Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,034)

Search Parameters:
Keywords = residual compressive strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 15800 KB  
Article
Effect of Heat Treatment Process on Microstructure and Mechanical Properties of As-Cast Mg-8Gd-1Y-2Sm-1.2Zn-0.5Mn Alloy
by Zirui Qiao, Feng Wang, Chun Xue, Chaojie Che and Zhibing Chu
Metals 2026, 16(2), 145; https://doi.org/10.3390/met16020145 - 25 Jan 2026
Abstract
This study investigates the as-cast Mg-8Gd-1Y-2Sm-1.2Zn-0.5Mn (wt.%) alloy with high rare-earth content. Solution treatments were conducted at 480 °C, 520 °C, and 560 °C for 6–10 h. Microstructure and mechanical properties were characterized using OM, XRD, SEM-EDS, and compression testing. The as-cast alloy [...] Read more.
This study investigates the as-cast Mg-8Gd-1Y-2Sm-1.2Zn-0.5Mn (wt.%) alloy with high rare-earth content. Solution treatments were conducted at 480 °C, 520 °C, and 560 °C for 6–10 h. Microstructure and mechanical properties were characterized using OM, XRD, SEM-EDS, and compression testing. The as-cast alloy shows a dendritic structure with continuous grain-boundary phases (Mg5RE, W, and LPSO), exhibiting a compressive yield strength of 145 MPa, ultimate strength of 238 MPa, and fracture strain of 12.66%. Solution temperature has a critical influence on phase dissolution and grain refinement. Notably, the overall plasticity of the material did not show a significant dependence on the specific solution temperature or holding time within the studied range. Treatment at 520 °C produces the most balanced microstructure: clear grain boundaries, extensive phase dissolution, refined grains, and enhanced solid-solution strengthening. Specifically, 520 °C for 10 h results in the finest and most uniformly distributed residual phases, a homogeneous matrix, the highest compressive strength, and suitable conditions for subsequent aging, thus being identified as optimal. Fractography reveals a transition from quasi-cleavage in the as-cast state toward enhanced ductility after solution treatment. However, small cleavage facets after 10 h are attributed to stress concentrations from rare-earth-rich regions and reduced deformation compatibility due to retained LPSO phases. Full article
Show Figures

Figure 1

27 pages, 13307 KB  
Article
Synergistic Reinforcement and Multimodal Self-Sensing Properties of Hybrid Fiber-Reinforced Glass Sand ECC at Elevated Temperatures
by Lijun Ma, Meng Sun, Mingxuan Sun, Yunlong Zhang and Mo Liu
Polymers 2026, 18(3), 322; https://doi.org/10.3390/polym18030322 - 25 Jan 2026
Abstract
To address the susceptibility of traditional concrete to explosive spalling and the lack of in situ damage-monitoring methods at high temperatures, in this study, a novel self-sensing, high-temperature-resistant Engineered Cementitious Composite (ECC) was developed. The matrix contains eco-friendly glass sand reinforced with a [...] Read more.
To address the susceptibility of traditional concrete to explosive spalling and the lack of in situ damage-monitoring methods at high temperatures, in this study, a novel self-sensing, high-temperature-resistant Engineered Cementitious Composite (ECC) was developed. The matrix contains eco-friendly glass sand reinforced with a hybrid system of polypropylene fibers (PPFs) and carbon fibers (CFs). The evolution of mechanical properties and the multimodal self-sensing characteristics of the ECC were systematically investigated following thermal treatment from 20 °C to 800 °C. The results indicate that the hybrid system exhibits a significant synergistic effect: through PFFs’ pore-forming mechanism, internal vapor pressure is effectively released to mitigate spalling, while CFs provide residual strength compensation. Mechanically, the compressive strength increased by 51.32% (0.9% CF + 1.0% PPF) at 400 °C compared to ambient temperature, attributed to high-temperature-activated secondary hydration. Regarding self-sensing, the composite containing 1.1% CF and 1.5% PPF displayed superior thermosensitivity during heating (resistivity reduction of 49.1%), indicating potential for early fire warnings. Notably, pressure sensitivity was enhanced after high-temperature exposure, with the 0.7% CF + 0.5% PPF group achieving a Fractional Change in Resistivity of 31.1% at 600 °C. Conversely, flexural sensitivity presented a “thermally induced attenuation effect” primarily attributed to high-temperature-induced interfacial weakening. This study confirms that the “pore-formation” mechanism, combined with the reconstruction of the conductive network, governs the material’s macroscopic properties, providing a theoretical basis for green, intelligent, and fire-safe infrastructure. Full article
Show Figures

