 2009; 200p. [Google Scholar]
- Abetov, A.E.; Alyoshin, A.P.; Akhmetov, E.M.; Gorbatikov, A.V.; Erdyakov, I.L.; Malyshev, O.A. Innovative method of microseismic sounding as an effective tool for studying the structures of oil and ore deposits. In Proceedings of the KGF, Oil & Gas, Astana, Kazakhstan, 14–18 September 2015. [Google Scholar]
- Thomson, I.N.; Krivtsov, V.S.; Kochneva, N.T. Ore-Bearing Potential of Continental Volcanic Belts; Nedra: Moscow, Russia, 1982; 256p. [Google Scholar]
- Milanovsky, E.E. Riftogenesis in Earth’s History. In Riftogenesis in Mobile Belts; Nedra: Moscow, Russia, 1987; 297p. [Google Scholar]
- Kochneva, N.T.; Kravtsov, V.S.; Polohov, V.P.; Polyakova, O.G.; Sidorov, A.A.; Tananaeva, G.A.; Thomson, I.N.; Filimonova, L.G. Ore-Bearing Capacity of Continental Volcanic Belts; Nedra: Moscow, Russia, 1982. [Google Scholar]
- Alfred, K. (Ed.) The Central Asian Orogenic Belt; Geology, Evolution, Tectonics, and Models; Schweizerbart: Stuttgart, Germany, 2015; 313p, ISBN 978-3-443-11033-8. [Google Scholar]
- Bekzhanov, G.R.; Koshkin, V.Y.; Nikitchenko, I.I. Geological Structure of Kazakhstan; AMR RK: Almaty, Kazakhstan, 2000; 396p. [Google Scholar]
- Glasby, G.P. Abiogenic origin of hydrocarbons: An historical overview. Resour. Geol. 2006, 56, 83–96. [Google Scholar] [CrossRef]
- Astafiev, D.A. Study of naphthidogenesis based on new features of the deep structure and geodynamics of the Earth. From the Hypothesis of the Organic Origin of Oil and Polygenesis Compromises to the Scientific Theory of the Inorganic Origin of Oil: 7th Kudryavtsev Readings. In Proceedings of the All-Russian Conference on the Deep Genesis of Oil and Gas, Moscow, Russia, 21–23 October 2019; Rosgeology, Central Geophysical Expedition, MOIP: Moscow, Russia, 2019. 1pAvailable online: http://conference.deepoil.ru/images/stories/docs/7KR/theses/Astafiev_Theses.pdf (accessed on 15 March 2024).
- Rodkin, M.V. Theories of Oil Origin. Thesis—Antithesis—Synthesis. Chem. Life 2005, 6, 14–17. [Google Scholar]
- Pikovsky, Y.U.I. Two Concepts of Oil Origin. J. All-Union Chem. Soc. Named After D.I. Mendeleev 1986, XXXI, 5. [Google Scholar]
- Höök, M.; Bardi, U.; Feng, L.; Pang, X. Development of oil formation theories and their importance for peak oil. Mar. Pet. Geol. 2010, 27, 1995–2004. [Google Scholar] [CrossRef]
- Shakhnovsky, I.M. Origin of Oil Hydrocarbons; GEOS: Moscow, Russia, 2001; 72p. [Google Scholar]
- Zubkov, V.S. Tendencies in the distribution and hypotheses of the genesis of condensed naphthides in magmatic rocks from various geodynamic environments. Geochem. Int. 2009, 47, 741–757. [Google Scholar] [CrossRef]
- Lurye, M.A.; Schmidt, F.K. Sulfur content, metalliferousness, carbon and sulfur isotopy of oils as genetic characteristics. Electron. J. Deep. Oil 2013, 1, 448–459. Available online: http://journal.deepoil.ru/images/stories/docs/DO-1-4-2013/4_Lurije-Shmidt_1-4-2013.pdf (accessed on 23 April 2024).
