Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = residual CaSO4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12051 KB  
Article
Leaching Kinetics and Reactive Regulation of Boiling Furnace Pyrite Cinder (BPC) in an Oxalic Acid-Sulfuric Acid System
by Xiaojiao Li, Zhenlin Peng and Yang Yang
Processes 2025, 13(9), 2904; https://doi.org/10.3390/pr13092904 - 11 Sep 2025
Viewed by 465
Abstract
To address the challenge of low iron extraction efficiency from boiling furnace pyrite cinder (BPC), a significant secondary iron resource posing environmental risks due to massive stockpiling in China, this study investigated the kinetics and reactivity regulation of an oxalic acid-sulfuric acid hybrid [...] Read more.
To address the challenge of low iron extraction efficiency from boiling furnace pyrite cinder (BPC), a significant secondary iron resource posing environmental risks due to massive stockpiling in China, this study investigated the kinetics and reactivity regulation of an oxalic acid-sulfuric acid hybrid leaching system to overcome the inertness and diffusion barriers of hematite. Single-factor experiments and Response Surface Methodology (RSM) optimization were employed to determine optimal leaching parameters (time, temperature, liquid–solid ratio, H2SO4 concentration) under constant stirring (400 r/min) and BPC–oxalic acid ratio (50:1). Shrinking core kinetic modeling, complemented by SEM-EDS/XRD residue characterization, elucidated the dissolution mechanism. Results showed a maximum iron leaching rate of 94.7% at 90 °C, 40 wt% H2SO4, an L/S ratio of 5 mL/g, and a time of 7 h. Kinetics transitioned from liquid-film diffusion control (Ea = 76.9 kJ/mol) below 70 °C to mixed interfacial reaction/internal diffusion control (Ea = 32.4 kJ/mol) above 80 °C. Highly concentrated acid conditions (50% H2SO4) reduced efficiency by >20% due to oxalate protonation, CaSO4 pore occlusion, and increased viscosity. RSM confirmed temperature-dominated kinetics and acid concentration-governed thermodynamics, with no synergy under combined high-temperature/high-acidity conditions. This optimized process enables efficient iron recovery from refractory BPC using minimal reagent consumption. Full article
(This article belongs to the Special Issue Advanced Methods of Metal Recycling)
Show Figures

Figure 1

18 pages, 2227 KB  
Article
Sustaining Grape Yield and Soil Health Under Saline–Sodic Irrigation Through Amendments and Canal Water Application
by Karamjit Singh Sekhon, Anureet Kaur, Sudhir Thaman, Navjot Gupta, Anurag Malik, Chetak Bishnoi, Ozgur Kisi, Ali Salem and Mohamed A. Mattar
Water 2025, 17(18), 2683; https://doi.org/10.3390/w17182683 - 11 Sep 2025
Viewed by 535
Abstract
The present study was undertaken for six years to appraise the responses of four-year-old established grapevines (Vitis vinifera L., cv. Perlette) to saline–sodic groundwater irrigation in relation to different amendments in a field experiment on non-saline, non-sodic calcareous sandy loam soil under [...] Read more.
The present study was undertaken for six years to appraise the responses of four-year-old established grapevines (Vitis vinifera L., cv. Perlette) to saline–sodic groundwater irrigation in relation to different amendments in a field experiment on non-saline, non-sodic calcareous sandy loam soil under a semi-arid climate at the research farm of Punjab Agricultural University, Regional Research Station, Bathinda, Punjab, India. Different water quality treatments, viz., canal water or good-quality water (GQW), poor-quality saline–sodic groundwater (PQW), alternate irrigation of canal water and groundwater (GQW/PQW), PQW with 50% gypsum (CaSO4·2H2O) requirement (PQW + GR50), PQW with 100% gypsum requirement (PQW + GR100), and PQW with sulphitation pressmud (by-product of sugar industry) @ 6.6 t ha−1 on a dry weight basis (PQW + SPM), applied in furrows, were imposed in quadruplicate with a randomized block design. PQW with an electrical conductivity (EC) of 2.2–2.4 dS m−1, residual sodium carbonate (RSC) content of 6.21–6.44 mmolc L−1, and a sodium adsorption ratio (SAR) from 23.1 to 24.8 (mmolc L−1)0.5 was used during the course of experimentation. The pooled mean 6-year data showcased that the treatments GQW/PQW, PQW + GR50, PQW + GR100, and PQW + SPM improved the berry yield by 28.3%, 11.3%, 21.2%, and 31.0%, respectively, when compared with PQW. Use of amendments, i.e., gypsum, sulphitation pressmud, and practice of GQW/PQW for irrigation in a cyclic mode, helped in reducing the pH, SAR, and bulk density (BD) of surface soil (0–15 cm) and enhancing the final infiltration rate (FIR) of soil and berry yield. A maximum water use efficiency (WUE) of 3.99 q ha−1-cm was recorded in the GQW treatment, followed by 3.93, 3.72, and 3.68 q ha−1-cm in the PQW + SPM, GQW/PQW, and PQW + GR100 treatments, respectively. Application of amendments alongside PQW evidenced a significant enhancement in total soluble solids (TSSs) and a decrease in the acidity of berries as compared to PQW. These results suggest that table grape yield (cv. Perlette) on calcareous sandy loam soil under saline–sodic groundwater irrigation can be sustained with the application of PQW + GR100, sulphitation pressmud, and GQW/PQW in already-established grapevines with minimal detrimental effects on soil health. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