Figure 1

16 pages, 5821 KB  
Article
Experimental Study on Strain Evolution of Grouted Rock Mass with Inclined Fractures Using Digital Image Correlation
by Qixin Ai, Ying Fan, Lei Zhu and Sihong Huang
Appl. Sci. 2026, 16(3), 1224; https://doi.org/10.3390/app16031224 - 25 Jan 2026
Abstract
To address the depletion of shallow coal resources, mining activities have progressed to greater depths, where rock masses contain numerous fractures due to complex geological conditions, making grouting reinforcement essential for ensuring stability. Using digital image correlation, this study investigated the strain evolution [...] Read more.
To address the depletion of shallow coal resources, mining activities have progressed to greater depths, where rock masses contain numerous fractures due to complex geological conditions, making grouting reinforcement essential for ensuring stability. Using digital image correlation, this study investigated the strain evolution characteristics of grouted fractured specimens of three rock types—mudstone, coal–rock, and sandstone—under uniaxial compression. Analysis of the strain evolution process focused on two typical fracture inclinations of 0° and 60°, while examination of the peak strain characteristics covered five inclinations, namely 0°, 15°, 30°, 45°, and 60°. The findings indicate that the mechanical response varies systematically with lithology and fracture inclination. The post-peak curves differ significantly among rock types: coal–rock shows a gentle descent, mudstone exhibits a rapid strength drop but higher residual strength, and sandstone is characterized by “serrated” fluctuations. The failure mode transitions from tensile splitting at a horizontal inclination of 0° to shear failure at inclinations of 15°, 30°, 45°, and 60°. Strain nephograms corresponding to the peak stress point D reveal sharp, band-shaped zones of strain localization. The maximum principal strain exhibits a non-monotonic trend, first increasing and then decreasing with increasing inclination angle. For grouted coal–rock and sandstone, the peak values of 47.47 and 45.00 occur at α = 45°. In contrast, grouted mudstone reaches a maximum value of 26.80 at α = 30°, indicating its lower susceptibility to damage. The study systematically clarifies the strain evolution behavior of grouted fractured rock masses, providing a theoretical basis for evaluating the effectiveness of reinforcement and predicting failure mechanisms. Crucially, the findings highlight mudstone’s role as a high-integrity medium and the particular vulnerability of horizontal fractures, offering direct guidance for the targeted grouting design in stratified rock formations. Full article
Show Figures

