Leaching Kinetics and Reactive Regulation of Boiling Furnace Pyrite Cinder (BPC) in an Oxalic Acid-Sulfuric Acid System
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Leaching Method
2.3. Response Surface Methodology Design
2.4. Analytical Methods
3. Results and Discussion
3.1. Influence of Several Factors on Iron Leaching Rate
3.1.1. Effect of Stirring Speed and Leaching Temperature
3.1.2. Effect of Sulfuric Acid Concentration and L/S Ratio
3.2. Optimization of the Leaching Process
3.2.1. Model Establishment and Analysis of Variance
3.2.2. Comparison with Existing Hematite Leaching Processes
3.2.3. Response Surface Analysis
3.3. Characterization of Leaching Residues
3.4. The Kinetics of Iron Leaching
3.5. Thermodynamic Analysis of Iron Speciation and the Role of Oxalic Acid
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, B.; Tian, X.; Sun, Y.; Yang, C.; Zeng, Y.; Wang, Y.; Zhang, S.; Pi, Z. Recovery of iron oxide concentrate from high-sulfur and low-grade pyrite cinder using an innovative beneficiating process. Hydrometallurgy 2010, 104, 241–246. [Google Scholar] [CrossRef]
- Tian, C. A novel approach for comprehensive utilization by leaching pyrite cinder with titanium dioxide waste acid by re-sponse surface methodology. ACS Omega 2024, 9, 8510–8519. [Google Scholar] [CrossRef]
- Chen, D.; Guo, H.; Xu, J.; Lv, Y.; Xu, Z.; Huo, H. Recovery of iron from pyrite cinder containing non-ferrous metals using high-temperature chloridizing-reduction-magnetic separation. Metall. Mater. Trans. B 2017, 48, 933–942. [Google Scholar] [CrossRef]
- Pan, W.; Liu, L.; Li, Y.; Jiang, T.; Liu, Y.; Li, Y.; Zhou, J.; Tang, A.; Xue, J. Efficient purification and utilization of pyrite cinder for carbon-coated lithium iron phosphate synthesis. J. Environ. Chem. Eng. 2024, 12, 114720. [Google Scholar] [CrossRef]
- Tiberg, C.; Bendz, D.; Theorin, G.; Kleja, D.B. Evaluating solubility of Zn, Pb, Cu and Cd in pyrite cinder using leaching tests and geochemical modelling. Appl. Geochem. 2017, 85, 106–117. [Google Scholar] [CrossRef]
- Liu, L.; Dong, W.; Niu, M.; Liu, X.; Xue, J.; Tang, A. Fabrication of a confined pyrite cinder-based photo-Fenton catalyst and its degradation performance for ciprofloxacin. J. Mol. Liq. 2022, 360, 119489. [Google Scholar] [CrossRef]
- Dong, T.; Guo, Z.; Zhu, D.; Pan, J.; Ma, W.; Li, S.; Shi, Y. Manufacturing of Fe/C micro-electrolysis materials with the pyrite cinder towards the degradation of high-concentration organic wastewater. J. Environ. Chem. Eng. 2024, 12, 113502. [Google Scholar] [CrossRef]
- Jiang, T.; Tu, Y.; Su, Z.; Lu, M.; Liu, S.; Liu, J.; Gu, F.; Zhang, Y. A novel value-added utilization process for pyrite cinder: Selective recovery of Cu/Co and synthesis of iron phosphate. Hydrometallurgy 2020, 193, 105314. [Google Scholar] [CrossRef]
- Dong, L.; Jiao, F.; Liu, W.; Zhang, Z.; Qin, W. Separation of aluminum and lithium in sulfuric acid roasting leachate of overhaul slag by Di-(2-ethylhexyl) phosphoric acid extraction and sulfuric acid strip. Hydrometallurgy 2025, 236, 106521. [Google Scholar] [CrossRef]
