Geochemistry and Mineralogy of Precipitates from Passive Treatment of Acid Mine Drainage: Implications for Future Management Strategies
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Experimental Design and Sampling
3.2. Chemical Study
3.3. Mineralogical Characterization
4. Results and Discussion
4.1. Metal Partition from AMD to Solid Phases
4.2. DAS Mineralogical Assemblages
DAS—Ca | DAS—Mg | Drain | |||||||
---|---|---|---|---|---|---|---|---|---|
Mineral Phases | SAMPLE | Ca1 | Ca2 | Ca3 | Ca4 | Ca5 | Mg1 | Mg2 | Pindo |
Boehmite | γ-AlO(OH) Bhm | - | - | 3.4 | - | - | - | - | - |
Brushite | Ca(PO3OH)·2H2O Bsh | 9.5 | - | 5.9 | - | - | - | - | - |
Calcite | CaCO3 Cal | 54.5 | 51.6 | 85.6 | - | 59.2 | - | ||
Coquimbite | AlFe3(SO4)6(H2O)12·6H2O Coq | 22.1 | - | - | - | - | - | - | |
Diaspore | AlO(OH) Dsp | - | 1.2 | - | - | - | - | ||
Dolomite | Ca, Mg(CO3)2 Dol | - | 3.0 | - | 42.9 | - | - | ||
Gypsum | CaSO4 Gp | 2.4 | 45.5 | 74.1 | 44.2 | 13.7 | 2.0 | - | - |
Jarosite | KFe3+3(SO4)2(OH)6 Jrs | 14.7 | - | 6.9 | - | - | - | - | - |
Melanterite | Fe2+(H2O)6SO4·H2O Mln | - | 4.0 | - | - | - | - | - | |
Quartz | SiO2 Qtz | 15.9 | - | - | 0.7 | 1.9 | 0.6 | 72.0 | |
Schwertmannite | Fe3+16(OH,SO4)12-13O16·10-12H2O Swm | 35.4 | - | 5.8 | - | - | - | - | - |
Aragonite | CaCO3 Arg | - | - | - | - | - | - | 34.1 | - |
Aurichalcite | (Zn,Cu)5(CO3)2(OH)6 Ach | - | - | - | - | - | 11.6 | - | - |
Brucite | Mg(OH)2 Brc | - | - | - | - | - | - | 1.1 | - |
Azurite/Malachite | Cu(OH)2·2(CuCO3) Azu/Cu2(CO3)(OH)2 Mlc | - | - | - | - | - | 24.2 | - | - |
Monohydrocalcite | CaCO3·H2O Mhcal | - | - | - | - | - | 1.9 | - | - |
Rhodochrosite | MnCO3 Rds | - | - | - | - | - | 9.1 | 2.0 | - |
Siderite | FeCO3 Sd | - | - | - | - | - | 6.5 | 3.1 | - |
Albite | Na(AlSi3O8) Ab | - | - | - | - | - | - | - | 8.7 |
Chlorite | (Mg,Fe)3(Si,Al)4O10(OH)2(Mg,Fe)3(OH)6 Chl | - | - | - | - | - | - | - | 4.0 |
Magnetite | Fe2+Fe3+2O4 Mag | - | - | - | - | - | - | - | 1.0 |
Microcline | K(AlSi3O8) Mcc | - | - | - | - | - | - | - | 1.5 |
Mica | K(Mg,Fe)3AlSi3O10(OH, F)2 Mca | - | - | - | - | - | - | - | 11.9 |
Orthoclase | K(AlSi3O8) Or | - | - | - | - | - | - | - | 1.0 |
Total | 100.02 | 100.00 | 100.00 | 100.00 | 100.01 | 100.00 | 100.00 | 100.01 | |
% Crystallinity | 7.43 | 88.1 | 11.6 | 89.1 | 90.5 | 56.3 | 78.7 | 89.2 | |
chi^2 | 18.8 | 2.12 | 13.6 | 3.27 | 4.11 | 1.56 | 3.97 | 1.41 | |
GOF | 4.34 | 1.45 | 3.69 | 1.81 | 2.03 | 1.25 | 1.99 | 1.19 |
4.3. Possible Environmental Implication of Residues’ Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nordstrom, D.K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and microbiology of mine drainage: An update. Appl. Geochem. 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Delgado, J.; Barba-Brioso, C.; Ayala, D.; Boski, T.; Torres, S.; Calderón, E.; López, F. Remediation experiment of Ecuadorian acid mine drainage: Geochemical models of dissolved species and secondary minerals saturation. Environ. Sci. Pollut. Res. 2019, 26, 34854–34872. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Tabelin, C.B.; Magaribuchi, K.; Seno, K.; Ito, M.; Hiroyoshi, N. Suppression of the release of arsenic from arsenopyrite by carrier-microencapsulation using Ti-catechol complex. J. Hazard. Mater. 2018, 344, 322–332. [Google Scholar] [CrossRef]