15 pages, 2165 KB  
Article
Study on the High-Temperature Reaction Kinetics of Solid Waste-Based High Belite Sulphoaluminate Cement Containing Residual Gypsum in Clinker
by Dunlei Su, Mingxin Yang, Yani Hao, Jiahui Wang, Xin Liu, Haojian Tang, Fengyuan Dong, Dejin Xing and Weiyi Kong
Materials 2025, 18(14), 3369; https://doi.org/10.3390/ma18143369 - 17 Jul 2025
Viewed by 478
Abstract
In order to elucidate the high-temperature reaction process of solid waste-based high belite sulphoaluminate cement containing residual gypsum in clinker (NHBSAC) and obtain the formation laws of each mineral in clinker, this article studied its high-temperature reaction kinetics. Through QXRD analysis and numerical [...] Read more.
In order to elucidate the high-temperature reaction process of solid waste-based high belite sulphoaluminate cement containing residual gypsum in clinker (NHBSAC) and obtain the formation laws of each mineral in clinker, this article studied its high-temperature reaction kinetics. Through QXRD analysis and numerical fitting methods, the formation of C4A3S¯, β-C2S, and CaSO4 in clinker under different calcination systems was quantitatively characterized, the corresponding high-temperature reaction kinetics models were established, and the reaction activation energies of each mineral were obtained. The results indicate that the content of C4A3S¯ and β-C2S increases with the prolongation of holding time and the increase in calcination temperature, while CaSO4 is continuously consumed. Under the control mechanism of solid-state reaction, the formation and consumption of minerals follow the kinetic equation. C4A3S¯ and β-C2S satisfy the D4 equation under diffusion mechanism control, and CaSO4 satisfies the R3 equation under interface chemical reaction mechanism control. The activation energy required for mineral formation varies with different temperature ranges. The activation energies required to form C4A3S¯ at 1200–1225 °C, 1225–1275 °C, and 1275–1300 °C are 166.28 kJ/mol, 83.14 kJ/mol, and 36.58 kJ/mol, respectively. The activation energies required to form β-C2S at 1200–1225 °C and 1225–1300 °C are 374.13 kJ/mol and 66.51 kJ/mol, respectively. This study is beneficial for achieving flexible control of the mineral composition of NHBSAC clinker, providing a theoretical basis and practical experience for the preparation of low-carbon cement and the optimization design of its mineral composition. Full article
(This article belongs to the Special Issue Characterization and Optimization of Cement-Based Materials)
Show Figures