Figure 1

17 pages, 5262 KB  
Article
Valorisation of Industrial Wastes in Magnesium Potassium Phosphate Cements for Extrusion-Based 3D Printing
by Pilar Padilla-Encinas, Jose Fernando Corani, Jaime Cuevas, Ana Guerrero and Raúl Fernández
Minerals 2026, 16(2), 127; https://doi.org/10.3390/min16020127 - 24 Jan 2026
Viewed by 51
Abstract
This study examines magnesium potassium phosphate cements (MKPCs) modified with industrial wastes for extrusion-based 3D concrete printing, evaluating the rheological properties (workability, setting time), mechanical performance and printability of formulations incorporating secondary materials: Mg dross waste (up to 20 wt.%, replacing MgO), calcined [...] Read more.
This study examines magnesium potassium phosphate cements (MKPCs) modified with industrial wastes for extrusion-based 3D concrete printing, evaluating the rheological properties (workability, setting time), mechanical performance and printability of formulations incorporating secondary materials: Mg dross waste (up to 20 wt.%, replacing MgO), calcined sewage sludge (up to 10 wt.%, replacing KH2PO4), alternative fillers such as glass from municipal solid waste glass and from construction and demolition waste and ground blast furnace slag, benchmarked against volcanic ash. The baseline MKPC exhibited initial/final setting times of 34/109 min, good workability and compressive strengths of 29 MPa (1 day)/28 MPa (28 days). Optimal low-waste mixes (e.g., using municipal glass or 20 wt.% Mg dross) shortened the initial setting to 19–25 min (decreasing 24–42%), reduced the slump by 9–18% yet remained printable at laboratory-scale and achieved 1-day strengths > 23 MPa/28-day > 31 MPa (comparable or superior). Glass from municipal waste proved most promising, due to superior workability, lighter aesthetics and strength gains, supporting circular economy goals while substantially reducing material costs; higher waste levels compromised fluidity and buildability. Mineralogical analyses confirmed K-struvite formation alongside residual periclase, validating these formulations for upscaling sustainable 3D printing. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
25 pages, 3498 KB  
Article
Freeze–Thaw Durability Enhancement of Cement Mortar Incorporating Milled RHA: Hydration Kinetics, Microstructural Refinement, and Strength Evolution
by Shuo Wang and Ming Sun
Buildings 2026, 16(3), 468; https://doi.org/10.3390/buildings16030468 - 23 Jan 2026
Viewed by 94
Abstract
Large quantities of agricultural waste, particularly rice husk ash (RHA), are generated worldwide each year, and the lack of rational, value-added disposal pathways poses both environmental and resource-utilization challenges. To address this practical problem while improving the freeze–thaw (F–T) durability of cement-based materials [...] Read more.
Large quantities of agricultural waste, particularly rice husk ash (RHA), are generated worldwide each year, and the lack of rational, value-added disposal pathways poses both environmental and resource-utilization challenges. To address this practical problem while improving the freeze–thaw (F–T) durability of cement-based materials in cold regions, this study investigates the effects of replacing silica fume (SF) with finely milled RHA on the hydration behavior, mechanical performance, and durability of cement mortar. From a scientific perspective, the freeze–thaw behavior of RHA-modified cementitious materials and the underlying relationships among hydration kinetics, microstructural evolution, and durability remain insufficiently understood. Mortars with different RHA–SF blending ratios were prepared at a constant water-to-binder ratio. Compressive strength was measured before and after F–T cycling, and the underlying mechanisms were investigated using isothermal calorimetry, water absorption tests, and scanning electron microscopy. Results show that SF significantly enhances pre-F–T compressive strength, with the SF-only mixture reaching 56.8 MPa at 28 d, approximately 28.7% higher than the control. With increasing RHA replacement, pre-F–T strength decreased with a non-monotonic variation (40.1–51.5 MPa). F–T cycling caused severe degradation in the reference mortar, with a strength loss rate of 31.75%, whereas RHA- or SF-modified mortars exhibited substantially lower loss rates (6.30–21.54%). Notably, high-RHA mixtures retained residual strengths of 36.0–38.3 MPa after F–T cycling. Although RHA delayed early hydration and increased water absorption, freeze–thaw resistance was not proportionally reduced. These results demonstrate that freeze–thaw durability is governed primarily by long-term microstructural stability rather than early-age strength, and they provide mechanistic evidence supporting the rational utilization of finely milled RHA as a low-carbon supplementary cementitious material for cold-region applications. Full article
Show Figures

