Sustaining Grape Yield and Soil Health Under Saline–Sodic Irrigation Through Amendments and Canal Water Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Location, Climate, and Soil
2.2. Water Quality
2.3. Experimental Description and Treatment Designations
2.4. Soil Parameters and Total Water Use Efficiency
2.5. Statistical Analysis
3. Results
3.1. Growth Attributes, Berry Yield, and Total Water Use Efficiency
3.2. Soil Properties
3.3. Quality of Grapes
4. Discussion
Limitations of the Study and Direction for Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minhas, P.S.; Bajwa, M.S. Use and Management of Poor Quality Waters for the Rice-Wheat Based Production System. J. Crop. Prod. 2001, 4, 273–306. [Google Scholar] [CrossRef]
- Choudhary, O.P.; Ghuman, B.S.; Josan, A.S.; Bajwa, M.S. Effect of Alternating Irrigation with Sodic and Non-Sodic Waters on Soil Properties and Sunflower Yield. Agric. Water Manag. 2006, 85, 151–156. [Google Scholar] [CrossRef]
- Qadir, M.; Ghafoor, A.; Murtaza, G. Use of Saline–Sodic Waters through Phytoremediation of Calcareous Saline–Sodic Soils. Agric. Water Manag. 2001, 50, 197–210. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil Health and Sustainability: Managing the Biotic Component of Soil Quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- M. Tahat, M.; M. Alananbeh, K.; A. Othman, Y.; I. Leskovar, D. Soil Health and Sustainable Agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Bradford, S.; Letey, J. Cyclic and Blending Strategies for Using Nonsaline and Saline Waters for Irrigation. Irrig. Sci. 1992, 13, 123–128. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO United Nations: Rome, Italy, 1985. [Google Scholar]
- Rhoades, J.D. Use of Saline Water for Irrigation. Calif. Agric. 1984, 38, 42–43. [Google Scholar]
- Ghafoor, A.; Muhammad, S.; Yaqub, M. Use of Saline-Sodic Water for Reclamation of a Salt Affected Soil and for Crop Production. Pak. J. Soil Sci. 1987, 2, 17–21. [Google Scholar]
- Ahmad, B.; Kemper, W.D.; Haider, G.; Niazi, M.A. Use of Gypsum to Lower the SAR of Irrigation Water. Soil Sci. Soc. Am. J. 1979, 43, 698–702. [Google Scholar] [CrossRef]
- Bajwa, M.S.; Josan, A.S. Effects of Alternating Sodic and Non-Sodic Irrigations on the Build-up of Sodium in the Soil and on Crop Yields in Northern India. Exp. Agric. 1989, 25, 199–205. [Google Scholar] [CrossRef]
- Choudhary, O.; Josan, A.; Bajwa, M.; Kapur, M. Effect of Sustained Sodic and Saline-Sodic Irrigation and Application of Gypsum and Farmyard Manure on Yield and Quality of Sugarcane under Semi-Arid Conditions. Field Crops Res. 2004, 87, 103–116. [Google Scholar] [CrossRef]
- Minhas, P.S.; Gupta, R.K. Quality of Irrigation Water; ICAR Publication: New Delhi, India, 1992. [Google Scholar]
- Minhas, P.S.; Sharma, D.R.; Singh, Y.P. Response of Rice and Wheat to Applied Gypsum and Farmyard Manure on an Alkali Water Irrigated Soil. J. Indian Soc. Soil Sci. 1995, 47, 452–455. [Google Scholar]