Figure 1

20 pages, 4236 KB  
Article
Valorisation of Red Gypsum Waste in Polypropylene Composites for Agricultural Applications
by Chiara Pedrotti, Damiano Rossi, Marco Sandroni, Irene Anguillesi, Chiara Riccardi, Pietro Leandri, Miriam Cappello, Sara Filippi, Patrizia Cinelli, Massimo Losa and Maurizia Seggiani
Polymers 2025, 17(13), 1821; https://doi.org/10.3390/polym17131821 - 30 Jun 2025
Viewed by 563
Abstract
This study investigates the industrial potential of red gypsum (RG), a major by-product of titanium dioxide (TiO2) production, for the development of thermoplastic polypropylene (PP)-based composites via melt extrusion, targeting agricultural applications. Prior to compounding, RG was thermally treated at approximately [...] Read more.
This study investigates the industrial potential of red gypsum (RG), a major by-product of titanium dioxide (TiO2) production, for the development of thermoplastic polypropylene (PP)-based composites via melt extrusion, targeting agricultural applications. Prior to compounding, RG was thermally treated at approximately 200 °C to remove residual moisture and chemically bound water, resulting in its anhydrous form (CaSO4). PP/RG composites were then formulated with RG loadings up to 20 wt.%, employing stearic acid (SA) as a compatibilizer. The resulting materials were thoroughly characterized and successfully processed through industrial-scale injection molding up to 250 °C. Morphological and FTIR analyses confirmed the role of SA in enhancing both filler dispersion and interfacial adhesion between RG and the PP matrix. SEM images revealed finer and more uniformly distributed RG particles, resulting in a reduced loss of ductility and elongation at break typically associated with filler addition. Specifically, the Young’s Modulus increased from 1.62 GPa (neat PP) up to 3.21 GPa with 20 wt.% RG and 0.6 wt.% SA. The addition of 0.6 wt.% SA also helped limit the reduction in stress at break from 46.68 MPa (neat PP) to 34.05 MPa and similarly mitigated the decrease in Charpy impact energy, which declined slightly from 2.66 kJ/m2 (neat PP) to 2.24 kJ/m2 for composites containing 20 wt.% RG. Preliminary phytotoxicity was assessed using germination tests on Lepidium sativum L. seeds. Eluates from both untreated and SA-treated RG powders resulted in germination indices below 80%, indicating phytotoxicity likely due to high sulfate ion concentrations. In contrast, eluates from composite pellets exhibited germination indices equal to or exceeding 100%, demonstrating the absence of phytotoxic effects. These results highlight the suitability of the developed composites for applications in floriculture and horticulture. The optimized composite pellets were successfully processed via injection molding to manufacture plant pots, which exhibited a dark brown coloration, confirming the effective pigmenting function of RG. These results demonstrate the potential of red gypsum to serve both as a functional filler and pigment in PP composites, providing a sustainable alternative to iron oxide pigments and promoting the valorization of industrial waste through resource recovery. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

26 pages, 12548 KB  
Article
Sustainable Utilization of Modified Electrolytic Manganese Residue as a Cement Retarder: Workability, Mechanical Properties, Hydration Mechanisms, Leaching Toxicity, and Environmental Benefits
by Liang Tang, Jan Fořt, Robert Černý and Zhaoyi He
Buildings 2025, 15(10), 1586; https://doi.org/10.3390/buildings15101586 - 8 May 2025
Viewed by 693
Abstract
This study aims to enhance the sustainable utilization of electrolytic manganese residue (EMR), an industrial solid waste rich in sulfates and pollutants, by modifying it with appropriate proportions of granulated blast furnace slag (GBFS) and carbide slag (CS) and evaluating its potential as [...] Read more.
This study aims to enhance the sustainable utilization of electrolytic manganese residue (EMR), an industrial solid waste rich in sulfates and pollutants, by modifying it with appropriate proportions of granulated blast furnace slag (GBFS) and carbide slag (CS) and evaluating its potential as a cement retarder. The influence of both the GBFS/CS ratio and the dosage of modified EMR on the performance of cement mortar was systematically investigated, focusing on workability, mechanical properties, hydration behavior, leaching toxicity, and carbon emissions. Results showed that GBFS and CS significantly reduced pollutant concentrations in EMR while improving gypsum crystallinity. Modified EMR exhibited retarding properties, extending the initial and final setting times of cement mortar from 98 min and 226 min to 169 min and 298 min. With an 8 wt.% dosage, the 28-day compressive strength reached 58.76 MPa, a 1.3-fold increase compared to cement mortar (45.21 MPa). The content of reactive SiO2, Al2O3, Ca(OH)2, and CaSO4·2H2O promoted secondary hydration of cement and generated significant ettringite (AFt) and calcium silicate hydrate (C-S-H) gels, forming a dense microstructure. Pollutants in the modified EMR-cement mortar were reduced through precipitation, substitution, and encapsulation, meeting leaching toxicity standards. This study highlights the feasibility and environmental benefits of employing modified EMR as a cement retarder, demonstrating its potential in sustainable building materials. Full article
Show Figures