- Balitsky, V.S.; Bondarenko, G.V.; Pironon, J.; Penteley, S.V.; Balitskaya, L.V.; Golunova, M.A.; Bublikova, T.M. On the causes of vertical zoning in hydrocarbon distribution in earth interior: Experimental evidence of crude oil cracking in high-temperature aqueous-hydrocarbon fluids. Superkriticheskie Flyuidy Theory I Prakt. 2013, V8, 39–60. Available online: https://scf-tp.ru/articles/2013_02/3_r.html (accessed on 24 April 2024).
- Abetov, A.E.; Alyoshin, A.P.; Akhmetov, E.M.; Gorbatikov, A.V.; Erdyakov, I.L.; Malyshev, O.A. Identification of transcrustal magmatic and fluid -conducting ore-generating structures using an innovative method of microseismic sounding (MSS). In Proceedings of the Modern Problems of Geology, Geophysics and Metallogeny, Tashkent, Uzbekistan, 5–6 May 2015; pp. 13–18. [Google Scholar]
- Bazhenova, O.K.; Burlin, Y.u.K.; Sokolov, B.A.; Khain, V.E. Geology and Geochemistry of Oil and Gas; Moscow State University: Moscow, Russia, 2012; 432p. [Google Scholar]
- Kharakhinov, V.V. Oil and Gas Geodynamics of the West Siberian Sedimentary Megabasin. Geol. Oil Gas 2019, 2, 5–21. Available online: https://cyberleninka.ru/article/n/neftegazovaya-geodinamika-zapadno-sibirskogo-osadochnogo-megabasseyna/viewer (accessed on 13 May 2024).
- Barenbaum, A.A. New ideas about the origin of oil and gas in connection with the discovery of the phenomenon of replenishment of reserves of exploited fields. Georesursy 2019, 21, 34–39. [Google Scholar] [CrossRef]
- Iktisanov, V.A. Synthesis rate during field development. Oilfield Bus. 2017, 4, 49–54. [Google Scholar]
- Chersky, N.V.; Melnikov, V.P.; Tsarev, V.P. The phenomenon of hydrocarbon generation from extremely oxidized compounds of carbon and water. Dokl. AN 1986, 288, 201–204. [Google Scholar]
- Zakirov, S.N.; Zakirov, E.S.; Barenbaum, A.A. Geosynthesis and the origin of oil and gas. In Proceedings of the VIII Int. Symposium: Advanced Technologies of Development, Enhanced Oil Recovery and Wells Exploration, Moscow, Russia, 12–13 April 2013; pp. 43–46. [Google Scholar]
- Molchanov, V.I. Hydrogen Generation in Lithogenesis; Nauka: Novosibirsk, Russia, 1981; 142p. [Google Scholar]
- Molchanov, V.I.; Gontsov, A.A. Modeling of Oil and Gas Formation; OIGGM Publisher: Novosibirsk, Russia, 1992; 246p. [Google Scholar]
- Chersky, N.V.; Tsarev, V.P.; Soroko, T.I.; Kuznetsov, O.L. Influence of Tectonic and Seismic Processes on the Formation and Accumulation of Hydrocarbons; Nauka Publisher: Novosibirsk, Russia, 1985; 224p. [Google Scholar]