- Fan, L.; Zhou, X.; Luo, H.; Deng, J.; Dai, L.; Ju, Z.; Zhu, Z.; Zou, L.; Ji, L.; Li, B.; et al. Release of heavy metals from the pyrite tailings of huangjiagou pyrite mine: Batch experiments. Sustainability 2016, 8, 96. [Google Scholar] [CrossRef]
- Hottenstein, J.D.; Neilson, J.W.; Gil-Loaiza, J.; Root, R.A.; White, S.A.; Chorover, J.; Maier, R.M. Soil microbiome dynamics during pyritic mine tailing phytostabilization: Understanding microbial bioindicators of soil acidification. Front. Microbiol. 2019, 10, 1211. [Google Scholar] [CrossRef]
- Jin, W.; Yang, S.; Tang, C.; Li, Y.; Chang, C.; Chen, Y. Green and short smelting process of bismuth sulphide concentrate with pyrite cinder. J. Clean. Prod. 2022, 377, 134348. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Cai, X.; Fu, J.; Liu, M.; Zhang, P.; Yu, H. The leaching behavior of copper and iron recovery from reduction roasting pyrite cinder. J. Hazard. Mater. 2021, 420, 126561. [Google Scholar] [CrossRef]
- Li, Y.; Xian, Y.; Chen, D.; Zhong, Y.; Wu, X. Process optimization on preparation of composite portland cement with low-grade pyrite cinder. Multipurp. Util. Miner. Resour. 2023, 3, 78–81. [Google Scholar]
- Zamfir, A.; Meghea, A.; Oprea, O.C.; Mihaly, M. Sustainable conversion of acid mine drainage sludge into high-quality ironbased pigments through thermal processing. Process Saf. Environ. Prot. 2025, 198, 107181. [Google Scholar] [CrossRef]
- Kenzhaliyev, B.; Surkova, T.; Yessimova, D.; Baltabekova, Z.; Abikak, Y.; Abdikerim, B.; Dosymbayeva, Z. Extraction of noble metals from pyrite cinders. ChemEngineering 2023, 7, 14. [Google Scholar] [CrossRef]
- Argane, R.; Benzaazoua, M.; Hakkou, R.; Bouamrane, A. A comparative study on the practical use of low sulfide base-metal tailings as aggregates for rendering and masonry mortars. J. Clean. Prod. 2016, 112, 914–925. [Google Scholar] [CrossRef]
- Kerkez, D.; Bečelić-Tomin, M.; Gvoić, V.; Mandić, A.K.; Leovac Maćerak, A.; Tomašević Pilipović, D.; Pešić, V. Pyrite cinder as an effective fenton-like catalyst for the degradation of reactive azo dye: Effects of process parameters and complete effluent characterization. Catalysts 2023, 13, 424. [Google Scholar] [CrossRef]
- Pan, W.; Liu, L.; Liu, Y.; Xu, S.; Zhou, J.; Tang, A.; Xue, J. Construction of a porous pyrite cinder-supported Mn-doped BiFeO3 composite photocatalyst: Confined-space strategy, structure, and visible-light catalytic degradation toward ciprofloxacin. J. Environ. Chem. Eng. 2023, 11, 111355. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Xiao, T.; Chen, Y.; Long, J.; Zhang, G.; Zhang, P.; Li, C.; Zhuang, L.; Li, K. Efficient removal of thallium (I) from wastewater using flower-like manganese dioxide coated magnetic pyrite cinder. J. Clean. Prod. 2019, 353, 867–877. [Google Scholar] [CrossRef]
- Yu, H.; Liang, B.; Song, W.; Zhou, X.; Liu, M.; Zeng, H.; Zhang, H. Recovery of gold and iron oxide from pyrite cinder using reduction roasting, grinding, thiosulfate leaching in the presence of additives and magnetic separation. Hydrometallurgy 2025, 233, 106453. [Google Scholar] [CrossRef]
- Han, P.; Li, Z.; Tu, Y.; Zhao, T.; Wei, L.; Ye, S. Recovery of valuable metals from iron-rich pyrite cinder by chlorination-volatilization method. Min. Metall. Explor. 2024, 41, 345–352. [Google Scholar] [CrossRef]