Figure 1

28 pages, 3981 KB  
Article
Influence of Addition of Recycled Concrete Aggregate on Physico-Mechanical Properties and Microstructure of Mortar
by Gabriela Rutkowska, Barbara Francke, Filip Chyliński, Mariusz Żółtowski, Adam Baryłka and Paulina Matyjasek
Buildings 2026, 16(3), 466; https://doi.org/10.3390/buildings16030466 - 23 Jan 2026
Viewed by 62
Abstract
The progressive depletion of natural aggregate resources and the increasing emphasis on sustainable construction practices have intensified interest in incorporating recycled concrete aggregate (RCA) into cement-based materials. This study provides a comprehensive evaluation of the influence of partially replacing natural fine aggregate with [...] Read more.
The progressive depletion of natural aggregate resources and the increasing emphasis on sustainable construction practices have intensified interest in incorporating recycled concrete aggregate (RCA) into cement-based materials. This study provides a comprehensive evaluation of the influence of partially replacing natural fine aggregate with fine RCA on the physical, mechanical, and durability properties, as well as the microstructure, of cement mortars. Mortar mixtures containing 25%, 50%, 75%, and 100% RCA were tested and compared with a reference mix MC. The experimental program included measurements of bulk density, compressive and flexural strength, water absorption, and freeze–thaw resistance. Additionally, microstructural observations were performed to assess the effect of RCA on the internal structure of matured mortars. The results demonstrated that the intrinsic characteristics of RCA—particularly its higher water absorption and lower density—significantly affected the pore structure and mechanical behavior of the cement mortars. Mortars with RCA exhibited enhanced early-age compressive and flexural strength, especially at substitution levels of 50–100%, attributed to the activation of residual cement paste adhering to the recycled particles. However, increased porosity and water absorption in RCA-based mixes led to a higher sensitivity to freeze–thaw cycles compared with the reference mix. Overall, the findings indicate that incorporating fine RCA up to 50% enables the production of mortars with performance comparable to conventional mixtures under non-freezing conditions, while, under freeze–thaw exposure, comparable performance is achieved at replacement levels up to 25%, contributing to improved resource efficiency and reduced environmental impact. This study confirms the viability of fine RCA in cement mortars, emphasizing the importance of controlling pore structure development to maintain long-term durability. Additionally, it demonstrates that the use of recycled concrete aggregates provides a sustainable alternative to natural sand in mortar production. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
18 pages, 2520 KB  
Article
Towards Carbon-Negative Concrete Using Low-Carbon Binders and Carbonated Recycled Aggregates: MAA-Based Mix Design Optimization, Carbon Emission and Cost Assessment
by Wen Lin, Gaoyu Liao, Lixiang Xu, Guanghui Wang, Chucai Peng, Yueran Zhang and Dianchao Wang
Buildings 2026, 16(2), 462; https://doi.org/10.3390/buildings16020462 - 22 Jan 2026
Viewed by 40
Abstract
Developing low-carbon building materials is essential for achieving sustainability in the construction sector. This study proposes a carbon-negative concrete (CNC) system that combines low-carbon binders derived from industrial by-products with carbonated recycled aggregates capable of CO2 absorption. To enhance particle packing and [...] Read more.
Developing low-carbon building materials is essential for achieving sustainability in the construction sector. This study proposes a carbon-negative concrete (CNC) system that combines low-carbon binders derived from industrial by-products with carbonated recycled aggregates capable of CO2 absorption. To enhance particle packing and mechanical performance, the Modified Andreasen–Andersen (MAA) model was adopted for mix design optimization and experimentally validated. The optimized CNC mixture containing 22% coarse aggregate achieved the minimum residual sum of squares between the graded particle distribution and the theoretical MAA curve, as well as the highest strength performance. Compared with a 14% coarse aggregate mixture, the 22% mix exhibited 13.5% and 19.8% increases in compressive strength at 7 and 28 days, confirming the applicability of the MAA model for CNC proportioning. Carbon emission assessment, limited to raw material production, demonstrated significant environmental benefits. CNC incorporating both low-carbon binders and carbonated recycled aggregates reduced total emissions and CO2 intensity by 87.1% and 86.2%, respectively, compared with ordinary concrete of the same strength grade. Economic evaluation further showed that CNC reduced material cost by 48.1% relative to ordinary concrete. It should be emphasized that the reported CO2 reduction and negative emission effects are limited to the defined raw material production boundary and do not represent a fully net-negative life cycle. Overall, these results confirm the technical, environmental, and economic feasibility of CNC as a sustainable alternative to traditional concrete. Full article
(This article belongs to the Special Issue Low-Carbon and Sustainable Building Structures)
Show Figures

Figure 1

18 pages, 6877 KB  
Article
Optimizing Wood–Hemp–Sodium Silicate Composites for Strength, Extrudability, and Cost in Additive Manufacturing Applications
by Nagendra G. Tanikella, Armando G. McDonald and Michael R. Maughan
Materials 2026, 19(2), 357; https://doi.org/10.3390/ma19020357 - 16 Jan 2026
Viewed by 344
Abstract
Utilizing forestry and agricultural byproducts like wood and hemp residues advance sustainable additive manufacturing (AM), while reducing material costs. This study investigated the development and characterization of wood–sodium silicate composites incorporating hemp hurd and hemp fibers for AM applications. Formulations varied by wood [...] Read more.
Utilizing forestry and agricultural byproducts like wood and hemp residues advance sustainable additive manufacturing (AM), while reducing material costs. This study investigated the development and characterization of wood–sodium silicate composites incorporating hemp hurd and hemp fibers for AM applications. Formulations varied by wood fiber type (unsifted, 40 mesh, and pellet), sodium silicate concentration (50–60 wt%), and hemp hurd content (0–15 wt%). Properties evaluated include particle size and bulk density of the constituent materials, rheological behavior, extrusion performance, composite bulk density, and flexural and compressive strengths. Rheology and extrusion were largely influenced by the liquid content. Mixtures with low liquid content (50 wt% sodium silicate) had high motor power and low viscosity. As liquid content increased, motor power decreased, while viscosity increased up to 55 wt% and then decreased at 60 wt%. Mechanical properties correlated with particle size, where finer particles enhanced strength. A cost analysis was conducted using raw material prices to determine the economic feasibility of each formulation. Finally, the formulations were evaluated based on strength-to-cost ratios, extrudability and processability. The formulation with pellet wood fibers, 55 wt% sodium silicate, and 10 wt% hemp hurd achieved a high ratio of 73.0 MPa/$ while maintaining low motor power. This formulation offered additional benefits which are discussed qualitatively. Full article
(This article belongs to the Special Issue Modern Wood-Based Materials for Sustainable Building)
Show Figures