- Alekseev, A.S.; Burlin, Y.U.K. On the Nature of Late Paleozoic ’Carbonate Platforms’ and ’Atolls’ of the Pre-Caspian Basin in Relation to Their Hydrocarbon Potential. Bull. Mosc. Soc. Nat. Geol. Sect. 2011, 86, 3–13. [Google Scholar]
- Volozh, Y.U.A.; Parasyna, V.S. Astrakhan Carbonate Massif: Structure and Hydrocarbon Potential; Nauchny Mir: Moscow, Russia, 2008; 221p. [Google Scholar]
- Akhiyarov, A.V.; Semenova, K.M. Paleozoic carbonate platforms of the Caspian Basin as oil and gas exploration criteria. Gazprom VNIIGAZ 2013, 16, 238–252. [Google Scholar]
- Bakirov, E.A.; Yermolkin, V.I.; Larin, V.I.; Maltseva, A.K.; Rozhkov, E.L. Geology of Oil and Gas; GeoKniga: Moscow, Russia, 1990; 240p. [Google Scholar]
- Volozh, Y.u.A.; Bykadorov, V.A.; Antipov, M.P.; Sapozhnikov, R.B. Paleozoic sections of Turgai-Syrdarya and Ustyurt region—Structural features (related to the petroleum potential of the cover’s deep layers). Neft. Geol. Teor. I Prakt. 2016, 11, 1–45. [Google Scholar] [CrossRef]
- Gavrilov, V.P.; Golovanova, S.I.; Tarkhanov, M.I. Modern Concept of the formation of the Astrakhan Gas Condensate Field based on geological and geochemical data. Geochem. Oil Gas 2006, 6, 24–28. [Google Scholar]
- Lapshin, V.I. Thermogasdynamical Features of the Formation and Extraction of Reservoir Fluids at the Astrakhan Field: Review of Information; Gazprom VNIIGAZ: Moscow, Russia, 2010; 83p. [Google Scholar]
- Bulekbaev, Z.E.; Votsalevsky, E.S.; Iskuzhiev, B.A. Oil and Gas Fields of Kazakhstan; Reference Book: Almaty, Kazakhstan, 1996; 325p. [Google Scholar]
- Turkov, O.S.; Kuantaev, N.E.; Kulumbetova, G.E.; Yesenaly, D.D. Atlas of Oil and Gas Fields of the Republic of Kazakhstan. Almaty Soc. Organ. Kazakhstan Soc. Uphole Oilman Geol. 2020, 2, 84–85. [Google Scholar]
- Ishchukova, L.P.; Igoshin, Y.A.; Avdeev, B.V.; Gubkin, G.N.; Filipenko, Y.A.; Popova, A.I.; Rogova, V.P.; Makushin, M.F.; Khomentovskiy, B.N.; Spirin, E.K. Geology of the Urulyungeu Ore District and Molybdenum-Uranium Deposits of the Streltsovsk Ore Field; JSC “Geoinformmark”: Moscow, Russia, 1998; 524p. [Google Scholar]
- Lizunkin, M.V.; Beydin, A.V. Assessment of the Stress-Strain State of the Rock Mass in the Strelets Ore Field. In Geomechanics in Mining: Reports of the All-Russian Scientific and Technical Conference with International Participation, June 4–5, 2014; IGD Ural Branch of the Russian Academy of Sciences: Yekaterinburg, Russia, 2014; pp. 30–38. Available online: http://webmineral.ru/deposits/item.php?id=2356 (accessed on 20 April 2024).