- Zhang, Y. Study on Preparation of Iron Phosphate from Pyrite Cinder by Hydrochloric Acid Process. Master’s Thesis, Wuhan Institute of Technology, Wuhan, China, 2023. [Google Scholar]
- Zhang, X.; Chen, Y.; Huang, S.; Li, Z.; Zheng, Y.; Chen, Z. Investigation on extracting iron from pyrite cinder by sulfuric acid leaching. Chem. Ind. Eng. Prog. 2003, 22, 165–168. [Google Scholar]
- Li, W.; Hua, T.; Zhou, Q. Optimum technical conditions study of dissolving pyrite cinders by hydrochloric acid. J. Basic Sci. Eng. 2008, 16, 795–801. [Google Scholar]
- Dang, X.; Yang, D.; Wang, B. Mechanism of zinc and iron separation in neutral leaching residue by oxalic acid solution and optimization of the separation condition. Nonferrous Met. Eng. 2024, 14, 96–107. [Google Scholar]
- Li, W.; Wang, S.; Han, Y.; Tang, Z.; Zhang, Y. Recovery of iron from pyrite cinder by suspension magnetization roasting-magnetic separation method: Process optimization and mechanism study. Sep. Purif. Technol. 2024, 332, 125652. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Wang, M.; Wang, H.; Xian, P. Recovery of iron from red mud by selective leach with oxalic acid. Hydrometallurgy 2015, 157, 239–245. [Google Scholar] [CrossRef]
- Yang, B.; Fang, X.; Wang, B.; Dong, Y.; Yang, M. Extraction of iron from pyrite cinder via oxalic acid-intensified leaching method. Chem. Ind. Eng. Prog. 2019, 38, 1552–1560. [Google Scholar] [CrossRef]
- Dreisinger, D.; Abed, N. A fundamental study of the reductive leaching of chalcopyrite using metallic iron part I: Kinetic analysis. Hydrometallurgy 2002, 66, 37–57. [Google Scholar] [CrossRef]
- Tanda, B.C.; Eksteen, J.J.; Oraby, E.A.; O’Connor, G.M. The kinetics of chalcopyrite leaching in alkaline glycine/glycinate solutions. Miner. Eng. 2019, 135, 118–128. [Google Scholar] [CrossRef]
- Zhang, D.C.; Sun, F.L.; Zhao, Z.W.; Liu, X.H.; Chen, X.Y.; Li, J.T.; He, L.H. Kinetics study on cobalt leaching from cobalt-bearing ternary sulfide in sulfuric acid solution under atmospheric pressure. Trans. Nonferrous Met. Soc. China 2024, 34, 1669–1680. [Google Scholar] [CrossRef]
- Liu, J.L.; Yin, Z.L.; Li, X.H.; Hu, Q.Y.; Liu, W. Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium. Nonferrous Met. Soc. China 2019, 29, 641–649. [Google Scholar] [CrossRef]
- Xing, P.; Wang, J.; Lyu, T.; Zhuang, Y.; Du, X.; Luo, X. Ultrasound-assisted impurity removal from petroleum coke. Sep. Purif. Technol. 2015, 151, 251–255. [Google Scholar] [CrossRef]
- Meng, Q.; Pang, Y.; Chen, Y.; Hao, Y.; Xie, J.; Zhuang, Y.; Xiong, P. Kinetic and mechanism of Ca leaching in the production of high-purity magnesia. JOM 2025, 77, 5777–5789. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Hu, H.; Zhang, T.; Zhou, Y. Dissolution of kaolinite induced by citric, oxalic, and malic acids. J. Colloid Interf. Sci. 2005, 290, 481–488. [Google Scholar] [CrossRef]
- Wang, F.; Yang, Y.; Yang, M.; Tian, Y.; Yuan, H. Lithium was extracted from lithium-poor clay ores after short calcination by oxalic acid leaching. Particuology 2025, 98, 204–214. [Google Scholar] [CrossRef]
- Amjad, Z.; Koutsoukos, P.G. Evaluation of maleic acid based polymers as scale inhibitors and dispersants for industrial water applications. Desalination 2014, 335, 55–63. [Google Scholar] [CrossRef]