Graphical abstract

22 pages, 19682 KB  
Article
Shear Mechanism Differentiation Investigation of Rock Joints with Varying Lithologies Using 3D-Printed Barton Profiles and Numerical Modeling
by Yue Chen, Yinsheng Wang, Yongqiang Li, Guoshun Lv, Quan Dai, Le Liu and Lianheng Zhao
Geotechnics 2026, 6(1), 8; https://doi.org/10.3390/geotechnics6010008 - 15 Jan 2026
Viewed by 117
Abstract
To investigate the shear behavior of rock mass joint surfaces with varying roughness and lithology, this study introduces a novel experimental framework that combines high-precision 3D printing and direct shear testing. Ten artificial joint surfaces were fabricated using Barton standard profiles with different [...] Read more.
To investigate the shear behavior of rock mass joint surfaces with varying roughness and lithology, this study introduces a novel experimental framework that combines high-precision 3D printing and direct shear testing. Ten artificial joint surfaces were fabricated using Barton standard profiles with different joint roughness coefficients (JRC) and were cast using two representative rock-like materials simulating soft and hard rocks. The 3D printing technique employed significantly reduced the staircase effect and ensured high geometric fidelity of the joint morphology. Shear tests revealed that peak shear strength increases with JRC, but the underlying failure mechanisms vary depending on the lithology. Experimental results were further used to back-calculate JRC values and validate the empirical JRC–JCS (joint wall compressive strength) model. Numerical simulations using FLAC3D captured the shear stress–displacement evolution for different lithologies, revealing that rock strength primarily influences peak shear strength and fluctuation characteristics during failure. Notably, despite distinct lithologies, the post-peak degradation behavior tends to converge, suggesting universal residual shear mechanisms across rock types. These findings highlight the critical role of lithology in joint shear behavior and demonstrate the effectiveness of 3D-printing-assisted model tests in advancing rock joint characterization. Full article
Show Figures

Figure 1

26 pages, 3565 KB  
Article
Effect of GGBFS and Fly Ash on Elevated Temperature Resistance of Pumice-Based Geopolymers
by Mohammed Shubaili
Infrastructures 2026, 11(1), 28; https://doi.org/10.3390/infrastructures11010028 - 15 Jan 2026
Viewed by 137
Abstract
The current study investigated the effects of geopolymer composites formulated from pumice dust partially replaced by ground granulated blast furnace slag (GGBFS) and fly ash (FA) at levels of 10%, 20%, 30%, and 40% by weight. The mixtures were evaluated for flowability, compressive [...] Read more.
The current study investigated the effects of geopolymer composites formulated from pumice dust partially replaced by ground granulated blast furnace slag (GGBFS) and fly ash (FA) at levels of 10%, 20%, 30%, and 40% by weight. The mixtures were evaluated for flowability, compressive strength (7, 28, and 56 days), density, and water absorption (28 and 56 days) at ambient temperatures. Moreover, compressive strength, mass loss, density, and water absorption were evaluated after exposure of the mixtures to elevated temperatures (250 °C, 500 °C, and 750 °C) at 28 days. All specimens were initially cured at 60 °C for 24 h, followed by storage under ambient laboratory conditions until testing. The inclusion of GGBFS into the mixtures decreased flowability, and the inclusion of FA resulted in its improvement. At ambient temperature, GGBFS-based mixtures, which were high in calcium content, exhibited substantially superior compressive strength and reduced absorption relative to FA-based mixtures due to the development of dense C-A-S-H gel networks. However, the compressive strength of FA-based mixtures considerably increased when exposed to a temperature of 250 °C. Moreover, at 750 °C, the FA-based mixtures showed superior residual strength (up to 18.1 MPa), lower mass loss, and reduced absorption, indicating enhanced thermal stability due to the dominance of thermally resistant N-A-S-H gels. X-ray diffraction results further supported these trends by showing the rapid deterioration of calcium-rich phases under heat and the comparative stability of aluminosilicate structures in FA-based systems. Overall, the inclusion of up to 40% GGBFS is beneficial for early strength and densification, whereas the incorporation of up to 40% FA improves durability and mechanical retention under high-temperature conditions. Full article
Show Figures