- Kugaenko, Y.A.; Saltykov, V.A.; Gorbatikov, A.V.; Stepanova, M.Y. Development of the model of the Uzon -Geysernaya volcano -tectonic depression area and the Kikhpinych volcano (Kamchatka) based on the results of a joint analysis of microseismic sounding data and local geodynamic activity—Moscow. Phys. Earth 2015, 3, 89–101. [Google Scholar] [CrossRef]
- Gamburtsev, G.A.; Riznichenko, Y.u.V.; Berzon, I.S.; Epinatieva, A.M.; Karus, E.I. Correlation Method of Refracted Waves; Publishing House of the Academy of Sciences of the USSR: Moscow, Russia, 1952; 239p. [Google Scholar]
- Sakulina, T.S.; Kashubin, S.N.; Pavlenkova, G.A. Deep Seismic Soundings along Profile 1AR in the Barents Sea: Methodology and Results. Phys. Earth 2016, 52, 572–589. [Google Scholar] [CrossRef]
- Abetov, A.E.; Yessirkepova, S.H.B.; Curto, M.J. Geomagnetic field transforms and their interpretation at exploration for hydrocarbon field in the southern part of the Ustyurt region. Ser. Geol. Tech. Sci. 2021, 6, 6–14. [Google Scholar] [CrossRef]
- Abetov, A.E.; Yessirkepova, S.H.B.; Curto, M.J. Gravity field transforms at the exploration for hydrocarbon field in the southern part of the Ustyurt region—News of the National Academy of Sciences of the Republic of Kazakhstan. In Series of Geology and Technical Sciences; NAS RK: Almaty, Kazakhstan, 2022; pp. 19–31. [Google Scholar]
- Tleubergenova, A.K.; Umirova, G.K.; Portnov, V.S.; Mausimbaeva, A.D. High-precision aeromagnetic survey on the Shu-Sarysu geotraverse. In Oil and Gas; Almaty, Kazakhstan, 2023; pp. 52–67. ISSN 1562-2932. [Google Scholar] [CrossRef]
- Tleubergenova, A.; Umirova, G.; Maussymbayeva, A.; Portnov, V. Comprehensive analysis of magnetic and gravity data based on volumetric gravity-magnetic modelling along the geotraverse in the Shu- Sarysu sedimentary basin. Visnyk Taras Shevchenko Natl. Univ. Kyiv. Geol. 2023, 3, 31–38. [Google Scholar] [CrossRef]
- Gorbatikov, A.V.; Stepanova, M.Y.; Korablev, G.E. Microseismic field affected by local geological heterogeneities and microseismic sounding of the medium. Izv. Phys. Solid Earth 2008, 44, 577–592. [Google Scholar] [CrossRef]
- Gorbatikov, A.V.; Tsukanov, A.A. Simulation of the Rayleigh wave in the proximity of the scattering velocity heterogeneities. Exploring the capabilities of the microseismic sounding method. Izv. Phys. Solid Earth 2011, 47, 354–369. [Google Scholar] [CrossRef]
- Abkadyrov, I.F.; Gorbatikov, A.V.; Stepanova, M.Y.; Bukatov, Y. Experience of application of the method of microseismic sounding of geothermal fields on the example of Nizhne- Koshelevskaya/thermoanomaly (South Kamchatka). In Proceedings of the 19th Regional Youth Scientific Conference “Natural Environment of Kamchatka”, Petropavlovsk-Kamchatsky, Russia, 26 September–2 October 2010; pp. 49–59. [Google Scholar]
- Gorbatikov, A.V.; Stepanova, M.Y.; Korablyov, G.E. Regularities of formation of microseismic field under the influence of local geological heterogeneities and sounding of the environment using microseisms. Phys. Earth 2008, 7, 66–84. [Google Scholar]
- Berdichevsky, M.N.; Dmitriev, V.I. Models and Methods of Magnetotellurics; Scientific World: Moscow, Russia, 2009; 680p, ISBN 978-5-91522-087-3. [Google Scholar]
- Khmelevskoy, V.K. Geophysical Methods of Earth’s Crust Study; International University of Nature, Society, “Dubna,”: Dubna, Russia, 1997; Volume 1. [Google Scholar]