Figure 1

15 pages, 5809 KB  
Article
A Novel Process Strategy for Efflorescence Control of Ceramsites Sintered from High-Sulfur Kiln Slag
by Peng Lu, Yu Li, Baoqiang Zhao, Yi Huang, Liang Liu and Wenbin Liu
Crystals 2025, 15(4), 366; https://doi.org/10.3390/cryst15040366 - 17 Apr 2025
Viewed by 478
Abstract
The high sulfur content in kiln slag ceramsites leads to pronounced efflorescence, significantly limiting the application of such solid-waste-derived products in construction engineering. In this study, a sintering experiment of 50 kg ceramsites with 60% kiln slag content was conducted at 1150 °C [...] Read more.
The high sulfur content in kiln slag ceramsites leads to pronounced efflorescence, significantly limiting the application of such solid-waste-derived products in construction engineering. In this study, a sintering experiment of 50 kg ceramsites with 60% kiln slag content was conducted at 1150 °C on small-scale ceramsites sintering equipment. The research focused on discussing the mechanisms of efflorescence and putting forward the process strategy to control efflorescence in kiln slag ceramsites. The results revealed that the sulfur content (4.53%) and water absorption rate of ceramsites (8.5%) were the primary causes of efflorescence. During the sintering process, sulfur evolved on the pathway of “pyrite in raw materials→partial oxidation to SO2 and partial fixation in CaSO4→decomposition of CaSO4”. In order to reduce content of sulfur, it was proposed that not only was sulfur in pyrite oxidized enough to be removed in the low-temperature stage but, also, residual CaSO4 decomposed more to eliminate S in the high-temperature stage. This optimizing sintering process reduced the sulfur content from 2.0% to 0.72%. Furthermore, enhancing its densification contributed to avoiding efflorescence. By controlling its sintering temperature and increasing the formation of Fe2O3, the densification of ceramsites was improved by decreasing its water absorption rate from 8.5% to 1.2%, and its efflorescence was thereby enhanced. This provides both a theoretical foundation and technological support for the high-value utilization of high-sulfur solid waste. Full article
Show Figures

Figure 1

18 pages, 8363 KB  
Article
Evaluation of Fresh Property, Compressive Strength and Environmental Impact of Low-Carbon Geopolymer Based on Ladle Furnace Slag and Soda Residue
by Xiaoyan Liu, Yulan Zuo, Fengming Yang, Junqing Zuo, Aihua Liu, Huang Huangfu, Kai Lyu, Xian Xie and Surendra P. Shah
Materials 2025, 18(7), 1552; https://doi.org/10.3390/ma18071552 - 29 Mar 2025
Viewed by 606
Abstract
In this work, a novel method for the disposal of ladle furnace slag (LFS) and soda residue (SR) was proposed. By applying geopolymer technology, LFS and SR were used as precursors to manufacture a geopolymer with sufficient fresh and mechanical properties that can [...] Read more.
In this work, a novel method for the disposal of ladle furnace slag (LFS) and soda residue (SR) was proposed. By applying geopolymer technology, LFS and SR were used as precursors to manufacture a geopolymer with sufficient fresh and mechanical properties that can be used in construction works, such as in non-structural components like lightweight partition walls. The effects of raw material ratios and Na2O equivalents on the fresh properties, mechanical properties, microstructure and environmental impact of LFS-SR geopolymer (LSG) were analyzed by rheology, compressive strength, XRD, TG/DTG, SEM, and calculation of embodied carbon. The results showed that the compressive strength of LSGs increased when the SR content decreased or Na2O equivalent increased, and the maximum compressive strength could reach 12.0 MPa at 28 d. The hydration products of LSG were mainly C-(A)-S-H gel, C3AH6, and AFt. Notably, the C-(A)-S-H gels formed a stable cross-linked structure, and the extremely fine granular C3AH6 further filled the pores. Furthermore, AFt was generated from the interaction between LFS and CaSO4 rich in SR during the hydration process. The carbon calculation results indicated that the embodied carbon of LSGs was significantly lower than that of traditional cement, and the LSG containing 20% SR and 12% Na2O equivalent had the highest sustainability. This study proposed strategies for mitigating the environmental hazards of alkaline solid waste and improving its resource utilization, thereby promoting sustainable development in the construction industry. Full article
Show Figures