Figure 1

24 pages, 7140 KB  
Article
Performance Analysis of Boosting-Based Machine Learning Models for Predicting the Compressive Strength of Biochar-Cementitious Composites
by Jinwoong Kim, Daehee Ryu, Heojeong Hwan and Heeyoung Lee
Materials 2026, 19(2), 338; https://doi.org/10.3390/ma19020338 - 14 Jan 2026
Viewed by 198
Abstract
Biochar, a carbon-rich material produced through the pyrolysis of wood residues and agricultural byproducts, has carbon storage capacity and potential as a low-carbon construction material. This study predicts the compressive strength of cementitious composites in which cement is partially replaced with biochar using [...] Read more.
Biochar, a carbon-rich material produced through the pyrolysis of wood residues and agricultural byproducts, has carbon storage capacity and potential as a low-carbon construction material. This study predicts the compressive strength of cementitious composites in which cement is partially replaced with biochar using machine learning models. A total of 716 data samples were analyzed, including 480 experimental measurements and 236 literature-derived values. Input variables included the water-to-cement ratio (W/C), biochar content, cement, sand, aggregate, silica fume, blast furnace slag, superplasticizer, and curing conditions. Predictive performance was evaluated using Multiple Linear Regression (MLR), Elastic Net Regression (ENR), Support Vector Regression (SVR), and Gradient Boosting Machine (GBM), with GBM showing the highest accuracy. Further optimization was conducted using XGBoost, Light Gradient-Boosting Machine (LightGBM), CatBoost, and NGBoost with GridSearchCV and Optuna. LightGBM achieved the best predictive performance (mean absolute error (MAE) = 3.3258, root mean squared error (RMSE) = 4.6673, mean absolute percentage error (MAPE) = 11.19%, and R2 = 0.8271). SHAP analysis identified the W/C and cement content as dominant predictors, with fresh water curing and blast furnace slag also exerting strong influence. These results support the potential of biochar as a partial cement replacement in low-carbon construction material. Full article
Show Figures

Graphical abstract

28 pages, 1597 KB  
Article
The Influence of Material and Process Parameters on Pressure Agglomeration and Properties of Pellets Produced from Torrefied Forest Logging Residues
by Arkadiusz Gendek, Monika Aniszewska, Paweł Tylek, Grzegorz Szewczyk, Jozef Krilek, Iveta Čabalová, Jan Malaťák, Jiří Bradna and Katalin Szakálos-Mátyás
Materials 2026, 19(2), 317; https://doi.org/10.3390/ma19020317 - 13 Jan 2026
Viewed by 207
Abstract
Pellets produced from raw or torrefied shredded logging residues have been investigated in the study. The research material came from pine and spruce stands in Poland, Slovakia, Czechia and Hungary. Torrefaction temperatures (Tt) of 250, 300, and 400 °C were [...] Read more.
Pellets produced from raw or torrefied shredded logging residues have been investigated in the study. The research material came from pine and spruce stands in Poland, Slovakia, Czechia and Hungary. Torrefaction temperatures (Tt) of 250, 300, and 400 °C were applied. Before pressure agglomeration, 3% wheat flour was added to the torrefaction material as a binding agent. Pellets with a diameter of 8 mm were produced at constant humidity, compaction pressure (P) of 140 or 180 MPa and agglomeration temperature (Ta) of 100, 120 or 140 °C. The produced pellets were assessed for their physicomechanical parameters (density, radial compressive strength, compression ratio, modulus of elasticity), chemical parameters (extractive compounds, cellulose, lignin) and energy parameters (ash content, elemental composition, calorific value). The results were subjected to basic statistical analysis and multi-way ANOVA. The produced pellets varied in physical, mechanical, chemical and energy properties. A significant effect of torrefaction temperature, agglomeration temperature and compaction pressure on the results was observed. In terms of physicomechanical parameters, the best pellets were produced from the raw material, while in terms of energy parameters, those produced from the torrefied material were superior. Pellets of satisfactory quality produced from torrefied logging residues could be obtained at Tt = 250 °C, Ta = 120 °C and P = 180 MPa. Pellets with specific density of approximately 1.1 g·cm−3, radial compressive strength of 3–3.5 MPa, modulus of elasticity of 60–80 MPa and calorific value of 20.3–23.8 MJ·kg−1 were produced in the process. Full article
(This article belongs to the Special Issue Catalysis for Biomass Materials Conversion)
Show Figures