- Zaytsev, S.V. Experience in Applying Three-Dimensional Inversion for Large Volumes of Magnetotelluric Data. Bull. Mosc. Univ. Ser. Geol. 2019, 5, 84–87. [Google Scholar] [CrossRef]
- Pospeev, A.V.; Seminski, I.K.; Nemtseva, D.B. First results of magnetotelluric soundings for mapping the Riphean sediments of the Baikal foredeep. Geodyn. Tectonophys. 2021, 12, 769–775. [Google Scholar] [CrossRef]
- Tleubergenova, A.; Umirova, G.; Karpenko, O.; Maussymbayeva, A. Geoelectrical model of the earth’s crust along the Shu-Sarysu geotraverse according to magnetotelluric soundings. Nauk. Visnyk Natl. Hirnychoho Universytetu 2023, 3, 3–10. [Google Scholar] [CrossRef]
- Vanyan, L.L.; Debabov, A.S.; Yudin, M.N. Interpretation of Magnetotelluric Sounding Data in Inhomogeneous Media; Nedra: Moscow, Russia, 1984; 197p. [Google Scholar]
- Tikhonov, A.N.; Arsenin, V.Y. Methods for Solving Ill-Posed Problems; Nauka: Moscow, Russia, 1986; 288p. [Google Scholar]
- Petrov, V.A.; Andreeva, O.V.; Poluektov, V.V.; Kovalenko, D.V. Uraniferous volcanogenic structures: Streltsovskaya (RF), Xianshan (China) and McDermitt (USA). Comparative analysis of the petrology of acid volcanics and the composition of near-ore metasomatites. Geol. Ore Depos. 2022, 64, 7–36. [Google Scholar] [CrossRef]
- Gorbatikov, A.V.; Stepanova, M.Y.; Tsukanov, A.A.; Tinakin, O.V.; Komarov, A.Y.; Odintsov, S.L.; Tokman, A.K. New technology of microseismic sounding for studying the deep structure of oil and gas fields. Oil Ind. 2010, 6, 15–17. Available online: https://oil-industry.net/en/Journal/archive_detail.php?ID=8978&art=186801 (accessed on 10 May 2024).
- Wang, S.M.; Di, Q.Y.; Zou, G.A.; Su, X.L.; Qian, C.; Wang, R.; Li, D.S. Electrical resistivity imaging in Shibaozhai area using magnetotelluric sounding: Enlightenment of hydrocarbon reservoirs on the eastern edge of the Sichuan Basin. Appl. Geophys. 2022, 19, 294–305. [Google Scholar] [CrossRef]
- Meixing, H.; Fagen, P.; Hui, F.; Penghui, Z.; Dashuang, H.; Xiaobo, Z.; Qinyin, L.; Gengen, Q. Electrical structure and geological controlling factors of natural gas hydrates in Muli, Qilian Mountains. J. Cent. South Univ. Sci. Technol. 2022, 53, 879–889. [Google Scholar] [CrossRef]
- He, F.; Yu, W.; Chao, M.A.; Zhang, S.; Li, X.; Liu, D. Deep structure and genesis of Sanmenxia fault basin and its adjacent area: Evidence from deep seismic reflection and magnetotelluric sounding. Acta Geol. Sin. 2024, 98, 1088–1100. [Google Scholar] [CrossRef]
- Abdullaev, G.S.; Dolgopolov, F.G.; Tukhtaev, K.M.; Toshkulov, A.Z. Multilevel regmatic systems and fault -block structure of the South Ustyurt depression. Actual Probl. Oil Gas 2020, 1, 28. [Google Scholar] [CrossRef]
- Atsyukovsky, V.A.; Vasilyev, V.G. Detection and Neutralization of Geopathogenic Earth Radiations; Russian Academy of Natural Sciences: Moscow, Russia, 2005; 186p. [Google Scholar]
- Yanitsky, I.N. Fluid regime of the Earth in the light of high-frequency geodynamics. In Proceedings of the International Conference “Degassing of the Earth: Geodynamics, Geofluids, Oil and Gas” Moscow: “GEOS”, Moscow, Russia, 18–22 October; 2010; pp. 281–283. [Google Scholar]
- Bashorin, V.N.; Borodzich, E.V.; Korobeynik, V.M. Heliemetric and prognostic studies at estimation the reliability of industrial sites of responsible engineering constructions. In Collection “Assessment of Seismo-Tectonic Conditions of Nuclear Power Plant Construction Sites; Energoatomizdat: Moscow, Russia, 1987; pp. 28–37. [Google Scholar]