Figure 1

15 pages, 4516 KB  
Article
Optimizing the Dealkalization Process of Red Mud: Controlling Calcium Compounds to Improve Solid–Liquid Separation Performance
by Jianfei Zhou, Mengmeng Dai, Qingjun Guan, Hua Zeng, Wei Sun and Li Wang
Minerals 2025, 15(2), 150; https://doi.org/10.3390/min15020150 - 3 Feb 2025
Cited by 1 | Viewed by 961
Abstract
The acid neutralization process is widely recognized for its effectiveness in the dealkalization of red mud, and it faces challenges in solid–liquid separation due to the formation of numerous colloidal components. This study investigated the impact of calcium-containing compounds (CaO, CaCl2, [...] Read more.
The acid neutralization process is widely recognized for its effectiveness in the dealkalization of red mud, and it faces challenges in solid–liquid separation due to the formation of numerous colloidal components. This study investigated the impact of calcium-containing compounds (CaO, CaCl2, CaCO3, and CaSO4) on the solid–liquid separation and the dealkalization efficiency of red mud during the dealkalization process. The sodium leaching efficiency of the red mud reached 95.6% when the red mud was reacted with 8% of sulfuric acid for 10 min with a stirring speed and liquid to solid ratio of 700 r/min and 5:1, respectively. The replacement of sulfuric acid using simulated waste acid reached similar sodium leaching efficiency. However, the filtration rate of red mud becomes exceedingly sluggish using sulfuric acid or simulated waste acid. Adding calcium-containing compounds significantly augments the efficacy of solid–liquid separation in red mud. With a mass content of 2% for CaO or 8% for CaCl2, the filtration speed experienced a remarkable fivefold and ninefold increase, respectively. Furthermore, a simplification in the composition was observed within the leaching solution derived from red mud, thereby creating favorable conditions for the extraction of sodium. The influence mechanism was investigated with X-ray diffraction, inductively coupled plasma analysis, and scanning electron microscopy. The addition of calcium compounds led to the formation of calcium silicate and iron silicate in the leaching residue, inhibiting the generation of colloidal substances, such as silica gel. Additionally, these compounds increased the size of red mud particles, facilitating the solid–liquid separation process. This study provides valuable technical insights for the dealkalization of red mud. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

22 pages, 33681 KB  
Article
Geochemistry and Mineralogy of Precipitates from Passive Treatment of Acid Mine Drainage: Implications for Future Management Strategies
by Joaquín Delgado, Olivia Lozano, Diana Ayala, Domingo Martín and Cinta Barba-Brioso
Minerals 2025, 15(1), 15; https://doi.org/10.3390/min15010015 - 26 Dec 2024
Cited by 2 | Viewed by 1426
Abstract
Traditional mining activities in Zaruma-Portovelo (SE Ecuador) have led to high concentrations of pollutants in the Puyango River due to acid mine drainage (AMD) from abandoned waste. Dispersed alkaline substrate (DAS) passive treatment systems have shown efficacy in neutralizing acidity and retaining metals [...] Read more.
Traditional mining activities in Zaruma-Portovelo (SE Ecuador) have led to high concentrations of pollutants in the Puyango River due to acid mine drainage (AMD) from abandoned waste. Dispersed alkaline substrate (DAS) passive treatment systems have shown efficacy in neutralizing acidity and retaining metals and sulfates in acidic waters, achieving near a 100% retention for Fe, Al, and Cu, over 70% for trace elements, and 25% for SO42−. However, significant solid residues are generated, requiring proper geochemical and mineralogical understanding for management. This study investigates the fractionation of elements in AMD precipitates. Results indicate that Fe3+ and Al3+ predominantly precipitate as low-crystallinity oxyhydroxysulfate minerals such as schwertmannite [Fe3+16(OHSO4)12–13O16·10–12H2O] and jarosite [KFe3+3(SO4)2(OH)6], which retain elements like As, Cr, Cu, Pb, and Zn through adsorption and co-precipitation processes. Sulfate removal occurs via salts like coquimbite [AlFe3(SO4)6(H2O)12·6H2O] and gypsum [CaSO4·2H2O]. Divalent metals are primarily removed through carbonate and bicarbonate phases, with minerals such as azurite [Cu(OH)2·2CuCO3], malachite [Cu2(CO3)(OH)2], rhodochrosite [MnCO3], and calcite [CaCO3]. Despite the effectiveness of DAS, leachates from the precipitates exceed regulatory thresholds for aquatic life protection, classifying them as hazardous and posing environmental risks. However, these residues offer opportunities for the recovery of valuable metals. Full article
(This article belongs to the Special Issue Environmental Pollution and Assessment in Mining Areas)
Show Figures