- Choudhary, O.P.; Ghuman, B.S.; Bijay-Singh; Thuy, N.; Buresh, R.J. Effects of Long-Term Use of Sodic Water Irrigation, Amendments and Crop Residues on Soil Properties and Crop Yields in Rice–Wheat Cropping System in a Calcareous Soil. Field Crops Res. 2011, 121, 363–372. [Google Scholar] [CrossRef]
- Hornick, S.B.; Parr, J.F. Restoring the Productivity of Marginal Soils with Organic Amendments. Am. J. Altern. Agric. 1987, 2, 64–68. [Google Scholar] [CrossRef]
- Bhatti, H.M.; Yaseen, M.; Rashid, M. Evaluation of Sesbania Green Manuring in Rice-Wheat Rotation. In Proceedings of the International Symposium on Nitrogen in the Environment, Lahore, Pakistan, 4–10 August 1985; pp. 7–12. [Google Scholar]
- Chaudhry, M.R.; Rafiq, M.S.; Haider, A.; Shahid, L.A. Ameliorative Effect of Gypsum on Soil Properties and Crop Yield Irrigated with High SAR Water; No. 144; Directorate of Mona Reclamation Experimental Project Publication: Bhalwal, Pakistan, 1985; pp. 8–14. [Google Scholar]
- Gupta, N.; Tripathi, S.; Balomajumder, C. Characterization of Pressmud: A Sugar Industry Waste. Fuel 2011, 90, 389–394. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Datta, S.C.; Biswas, D.R.; Dotaniya, C.K.; Meena, B.L.; Rajendiran, S.; Regar, K.L.; Lata, M. Use of Sugarcane Industrial By-Products for Improving Sugarcane Productivity and Soil Health. Int. J. Recycl. Org. Waste Agric. 2016, 5, 185–194. [Google Scholar] [CrossRef]
- Grattan, S.R.; Oster, J.D. Use and Reuse of Saline-Sodic Waters for Irrigation of Crops. J. Crop Prod. 2003, 7, 131–162. [Google Scholar] [CrossRef]
- Maas, E.V.; Grieve, C.M. Sodium-Induced Calcium Deficiency in Salt-Stressed Corn. Plant Cell Environ. 1987, 10, 559–564. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Parra, M.; Intrigliolo, D.S.; López-Urrea, R.; Pérez-Álvarez, E.P. Medium-Term Impacts of Saline Water Deficit Irrigation on Soil, Vine Nutrient Status, Yield and Grape Composition of Vitis vinifera L. Cv. Monastrell. Sci. Hortic. 2025, 342, 114036. [Google Scholar] [CrossRef]
- Popescu, C.F.; Bejan, C.; Dumitrica, R.N.; Dejeu, L.C.; Nedelea, G. Rootstocks and Wild Grapevines Responses to Salinity. Vitis—J. Grapevine Res. 2015, 54, 197–201. [Google Scholar]
- Cass, A.; Walker, R.R.; Fitzpatrick, R.W. Vineyard Soil Degradation by Salt Accumulation and the Effect on the Performance of the Vine. In Proceedings of the Ninth Australian Wine Industry Technical Conference, Adelaide, Australia, 16–19 July 1995; pp. 153–160. [Google Scholar]
- Zhang, Q.; Wang, S.; Li, L.; Inoue, M.; Xiang, J.; Qiu, G.; Jin, W. Effects of Mulching and Sub-Surface Irrigation on Vine Growth, Berry Sugar Content and Water Use of Grapevines. Agric. Water Manag. 2014, 143, 1–8. [Google Scholar] [CrossRef]
- Sharma, D.N.; Oad, R. Variable-Time Model for Equitable Irrigation Water Distribution. Agric. Water Manag. 1990, 17, 367–377. [Google Scholar] [CrossRef]
- Eaton, F.M. Significance of Carbonate in Irrigation Waters. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Creasy, G.L. Grapes; CABI: Wallingford, UK; Cambridge, MA, USA, 2009; p. 118. [Google Scholar]