- Yanitsky, I.N. About fluid-conducting thermohydromassives in the Earth interior (scientific and applied aspects of fluid dynamics). In Proceedings of the Conference “Tectonics, Geodynamics and Magmatism Processes” Moscow: RAS, Moscow, Russia, 2–5 February; 1999; pp. 332–336. [Google Scholar]
- Yanitsky, I.N. Living Earth (New Developments in Earth Sciences); AGAR: Moscow, Russia, 1998; 80p. [Google Scholar]
- Gerling, E.K.; Lobach-Zhuchenko, S.B.; Gorokhov, I.M.; Koltsova, T.V. Isotopic Age of Precambrian Rocks of the Baltic Shield. In Geochronological Boundaries and Geological Evolution of the Baltic Shield; Leningrad: Moscow, Russia, 1972; pp. 76–161. [Google Scholar]
- Vladimirov, A.G.; Travin, A.V.; Anh, P.L.; Murzintsev, N.G.; Annikova, I.Y.; Mikheev, E.I.; Duong, N.A.; Man, T.T.; Lan, T.T. Thermochronology of Granitoid Batholiths and Their Transformation into Metamorphic Core Complexes (Case Study of the Shong Chay Massif, Northern Vietnam). Geodyn. Tectonophys. 2019, 10, 347–373. [Google Scholar] [CrossRef]
- Cherdyntsev, V.V. Volcanism and Radioactive Isotopes. Nature 1969, 6, 35–45. [Google Scholar]
- Münster, A. Chemical Thermodynamics, 2nd ed.; Corresponding Member of the USSR Academy of Sciences; Gerasimov, Y.I., Ed.; URSS: Moscow, Russia, 2002; 296p, ISBN 5-354-00217-6. [Google Scholar]
- Ponomarev, A.S. Thermal and gas-dynamic model of crustal earthquakes. Phys. Earth 1990, 10, 100–112. [Google Scholar]
- Khain, V.E. Large-Scale Cyclicity in the Earth’s Tectonic History and Its Possible Origim. In Geotectonica, №6; Наука: Moscow, Russia, 2000; pp. 3–15. Available online: http://www.ginras.ru/library/pdf/gt_2000_6.pdf (accessed on 8 October 2024).
- Barkovsky, E.V. Natural and Technogenic Disasters on the Russian Plain in the 1980s–1990s: A Geophysical Perspective. In Proceedings of the Abstracts of the Presentation at the Symposium, Zelenograd, Russia, 31 March 2000. [Google Scholar]
- Syvorotkin, V.L. Deep Degassing of the Earth as a Factor of Thermal Impact on the Atmosphere. Oil Prov. 2022, 1, 33–48. Available online: https://www.vkro-raen.com/_files/ugd/2e67f9_935cf5883ac24ffb9b7d9a456be9ae8f.pdf (accessed on 10 October 2024).
- Marakushev, A.A.; Marakushev, S.A. Fluid Evolution of the Earth and Origin of the Biosphere. In Man and the Geosphere; Florinsky, I.V., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2020; Chapter 1; pp. 3–31. Available online: https://www.webofscience.com/wos/WOSCC/full-record/000283640000001 (accessed on 15 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issatayeva, F.; Abetov, A.; Umirova, G.; Abdullina, A.; Mustafin, Z.; Karpenko, O. The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits. Geosciences 2025, 15, 190. https://doi.org/10.3390/geosciences15060190
Issatayeva F, Abetov A, Umirova G, Abdullina A, Mustafin Z, Karpenko O. The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits. Geosciences. 2025; 15(6):190. https://doi.org/10.3390/geosciences15060190
Chicago/Turabian StyleIssatayeva, Farida, Auez Abetov, Gulzada Umirova, Aigerim Abdullina, Zhanibek Mustafin, and Oleksii Karpenko. 2025. "The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits" Geosciences 15, no. 6: 190. https://doi.org/10.3390/geosciences15060190
APA StyleIssatayeva, F., Abetov, A., Umirova, G., Abdullina, A., Mustafin, Z., & Karpenko, O. (2025). The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits. Geosciences, 15(6), 190. https://doi.org/10.3390/geosciences15060190