Graphical abstract

14 pages, 6552 KB  
Article
Study on the Performance and Mechanism of Cement Solidified Desulfurization Manganese Residue
by Shicheng Wang, Fang Wang, Jialing Che and Lihua Ma
Materials 2023, 16(11), 4184; https://doi.org/10.3390/ma16114184 - 4 Jun 2023
Cited by 9 | Viewed by 2325
Abstract
Desulfurized manganese residue (DMR) is an industrial solid residue produced by high-temperature and high-pressure desulfurization calcination of electrolytic manganese residue (EMR). DMR not only occupies land resources but also easily causes heavy metal pollution in soil, surface water, and groundwater. Therefore, it is [...] Read more.
Desulfurized manganese residue (DMR) is an industrial solid residue produced by high-temperature and high-pressure desulfurization calcination of electrolytic manganese residue (EMR). DMR not only occupies land resources but also easily causes heavy metal pollution in soil, surface water, and groundwater. Therefore, it is necessary to treat the DMR safely and effectively so that it can be used as a resource. In this paper, Ordinary Portland cement (P.O 42.5) was used as a curing agent to treat DMR harmlessly. The effects of cement content and DMR particle size on flexural strength, compressive strength, and leaching toxicity of a cement-DMR solidified body were studied. The phase composition and microscopic morphology of the solidified body were analyzed by XRD, SEM, and EDS, and the mechanism of cement-DMR solidification was discussed. The results show that the flexural strength and compressive strength of a cement-DMR solidified body can be significantly improved by increasing the cement content to 80 mesh particle size. When the cement content is 30%, the DMR particle size has a great influence on the strength of the solidified body. When the DMR particle size is 4 mesh, the DMR particles will form stress concentration points in the solidified body and reduce its strength. In the DMR leaching solution, the leaching concentration of Mn is 2.8 mg/L, and the solidification rate of Mn in the cement-DMR solidified body with 10% cement content can reach 99.8%. The results of XRD, SEM, and EDS showed that quartz (SiO2) and gypsum dihydrate (CaSO4·2H2O) were the main phases in the raw slag. Quartz and gypsum dihydrate could form ettringite (AFt) in the alkaline environment provided by cement. Mn was finally solidified by MnO2, and Mn could be solidified in C-S-H gel by isomorphic replacement. Full article
(This article belongs to the Special Issue Microstructures and Mechanical Properties of Cement-Based Composites)
Show Figures

Figure 1

16 pages, 12309 KB  
Article
Ignition and Emission Characteristics of Waste Tires Pyrolysis Char Co-Combustion with Peat and Sawdust
by Konstantin Slyusarsky, Anton Tolokolnikov, Artur Gubin, Albert Kaltaev, Alexander Gorshkov, Askar Asilbekov and Kirill Larionov
Energies 2023, 16(10), 4038; https://doi.org/10.3390/en16104038 - 11 May 2023
Cited by 6 | Viewed by 2069
Abstract
The pyrolysis processing of waste tires is a promising technology for obtaining products with high marginality. One of the possible methods of solid pyrolysis product utilization is its combustion for energy production, but this is complicated by poor reactivity and sulfur emissions. The [...] Read more.
The pyrolysis processing of waste tires is a promising technology for obtaining products with high marginality. One of the possible methods of solid pyrolysis product utilization is its combustion for energy production, but this is complicated by poor reactivity and sulfur emissions. The combustion of char together with more reactive fuels could solve this problem. The current study is devoted to the combustion characteristics of waste tires pyrolysis carbon residue mixed with biomass: pine sawdust and peat. The oxidation characteristics in thermal analyzer conditions were found to change insignificantly. In contrast, 15 wt% of peat and sawdust additives was found to decrease ignition delay times in realistic conditions of combustion at 800 °C by 42 and 78%, respectively, while the SO2 emissions also dropped by 73 and 52%, respectively. The extra sulfur was found to be contained in ash residue in the form of CaS and CaSO4. While increasing peat concentration from 5 to 15 wt% was found to have almost no effect, the same increase for sawdust resulted into an almost proportional decrease in ignition delay times. The results obtained could be used for the integration of waste tires pyrolysis char mixtures with peat or sawdust into the energy sector. Full article
(This article belongs to the Special Issue Solid Waste to Energy)
Show Figures