- Anonymous. Area and Production of Fruits in Punjab. In Package of Practices for Fruit Crops; Punjab Agricultural University: Ludhiana, India, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Todd, D.K. Groundwater Hydrology, 2nd ed.; John Wiley Sons: New York, NY, USA, 1980. [Google Scholar]
- Bouwer, H. Intake Rate: Cylinder Infiltrometer. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America: Madison, WI, USA, 1986; pp. 825–844. ISBN 9780891188643. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; American Society of Agronomy: Madison, WI, USA; Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. ISBN 9780891188643. [Google Scholar]
- Sandhu, B.S.; Khera, K.L.; Sudheeranjan, M. Response of Summer Bean to Irrigation and Straw Mulching on a Loamy Sand Soil in Northern India. J. Indian Soc. Soil Sci. 1992, 40, 240–244. [Google Scholar]
- Freeman, G.H.; Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research. Biometrics 1985, 41, 342. [Google Scholar] [CrossRef]
- Cheema, H.S.; Singh, B. A User’s Manual to CPCS 1; Punjab Agricultural University: Ludhiana, India, 1990; p. 46. [Google Scholar]
- Jacoby, B. Mechanisms Involved in Salt Tolerance by Plants. In Handbook of Plant and Crop Stress; Pessarakli, M., Ed.; Marcel Dekker: New York, NY, USA, 1994; pp. 97–123. [Google Scholar]
- Munns, R.; Termaat, A. Whole-Plant Responses to Salinity. Aust. J. Plant Physiol. 1986, 13, 143–160. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop Salt Tolerance—Current Assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Shukla, K.; Pandey, J. Effect of Wet Rice, Green Manure, Pressmud, Pyrites and Gypsum on the Production of Wheat under Saline Soils. Indian J. Agron. 1988, 33, 84–86. [Google Scholar]
- Singh, N.T. Changes in Sodic Soils Incubated under Saturated Environments. Soil Sci. Plant Nutr. 1969, 15, 156–160. [Google Scholar] [CrossRef]
- Choudhary, O.P.; Grattan, S.R.; Minhas, P.S. Sustainable Crop Production Using Saline and Sodic Irrigation Waters. In Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation; Springer Netherlands: Dordrecht, The Netherlands, 2011; pp. 293–318. [Google Scholar]
- Hussain, T.; Abbas, M.A.; Javaid, A. Efficient Utilization of High RSC Water through Biological Approach. J. Drain. Reclam. 1994, 27, 46–49. [Google Scholar]
- Grattan, S.R.; Rhoades, J.D. Irrigation with Saline Groundwater and Drainage Water. In Agricultural Salinity Assessment and Management; Man. 71; Tanji, K.K., Ed.; ASCE: Reston, VA, USA, 1990; pp. 432–449. [Google Scholar]
- Martínez-Moreno, A.; Pérez-Álvarez, E.P.; Intrigliolo, D.S.; Mirás-Avalos, J.M.; López-Urrea, R.; Gil-Muñoz, R.; Lizama, V.; García-Esparza, M.J.; Álvarez, M.I.; Buesa, I. Effects of Deficit Irrigation with Saline Water on Yield and Grape Composition of Vitis vinifera L. Cv. Monastrell. Irrig. Sci. 2023, 41, 469–485. [Google Scholar] [CrossRef]