- Lin, C.; Lü, T.; Qi, D.; Cao, Z.; Sun, Y.; Wang, Y. Effects of surface groups on SiO2 nanoparticles on in situ solution polymerization: Kinetics and mechanism. Ind. Eng. Chem. Res. 2018, 57, 15280–15290. [Google Scholar] [CrossRef]
- Wu, Y.; Pan, X.; Han, Y.; Yu, H. Dissolution kinetics and removal mechanism of kaolinite in diasporic bauxite in alkali solution at atmospheric pressure. Nonferrous Met. Soc. China 2019, 29, 2627–2637. [Google Scholar] [CrossRef]
- Valeev, D.; Pankratov, D.; Shoppert, A.; Sokolov, A.; Kasikov, A.; Mikhailova, A.; Salazarconcha, C.; Rodionov, I. Mechanism and kinetics of iron extraction from high silica boehmite–kaolinite bauxite by hydrochloric acid leaching. Nonferrous Met. Soc. China 2021, 31, 3128–3149. [Google Scholar] [CrossRef]
- Wang, Y.; Ou, J.; Gong, Y.; Yang, Y.; Wang, R.; Xu, Z.; Li, J. Acid leaching process for valuable metals in limonitic laterite nickel ore. Nonferr. Met. Sci. Eng. 2024, 15, 274–284. [Google Scholar] [CrossRef]
- Xiao, W.; Liu, X.; Zhao, Z. Kinetics of nickel leaching from low-nickel matte in sulfuric acid solution under atmospheric pressure. Hydrometallurgy 2020, 194, 105353. [Google Scholar] [CrossRef]
- Gok, O.; Anderson, C.G.; Cicekli, G.; Cocen, E.L. Leaching kinetics of copper from chalcopyrite concentrate in nitrous-sulfuric acid. Physicochem. Probl. Miner. Process. 2014, 50, 399–413. [Google Scholar] [CrossRef]
- Vehmaanperä, P.; Salmimies, R.; Häkkinen, A. Thermodynamic and kinetic studies of dissolution of hematite in mixtures of oxalic and sulfuric acid. Min. Metall. Explor. 2021, 38, 69–80. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X. Critical review in adsorption kinetic models. J. Zhejiang Univ.-Sci. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Ji, T.; Yang, B.; Su, S.J.; Ding, S.; Sun, W.Y. Leaching characteristics and kinetics of iron and manganese from iron-rich pyrolusite slag in oxalic acid solution. Sep. Sci. Technol. 2021, 56, 1612–1621. [Google Scholar] [CrossRef]
- Lin, Y.; Sun, H.; Peng, T.; Zhao, D.; Zhang, X. The leaching kinetics of iron from titanium gypsum in a citric acid medium and obtain materials by leaching liquid. Molecules 2023, 28, 952. [Google Scholar] [CrossRef]
- Tao, L.; Wang, L.; Yang, K.; Wang, X.; Chen, L.; Ning, P. Leaching of iron from copper tailings by sulfuric acid: Behavior, kinetics and mechanism. RSC Adv. 2021, 11, 5741–5752. [Google Scholar] [CrossRef]
- Huang, Y.; Mo, W.; Feng, J.; Ren, R.; He, C.; Su, X. Differential leaching behavior of iron and aluminum from Bayer red mud in sulfuric acid/oxalic acid system. Nonferr. Met. (Miner. Process. Sect.) 2023, 2, 34–43. [Google Scholar]
- Gao, G. Research on Leaching Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using an Organic Acid Reductive System. Ph.D. Thesis, Shanghai University, Shanghai, China, 2019. [Google Scholar]
Chemical Composition | Fe | SiO2 | Al2O3 | CaO | MgO | P | Cu | S | LOI |
---|---|---|---|---|---|---|---|---|---|
Mass/% | 51.10 | 13.22 | 1.93 | 3.56 | 0.43 | 0.013 | <0.001 | 1.35 | 28.40 |
Factor | Parameter | ||
---|---|---|---|
−1 | 0 | 1 | |
A/h | 5 | 5.5 | 6 |
B/°C | 80 | 85 | 90 |