Figure 1

16 pages, 2278 KB  
Article
Fine-Fraction Brazilian Residual Kaolin-Filled Coating Mortars
by Thamires Alves da Silveira, Mirian Dosolina Fusinato, Gustavo Luis Calegaro, Cristian da Conceição Gomes and Rafael de Avila Delucis
Waste 2026, 4(1), 3; https://doi.org/10.3390/waste4010003 - 13 Jan 2026
Viewed by 118
Abstract
This study investigates the use of the fine fraction of Brazilian residual kaolin, a material with no pozzolanic activity according to the modified Chapelle test, as a partial cement replacement in rendering mortars. The kaolin was classified into three granulometric fractions (coarse: 150–300 [...] Read more.
This study investigates the use of the fine fraction of Brazilian residual kaolin, a material with no pozzolanic activity according to the modified Chapelle test, as a partial cement replacement in rendering mortars. The kaolin was classified into three granulometric fractions (coarse: 150–300 µm, intermediate: 75–150 µm, and fine: <75 µm) and incorporated at two filler contents (10% and 20% by weight). Mineralogical and chemical analyses revealed that the fine fractions contained higher proportions of kaolinite and accessory oxides, while medium and coarse fractions were dominated by quartz. Intensity ratios from XRD confirmed greater structural disorder in the fine fraction, which was associated with higher water demand but also improved particle packing and pore refinement. Fresh state tests showed that mortars with fine kaolin maintained higher density and exhibited moderate increases in air content, whereas medium and coarse fractions promoted greater entrainment. In the hardened state, fine kaolin reduced water absorption by immersion and capillary rise, while medium and coarse fractions led to higher porosity. Mechanical tests confirmed these trends: although compressive and flexural strengths decreased with increasing substitution, mortars containing the fine kaolin fraction consistently exhibited more moderate strength losses than those with medium or coarse fractions, reflecting their enhanced packing efficiency and pore refinement. Tensile bond strength results further highlighted the positive contribution of the kaolin additions, as the mixtures with 10% coarse kaolin and 20% fine kaolin achieved adhesion values only about 7% and 4% lower, respectively, than the control mortar after 28 days. All mixtures surpassed the performance requirements of NBR 13281, demonstrating that the incorporation of residual kaolin—even at higher substitution levels—does not compromise adhesion and remains compatible with favorable cohesive failure modes in the mortar layer. Despite the lack of pozzolanic activity, residual kaolin was used due to its filler effect and capacity to enhance particle packing and pore refinement in rendering mortars. A life cycle assessment indicated that the partial substitution of cement with residual kaolin effectively reduces the environmental impacts of mortar production, particularly the global warming potential, when the residue is modeled as a by-product with a negligible environmental burden. This highlights the critical role of methodological choices in assessing the sustainability of industrial waste utilization. Full article
(This article belongs to the Special Issue Use of Waste Materials in Construction Industry)
Show Figures