- Levy, G.J.; Torrento, G.R. Clay Dispersion and Macro Aggregate Stability as Affected by Exchangeable Sodium and Potassium, 2019 by Exchangeable Sodium and Potassium. Soil Sci. 1995, 160, 352–358. [Google Scholar] [CrossRef]
- Naidu, R.; Rengasamy, P. Ion Interactions and Constraints to Plant Nutrition in Australian Sodic Soils. Soil Res. 1993, 31, 801. [Google Scholar] [CrossRef]
- Fitzpatrick, R.W.; Wright, M.J.; Stevens, R.M. Drainage, Sodicity and Related Problems of Vineyard Soils. In Proceedings of the Eighth Australian Wine Industry Technical Conference, Melbourne, Australia, 25–29 October 1993; pp. 38–44. [Google Scholar]
- Choudhary, O.P.; Ghuman, B.S. Cyclic Use of Sodic and Non-Sodic Canal Waters for Irrigation in Cotton-Wheat Cropping System in a Semi-Arid Region. J. Sustain. Agric. 2008, 32, 269–286. [Google Scholar] [CrossRef]
- Prior, L.; Grieve, A.; Cullis, B. Sodium Chloride and Soil Texture Interactions in Irrigated Field Grown Sultana Grapevines. I. Yield and Fruit Quality. Aust. J. Agric. Res. 1992, 43, 1051. [Google Scholar] [CrossRef]
- Prior, L.; Grieve, A.; Cullis, B. Sodium Chloride and Soil Texture Interactions in Irrigated Field Grown Sultana Grapevines. II. Plant Mineral Content, Growth and Physiology. Aust. J. Agric. Res. 1992, 43, 1067. [Google Scholar] [CrossRef]
Year | Mean Annual Temperature (°C) | Mean Annual Humidity (%) | Total Annual Pan Evaporation (mm) | Total Annual Rainfall (mm) | Irrigation Water Applied (IWA, cm) | ||
---|---|---|---|---|---|---|---|
Maximum (Tmax, °C) | Minimum (Tmin, °C) | Maximum (RHmax, %) | Minimum (RHmin, %) | ||||
2008 | 30.7 | 16.5 | 84.9 | 43.9 | 1714 | 433 | 308 |
2009 | 31.3 | 17.0 | 81.7 | 39.9 | 2121 | 293 | 336 |
2010 | 31.0 | 17.7 | 83.7 | 43.3 | 1795 | 465 | 336 |
2011 | 30.5 | 17.1 | 85.7 | 45.8 | 1614 | 431 | 308 |
2012 | 30.7 | 16.8 | 81.1 | 37.5 | 1924 | 263 | 308 |
2013 | 30.6 | 17.6 | 79.9 | 38.8 | 1692 | 262 * | 308 |
Depth (cm) | pH1:2 | EC1:2 (dS m−1) | Bulk Density (Mg m−3) | OC (g kg−1) | Water Content (%) | Available Soil Water (cm) | CaCO3 (%) | |
---|---|---|---|---|---|---|---|---|
1/3 bar | 15 bar | |||||||
0–15 | 8.36 | 0.281 | 1.45 | 3.41 | 25.9 | 7.4 | 2.7 | 4.72 |
15–30 | 8.40 | 0.274 | 1.57 | 3.13 | 27.2 | 8.5 | 2.8 | 3.41 |
30–60 | 8.47 | 0.269 | 1.50 | 1.41 | 26.6 | 9.5 | 5.5 | 4.80 |
60–90 | 8.56 | 0.282 | 1.45 | 1.10 | 28.6 | 9.5 | 5.6 | 3.68 |
90–120 | 8.52 | 0.303 | 1.49 | 1.05 | 27.0 | 9.8 | 5.2 | 4.14 |
120–150 | 8.44 | 0.296 | 1.52 | 0.96 | 28.1 | 8.0 | 5.7 | 2.56 |
150–180 | 8.23 | 0.271 | 1.54 | 0.89 | 27.4 | 8.7 | 5.6 | 3.29 |
Parameters | PQW | GQW |
---|---|---|
pH | 9.12–9.32 (9.22) * | 8.24–8.38 (8.31) |
EC (dS m−1) | 2.2–2.4 (2.3) | 0.30–0.45 (0.38) |
Na+ (mmolc L−1) | 29.0–30.4 (29.7) | 0.79–0.86 (0.83) |
Ca2+ + Mg2+ (mmolc L−1) | 3.0–3.4 (3.2) | 1.4–1.7 (1.6) |
(mmolc L−1) | 3.22–3.76 (3.49) | 0.14–0.2 (0.17) |
(mmolc L−1) | 4.91–5.68 (5.30) | 0.8–1.0 (0.9) |
RSC (mmolc L−1) | 6.21–6.44 (6.33) | −0.6–0.5 (−0.05) |
SAR (mmolc L−1)0.5 | 23.1–24.8 (24.0) | 0.85–0.93 (0.89) |