C/(mL/g) | 5 | 7.5 | 10 |
D/wt% | 30 | 40 | 50 |
Source | Sum of Squares | df | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Model | 0.10 | 14 | 7.171 × 10−3 | 79.13 | <0.0001 |
A | 4.441 × 10−6 | 1 | 4.441 × 10−6 | 0.049 | 0.8280 |
B | 0.029 | 1 | 0.029 | 321.21 | <0.0001 |
C | 1.200 × 10−5 | 1 | 1.200 × 10−5 | 0.13 | 0.7214 |
D | 0.027 | 1 | 0.027 | 294.92 | <0.0001 |
AB | 1.225 × 10−3 | 1 | 1.225 × 10−3 | 13.52 | 0.0025 |
AC | 4.410 × 10−4 | 1 | 4.410 × 10−4 | 4.87 | 0.0506 |
AD | 7.480 × 10−4 | 1 | 7.480 × 10−4 | 8.25 | 0.0123 |
BC | 1.210 × 10−4 | 1 | 1.210 × 10−4 | 1.34 | 0.2672 |
BD | 2.102 × 10−4 | 2.102 × 10−4 | 2.32 | 0.1500 | |
CD | 2.560 × 10−4 | 1 | 2.560 × 10−4 | 2.83 | 0.1150 |
A2 | 1.746 × 10−4 | 1.746 × 10−4 | 1.93 | 0.1868 | |
B2 | 3.026 × 10−3 | 1 | 3.026 × 10−3 | 33.39 | <0.0001 |
C2 | 2.460 × 10−3 | 1 | 2.460 × 10−3 | 27.15 | 0.0001 |
D2 | 0.038 | 1 | 0.038 | 418.22 | <0.0001 |
Residual | 1.269 × 10−3 | 14 | 9.062 × 10−5 | ||
Lack of Fit | 1.188 × 10−3 | 10 | 1.188 × 10−4 | 5.86 | 0.0515 |
Pure Error | 8.106 × 10−5 | 4 | 2.027 × 10−5 | ||
Cor Total | 0.10 | 28 |
Acid System | Key Conditions | Fe Leaching Rate (%) | Ref. |
---|---|---|---|
30%HCl | 90 °C, 3 h, L/S = 5.45:1 (mL/g) | 89% | [23] |
55%H2SO4 | 110 °C, 2 h, L/S = 8:1 (mL/g) | 51.17% | [24] |
3 mol/L H3PO4 | 110–130 °C, 4 h, L/S = 12:1(mL/g) | 98.1% | [8] |
H2C2O4 + 50%H2SO4 | 98 °C, 7.5 h, mBPC:mH2C2O4 = 50:1 | 95.7% | [26] |
H2C2O4 + 40%H2SO4 | 90 °C, 7 h, mBPC:mH2C2O4 = 5:1, L/S = 5:1(mL/g) | 94.7% | This work |
Temperature/K | Membrane Diffusion Control Model | Interface Chemical Reaction Control Model | Internal Diffusion Control Model | |||
---|---|---|---|---|---|---|
km | R2 | kc | R2 | ki | R2 | |
333.15 | 0.025 ± 0.010 | 0.974 ± 0.051 | 0.01484 ± 0.004 | 0.969 ± 0.052 | 0.01152 ± 0.002 | 0.937 ± 0.046 |
343.15 | 0.045 ± 0.007 | 0.968 ± 0.072 | 0.02899 ± 0.002 | 0.950 ± 0.071 | 0.02975 ± 0.007 | 0.917 ± 0.055 |
353.15 | 0.056 ± 0.012 | 0.942 ± 0.066 | 0.04248 ± 0.010 | 0.989 ± 0.059 | 0.05537 ± 0.005 | 0.988 ± 0.143 |
363.15 | 0.070 ± 0.011 | 0.957 ± 0.062 | 0.06286 ± 0.018 | 0.996 ± 0.092 | 0.08847 ± 0.012 | 0.995 ± 0.023 |
371.15 | 0.071 ± 0.015 | 0.936 ± 0.043 | 0.06677 ± 0.020 | 0.981 ± 0.079 | 0.09402 ± 0.021 | 0.983 ± 0.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Peng, Z.; Yang, Y. Leaching Kinetics and Reactive Regulation of Boiling Furnace Pyrite Cinder (BPC) in an Oxalic Acid-Sulfuric Acid System. Processes 2025, 13, 2904. https://doi.org/10.3390/pr13092904
Li X, Peng Z, Yang Y. Leaching Kinetics and Reactive Regulation of Boiling Furnace Pyrite Cinder (BPC) in an Oxalic Acid-Sulfuric Acid System. Processes. 2025; 13(9):2904. https://doi.org/10.3390/pr13092904
Chicago/Turabian StyleLi, Xiaojiao, Zhenlin Peng, and Yang Yang. 2025. "Leaching Kinetics and Reactive Regulation of Boiling Furnace Pyrite Cinder (BPC) in an Oxalic Acid-Sulfuric Acid System" Processes 13, no. 9: 2904. https://doi.org/10.3390/pr13092904
APA StyleLi, X., Peng, Z., & Yang, Y. (2025). Leaching Kinetics and Reactive Regulation of Boiling Furnace Pyrite Cinder (BPC) in an Oxalic Acid-Sulfuric Acid System. Processes, 13(9), 2904. https://doi.org/10.3390/pr13092904