Graphical abstract

33 pages, 6894 KB  
Article
Valorisation of Mixed Municipal Waste Glass (EWC 20 01 02) as a Reactive Supplementary Material in Cement Mortars
by Beata Łaźniewska-Piekarczyk, Monika Czop and Elwira Zajusz-Zubek
Sustainability 2026, 18(2), 771; https://doi.org/10.3390/su18020771 - 12 Jan 2026
Viewed by 153
Abstract
This study investigates the valorisation of mixed municipal waste glass (MMWG; EWC 20 01 02) as a sustainable supplementary material in cement mortars. In contrast to most existing studies, which focus almost exclusively on homogeneous container glass, this work addresses a heterogeneous waste [...] Read more.
This study investigates the valorisation of mixed municipal waste glass (MMWG; EWC 20 01 02) as a sustainable supplementary material in cement mortars. In contrast to most existing studies, which focus almost exclusively on homogeneous container glass, this work addresses a heterogeneous waste stream derived from municipal selective collection, containing flat glass, mirrors, ceramics, porcelain, and metallic residues. Such mixed household glass has not previously been systematically evaluated in cement mortars, thereby addressing a clear research gap. The MMWG was washed, dried, and ground in a Los Angeles drum with corundum abrasives to obtain a fine glass powder (FGP < 63 µm) with a median particle size of approximately 20 µm and a Blaine fineness of 360 m2/kg. Microstructural and chemical characterisation of the milled glass confirmed its highly amorphous nature and angular particle morphology resulting from grinding. In addition, coarse glass granules (0–4 mm) were used as partial replacements for natural sand in mortar mixtures. The incorporation of FGP led to a 4–12% reduction in flowability, attributable to the angular shape and increased specific surface area of the ground-glass particles. At 28 days, mortars containing 5–10% FGP exhibited mechanical properties comparable to the reference mix, while at 56 days their compressive strength increased by up to 8%, indicating delayed pozzolanic activity typical of finely milled, amorphous glass. Mortars containing coarse glass primarily reflected a filler and aggregate-replacement effect. Leaching tests conducted in accordance with PN-EN 12457-4 demonstrated that all mortars, both reference and MMWG-modified, complied with the non-hazardous waste limits defined in Council Decision 2003/33/EC. Minor exceedances of Ba and Cr relative to inert-waste thresholds were observed; however, these values remained within the permissible range for non-hazardous classification and were attributed to ceramic and metallic contaminants inherently present in the mixed glass fraction. Overall, this study demonstrates that mixed municipal waste glass—a widely available yet rarely valorised heterogeneous waste stream—can be effectively utilised as a finely ground supplementary material and as a partial aggregate replacement in cement mortars, provided that particle fineness is adequately controlled and durability-related effects are monitored. The findings extend the applicability of glass waste beyond container cullet and support the development of circular-economy solutions in construction materials. Full article
(This article belongs to the Special Issue Sustainable Advancements in Construction Materials)
Show Figures

Figure 1

16 pages, 4106 KB  
Article
Study on Mechanical Properties of Natural Rubber Composites Reinforced with Agave lechuguilla Fibers
by J. A. Maldonado-Torres, E. Rocha-Rangel, C. A. Calles-Arriaga, W. Pech-Rodriguez, J. López-Hernández, U. A. Macías-Castillo, M. C. Kantún-Uicab, A. Jiménez-Rosales, L. F. Martínez-Mosso and J. A. Castillo-Robles
Macromol 2026, 6(1), 4; https://doi.org/10.3390/macromol6010004 - 12 Jan 2026
Viewed by 240
Abstract
Agave lechuguilla fibers exhibit high tensile strength, low density and durability, but their use in natural rubber composites is underexplored. This study investigates alkaline-treated fibers (149–180 µm) as reinforcements for natural latex. Fibers were pretreated with a methanol–acetone mixture, followed by immersion in [...] Read more.
Agave lechuguilla fibers exhibit high tensile strength, low density and durability, but their use in natural rubber composites is underexplored. This study investigates alkaline-treated fibers (149–180 µm) as reinforcements for natural latex. Fibers were pretreated with a methanol–acetone mixture, followed by immersion in 10% NaOH at 70 °C for 1 h, removing lignin and hemicellulose as confirmed by FTIR and SEM. Thermogravimetric analysis showed three weight-loss stages: moisture/volatiles (9.4%), hemicellulose (peak at 341 °C), and cellulose/lignin (peak at 482 °C), with <3% residue above 500 °C. Treated composites exhibited enhanced tensile strength (4.68 ± 1.2 MPa vs. 1.3 ± 0.8 MPa for untreated) and elongation at break (530 ± 51% vs. 452 ± 32%). Hardness increased from 21.8 (neat latex) to 30.3, and compression resistance was improved. Optical microscopy revealed strong fiber–matrix adhesion with uniform dispersion. Alkaline treatment enhances interfacial bonding and mechanical performance, making A. lechuguilla fibers a sustainable reinforcement for eco-friendly composites in automotive, construction, and packaging sectors. Full article
(This article belongs to the Special Issue Advances in Starch and Lignocellulosic-Based Materials)
Show Figures

Figure 1

Back to TopTop