Treatments | Treatment Designation |
---|---|
All irrigations with canal water or good-quality water | GQW |
All irrigations with poor-quality saline–sodic groundwater | PQW |
Alternate irrigation of the canal and saline–sodic groundwater | GQW/PQW |
All irrigations with PQW + 50% gypsum requirement | PQW + GR50 |
All irrigations with PQW + 100% gypsum requirement | PQW + GR100 |
All irrigations with PQW + sulphitation pressmud @ 6.6 kg per vine on a dry weight basis | PQW + SPM |
Parameters | Values |
---|---|
EC1:5 (dS m−1) | 0.24–0.26 |
pH1:5 | 6.0–6.2 |
C (%) | 38–40 |
N (%) | 1.8–2.0 |
P (%) | 1.2–1.3 |
K (%) | 0.4–0.5 |
S (%) | 0.27–0.31 |
C:N | 20–21:1 |
Treatment | Berry Weight (g Per Berry) | Bunch Number Per Plant | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | Mean | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | Mean | |
GQW | 2.25 | 1.85 | 1.82 | 2.10 | 2.15 | 2.01 | 2.03 | 70.0 | 75.0 | 75.0 | 77.0 | 78.0 | 72.48 | 74.58 |
PQW | 1.92 | 1.79 | 1.75 | 1.98 | 1.95 | 1.95 | 1.89 | 62.25 | 60.0 | 60.0 | 64.0 | 62.0 | 60.51 | 61.46 |
GQW/PQW | 1.79 | 1.84 | 1.80 | 1.82 | 2.0 | 1.85 | 1.85 | 73.0 | 70.0 | 70.0 | 73.0 | 70.1 | 69.48 | 70.93 |
PQW + GR50 | 1.93 | 1.75 | 1.70 | 2.00 | 2.05 | 1.91 | 1.89 | 66.5 | 65.0 | 65.0 | 68.5 | 66.0 | 63.98 | 65.83 |
PQW + GR100 | 1.89 | 1.78 | 1.73 | 1.90 | 2.0 | 1.80 | 1.85 | 70.5 | 67.5 | 67.5 | 70.0 | 68.5 | 68.02 | 68.67 |
PQW + SPM | 1.74 | 1.84 | 1.80 | 1.78 | 2.10 | 1.96 | 1.87 | 72.25 | 73.5 | 73.5 | 75.0 | 74.0 | 73.11 | 73.56 |
LSD (0.05) | 0.19 | 0.01 | 0.08 | 0.04 | NS | 0.01 | NS | NS | 1.72 | 2.08 | 1.46 | 1.63 | 1.62 | 2.20 |
Treatment | Bunch length (cm) | Bunch breadth (cm) | ||||||||||||
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | Mean | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | Mean | |
GQW | 20.75 | 20.10 | 19.75 | 20.15 | 20.15 | 20.10 | 20.17 | 11.30 | 10.28 | 11.15 | 11.10 | 11.25 | 10.75 | 10.97 |
PQW | 19.25 | 18.28 | 18.0 | 18.85 | 19.35 | 18.70 | 18.74 | 10.80 | 8.50 | 9.92 | 10.35 | 10.90 | 9.80 | 10.05 |
GQW/PQW | 20.05 | 20.0 | 19.67 | 20.0 | 20.0 | 20.0 | 19.95 | 9.55 | 9.83 | 10.92 | 10.90 | 10.30 | 10.10 | 10.27 |
PQW + GR50 | 19.18 | 18.55 | 18.53 | 19.20 | 19.15 | 18.80 | 18.91 | 10.43 | 9.38 | 10.12 | 10.60 | 10.60 | 10.0 | 10.19 |
PQW + GR100 | 19.30 | 19.93 | 19.35 | 19.95 | 19.40 | 19.60 | 19.59 | 10.55 | 9.20 | 9.92 | 10.75 | 10.75 | 10.0 | 10.20 |
PQW + SPM | 21.33 | 20.33 | 20.06 | 20.25 | 21.0 | 20.60 | 20.60 | 10.88 | 9.65 | 10.67 | 10.95 | 11.0 | 10.45 | 10.60 |
LSD (0.05) | NS | 0.27 | 0.23 | 0.18 | 0.21 | 0.23 | 0.09 | NS | 0.18 | 0.17 | 0.08 | 0.10 | 0.11 | 0.05 |
Treatment | Berry Yield (t ha−1) | ||||||
---|---|---|---|---|---|---|---|
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | Mean | |
GQW | 21.2 | 28.4 | 29.5 | 31.0 | 27.9 | 28.7 | 27.8 |
PQW | 16.6 | 20.0 | 21.6 | 22.6 | 20.5 | 21.0 | 20.4 |
GQW/PQW | 19.2 | 26.8 | 27.2 | 28.6 | 25.5 | 26.2 | 25.6 |
PQW + GR50 | 18.9 | 22.3 | 23.3 | 27.9 | 22.0 | 21.6 | 22.7 |