Figure 1

17 pages, 3980 KB  
Article
Mechanical and Hydration Characteristics of Stabilized Gold Mine Tailings Using a Sustainable Industrial Waste-Based Binder
by Zhenkai Pan, Shaohua Hu, Chao Zhang, Tong Zhou, Guowei Hua, Yuan Li and Xiaolin Lv
Materials 2023, 16(2), 634; https://doi.org/10.3390/ma16020634 - 9 Jan 2023
Cited by 5 | Viewed by 2759
Abstract
Sustainable resource utilization of tailings is a long-term challenge. Therefore, a novel waste-based binder is proposed in this study to stabilize/solidify gold mine tailings (GMTs). This binder is composed of fly ash (FA), ground blast furnace slag (GBFS), and metakaolin (MK) activated with [...] Read more.
Sustainable resource utilization of tailings is a long-term challenge. Therefore, a novel waste-based binder is proposed in this study to stabilize/solidify gold mine tailings (GMTs). This binder is composed of fly ash (FA), ground blast furnace slag (GBFS), and metakaolin (MK) activated with mixed calcium carbide residue (CCR) as well as pure reagent grade chemical, sodium hydroxide (SH, NaOH), and plaster gypsum (PG, CaSO4·2H2O). The mechanical properties and hydration of stabilized tailings with curing period were investigated. Tests included triaxial compression test and nitrogen adsorption to evaluate the strength of the stabilized tailings and microstructure. The results show that the addition of the waste-based binder yields significant improvement in shear strength. Strain softening occurred for all cured samples, and a local shear band can be observed in all failed stabilized samples. Based on the relationship between strength and curing period, it can be speculated that the hydration reaction of the sample ends after around 40 days of curing. A bimodal pore-size distribution was observed in all solidified/stabilized samples. FTIR and 27Al MAS-NMR were used to analyze hydration products. The strength improvement of stabilized tailings was mainly attributed to the formation of ettringite and C–S–H gels after various polymerization reactions. These new hydrates bind tailings particles and fill the pores to form a more stable structure, which supplied superior mechanical properties. This paper can provide a theoretical basis for exploring the application of the industrial waste-based binder to modify the mechanical properties of gold tailings. Full article
(This article belongs to the Special Issue Mechanical and Modeling of Composite Materials)
Show Figures

Figure 1

24 pages, 10692 KB  
Article
A New Hydrometallurgical Process for Metal Extraction from Electric Arc Furnace Dust Using Ionic Liquids
by Samaneh Teimouri, Johannes Herman Potgieter, Mari Lundström, Caren Billing and Benjamin P. Wilson
Materials 2022, 15(23), 8648; https://doi.org/10.3390/ma15238648 - 4 Dec 2022
Cited by 11 | Viewed by 3233
Abstract
This research proposes a new hydrometallurgical method for Zn, In, and Ga extraction, along with Fe as a common impurity, from electric arc furnace dust (EAFD), using ionic liquids. EAFD is a metal-containing waste fraction generated in significant amounts during the process of [...] Read more.
This research proposes a new hydrometallurgical method for Zn, In, and Ga extraction, along with Fe as a common impurity, from electric arc furnace dust (EAFD), using ionic liquids. EAFD is a metal-containing waste fraction generated in significant amounts during the process of steelmaking from scrap material in an electric arc furnace. With valuable metal recovery as the main goal, two ionic liquids, [Bmim+HSO4] and [Bmim+Cl], were studied in conjunction with three oxidants: Fe2(SO4)3, KMnO4, and H2O2. The results indicated that the best combination was [Bmim+HSO4] with [Fe2(SO4)3]. An experimental series subsequently demonstrated that the combination of 30% v/v [Bmim+HSO4], 1 g of [Fe2(SO4)3], S/L ratio = 1/20, a 240 min leaching time, and a temperature of 85 °C was optimal, resulting in maximum extractions of 92.7% Zn, 97.4% In, and 17.03% Ga. In addition, 80.2% of the impurity metal Fe was dissolved. The dissolution kinetics of these four elements over a temperature range of 55–85 °C was found to be diffusion controlled. The remaining phases present in the leached residue were low amounts of ZnO, Fe3O4, ZnFe2O4, and traces of Ca(OH)2 and MnO2, and additional sharp peaks indicative of PbSO4 and CaSO4 appeared within the XRD pattern. The intensity of the peaks related to ZnO and Fe3O4 were observed to have decreased considerably during leaching, whereas some of the refractory ZnFe2O4 phase remained. SEM-EDS analysis revealed that the initial EAFD morphology was composed of spherical-shaped fine-grained particle agglomerates, whereas the leached residue was dominated by calcium sulphate (Ca(SO4))-rich needle-shaped crystals. The results clearly demonstrate that [Bmim+HSO4] is able to extract the target metals due to its acidic properties. Full article
(This article belongs to the Special Issue Advances in Materials Processing (Second Volume))
Show Figures