PQW + GR100 | 19.9 | 24.8 | 24.0 | 28.6 | 26.1 | 24.9 | 24.7 |
PQW + SPM | 21.9 | 27.4 | 27.6 | 29.2 | 26.6 | 27.4 | 26.7 |
LSD (0.05) | NS | 1.0 | 1.7 | 0.9 | 1.0 | 1.0 | 1.3 |
Treatment | IWA (cm) | PWU (cm) | RF (cm) | TWU (cm) | TWUE (q ha−1-cm) | AWU/Vine (m3) |
---|---|---|---|---|---|---|
GQW | 31.7 | 2.12 | 35.8 | 69.62 | 3.99 | 6.27 |
PQW | 31.7 | −0.31 | 35.8 | 67.19 | 3.03 | 6.05 |
GQW/PQW | 31.7 | 1.26 | 35.8 | 68.76 | 3.72 | 6.19 |
PQW + GR50 | 31.7 | −0.03 | 35.8 | 67.47 | 3.36 | 6.08 |
PQW + GR100 | 31.7 | −0.41 | 35.8 | 67.09 | 3.68 | 6.04 |
PQW + SPM | 31.7 | 0.39 | 35.8 | 67.89 | 3.93 | 6.12 |
Treatment | pH1:2 | EC1:2 (dS m−1) | SAR (cmol kg−1)0.5 | OC (g kg−1) | BD (Mg m−3) | FIR (cm h−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
0–15 cm | 15–30 cm | 0–15 cm | 15–30 cm | 0–15 cm | 15–30 cm | 0–15 cm | 15–30 cm | 0–15 cm | 15–30 cm | 0–15 cm | |
GQW | 8.34 | 8.42 | 0.32 | 0.29 | 5.0 | 3.76 | 3.6 | 3.2 | 1.45 | 1.50 | 2.81 |
PQW | 9.35 | 9.43 | 0.60 | 0.58 | 11.01 | 11.73 | 1.8 | 1.7 | 1.67 | 1.69 | 1.49 |
GQW/PQW | 8.87 | 8.95 | 0.44 | 0.40 | 6.59 | 6.96 | 3.1 | 2.9 | 1.52 | 1.55 | 2.33 |
PQW + GR50 | 9.10 | 9.21 | 0.59 | 0.54 | 9.26 | 9.85 | 2.0 | 1.7 | 1.59 | 1.61 | 1.90 |
PQW + GR100 | 9.02 | 9.11 | 0.62 | 0.56 | 8.56 | 9.28 | 2.0 | 1.8 | 1.56 | 1.60 | 1.97 |
PQW + SPM | 8.81 | 8.86 | 0.52 | 0.45 | 7.24 | 7.60 | 3.2 | 3.1 | 1.50 | 1.54 | 2.42 |
LSD (0.05) | 0.51 | 0.40 | 0.72 | 0.57 | 1.26 | 0.92 | 0.48 | 0.42 | 0.12 | 0.10 | 0.31 |
Treatment | TSSs (%) | Acidity (%) | TSSs/Acidity |
---|---|---|---|
GQW | 18.30 | 0.60 | 30.61 |
PQW | 17.05 | 0.66 | 25.91 |
GQW/PQW | 17.90 | 0.64 | 28.11 |
PQW + GR50 | 17.67 | 0.66 | 26.86 |
PQW + GR100 | 17.83 | 0.68 | 26.47 |
PQW + SPM | 17.82 | 0.63 | 28.33 |
LSD (0.05) | 0.40 | 0.04 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekhon, K.S.; Kaur, A.; Thaman, S.; Gupta, N.; Malik, A.; Bishnoi, C.; Kisi, O.; Salem, A.; Mattar, M.A. Sustaining Grape Yield and Soil Health Under Saline–Sodic Irrigation Through Amendments and Canal Water Application. Water 2025, 17, 2683. https://doi.org/10.3390/w17182683
Sekhon KS, Kaur A, Thaman S, Gupta N, Malik A, Bishnoi C, Kisi O, Salem A, Mattar MA. Sustaining Grape Yield and Soil Health Under Saline–Sodic Irrigation Through Amendments and Canal Water Application. Water. 2025; 17(18):2683. https://doi.org/10.3390/w17182683
Chicago/Turabian StyleSekhon, Karamjit Singh, Anureet Kaur, Sudhir Thaman, Navjot Gupta, Anurag Malik, Chetak Bishnoi, Ozgur Kisi, Ali Salem, and Mohamed A. Mattar. 2025. "Sustaining Grape Yield and Soil Health Under Saline–Sodic Irrigation Through Amendments and Canal Water Application" Water 17, no. 18: 2683. https://doi.org/10.3390/w17182683
APA StyleSekhon, K. S., Kaur, A., Thaman, S., Gupta, N., Malik, A., Bishnoi, C., Kisi, O., Salem, A., & Mattar, M. A. (2025). Sustaining Grape Yield and Soil Health Under Saline–Sodic Irrigation Through Amendments and Canal Water Application. Water, 17(18), 2683. https://doi.org/10.3390/w17182683