Figure 1

16 pages, 6975 KB  
Article
Experiment on the Properties of Soda Residue-Activated Ground Granulated Blast Furnace Slag Mortars with Different Activators
by Yonghui Lin, Dongqiang Xu, Wenguang Ji and Xianhui Zhao
Materials 2022, 15(10), 3578; https://doi.org/10.3390/ma15103578 - 17 May 2022
Cited by 5 | Viewed by 2040
Abstract
Soda residue (SR), a solid waste generated in the production of Na2CO3 during the ammonia soda process, with a high pH value of 12, can be used as an activator of alkali-activated ground granulated blast furnace slag (GGBFS) cementitious materials. [...] Read more.
Soda residue (SR), a solid waste generated in the production of Na2CO3 during the ammonia soda process, with a high pH value of 12, can be used as an activator of alkali-activated ground granulated blast furnace slag (GGBFS) cementitious materials. Three groups of experiments on SR-activated GGBFS mortars were designed in this paper to assess the role of the dominant parameters on fluidity and compressive strength of mortars. The results indicate that for fluidity and mechanical properties, the optimal scheme of SR-activated GGBFS mortars is 16:84–24:76 S/G, 0.01 NaOH/b, 0.05 CaO/b, and 0.50 w/b, with fluidity and compressive strength (28 d) of the mortars being 181–195 mm and 32.3–35.4 MPa, respectively. Between 2.5–10% CaCl2 addition to CaO (5%)-SR (24%)-activated GGBFS mortar is beneficial to the improvement of the compressive strength of C2, whereas the addition of CaSO4 is harmful. The main hydration products of mortars are ettringite, Friedel’s slat, and CSH gels. The results provide a theoretical basis and data support for the utilization of SR. Full article
Show Figures

Figure 1

19 pages, 6783 KB  
Article
Phosphorus Substitution Preference in Ye’elimite: Experiments and Density Functional Theory Simulations
by Jiuye Zhao, Jiazhi Huang, Chunyang Yu, Chunyi Cui and Jun Chang
Materials 2021, 14(19), 5874; https://doi.org/10.3390/ma14195874 - 7 Oct 2021
Cited by 7 | Viewed by 2485
Abstract
Density functional theory (DFT) simulation has been recently introduced to understand the doping behavior of impurities in clinker phases. P-doped ye’elimite, a typical doping clinker phase, tends to form when phosphogypsum is used to manufacture calcium sulfoaluminate cement (CSA) clinkers. However, the substitution [...] Read more.
Density functional theory (DFT) simulation has been recently introduced to understand the doping behavior of impurities in clinker phases. P-doped ye’elimite, a typical doping clinker phase, tends to form when phosphogypsum is used to manufacture calcium sulfoaluminate cement (CSA) clinkers. However, the substitution mechanism of P has not been uncovered yet. In this study, the influence of different doping amounts of P on the crystalline and electronic structure of ye’elimite was investigated using backscattered scanning electron microscopy–energy X-ray dispersive spectroscopy, X-ray diffraction tests, Rietveld quantitative phase analysis, and DFT simulations. Furthermore, the substitution preference of P in ye’elimite was revealed. Our results showed that increasing the doping amount of P increased the impurity contents in CSA clinkers, transforming the ye’elimite crystal system from the orthorhombic to the cubic system and decreasing the interplanar spacing of ye’elimite. Based on the calculation results of the defect formation energies, additional energies were required for P atoms to substitute Ca/Al atoms compared with those required for P atoms to substitute S atoms in both orthorhombic and cubic systems of ye’elimite. Combined calculation results of the bond length–bond order and partial density of states showed that the doped P atoms preferably substituted S atoms; the second possible substituted atoms were Al atoms, while there was only a slight possibility for substitution of Ca atoms. The substitution of P atoms for S atoms can be verified based on the elemental distribution in P-doped ye’elimite and the increasing residual CaSO4 contents. The transition of the crystal system and a decrease in the interplanar spacing for ye’elimite can also prove that the substitution of P atoms for Al atoms occurred substantially. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

Back to TopTop