- Jouini, M.; Rakotonimaro, T.V.; Neculita, C.M.; Genty, T.; Benzaazoua, M. Stability of metal-rich residues from laboratory multi-step treatment system for ferriferous acid mine drainage. Environ. Sci. Pollut. Res. 2019, 26, 588–601. [Google Scholar] [CrossRef]
- Genty, T.; Bussière, B.; Benzaazoua, M.; Zagury, G.J. Capacity of Wood Ash Filters to Remove Iron from Acid Mine Drainage: Assessment of Retention Mechanism. Mine Water Environ. 2012, 31, 273–286. [Google Scholar] [CrossRef]
- Neculita, C.-M.; Zagury, G.J.; Bussière, B. Effectiveness of sulfate-reducing passive bioreactors for treating highly contaminated acid mine drainage: II. Metal removal mechanisms and potential mobility. Appl. Geochem. 2008, 23, 3545–3560. [Google Scholar] [CrossRef]
- Rakotonimaro, T.V.; Neculita, C.M.; Bussière, B.; Genty, T.; Zagury, G.J. Performance assessment of laboratory and field-scale multi-step passive treatment of iron-rich acid mine drainage for design improvement. Environ. Sci. Pollut. Res. 2018, 25, 17575–17589. [Google Scholar] [CrossRef]
- Hengen, T.J.; Squillace, M.K.; O’Sullivan, A.D.; Stone, J.J. Life cycle assessment analysis of active and passive acid mine drainage treatment technologies. Resour. Conserv. Recy. 2014, 86, 160–167. [Google Scholar] [CrossRef]
- Skousen, J.; Zipper, C.E.; Rose, A.; Ziemkiewicz, P.F.; Nairn, R.; McDonald, L.M.; Kleinmann, R.L. Review of Passive Systems for Acid Mine Drainage Treatment. Mine Water Environ. 2017, 36, 133–153. [Google Scholar] [CrossRef]
- Ayora, C.; Caraballo, M.A.; Macias, F.; Rötting, T.S.; Carrera, J.; Nieto, J.-M. Acid mine drainage in the Iberian Pyrite Belt: 2. Lessons learned from recent passive remediation experiences. Environ. Sci. Pollut. Res. 2013, 20, 7837–7853. [Google Scholar] [CrossRef]
- Caraballo, M.A.; Macías, F.; Nieto, J.M.; Castillo, J.; Quispe, D.; Ayora, C. Hydrochemical performance and mineralogical evolution of a dispersed alkaline substrate (DAS) remediating the highly polluted acid mine drainage in the full-scale passive treatment of Mina Esperanza (SW Spain). Am. Min. 2011, 96, 1270–1277. [Google Scholar] [CrossRef]
- Macías, F.; Pérez-López, R.; Caraballo, M.A.; Cánovas, C.R.; Nieto, J.M. Management strategies and valorization for waste sludge from active treatment of extremely metal-polluted acid mine drainage: A contribution for sustainable mining. J. Clean. Prod. 2017, 141, 1057–1066. [Google Scholar] [CrossRef]
- Rakotonimaro, T.V.; Neculita, C.M.; Bussière, B.; Zagury, G.J. Effectiveness of various dispersed alkaline substrates for the pre-treatment of ferriferous acid mine drainage. Appl. Geochem. 2016, 73, 13–23. [Google Scholar] [CrossRef]
- Rötting, T.S.; Thomas, R.C.; Ayora, C.; Carrera, J. Passive Treatment of Acid Mine Drainage with High Metal Concentrations Using Dispersed Alkaline Substrate. J. Environ. Qual. 2008, 37, 1741–1751. [Google Scholar] [CrossRef] [PubMed]
- Macías, F.; Caraballo, M.A.; Nieto, J.M.; Rötting, T.S.; Ayora, C. Natural pretreatment and passive remediation of highly polluted acid mine drainage. J. Environ. Manag. 2012, 104, 93–100. [Google Scholar] [CrossRef]
- Rakotonimaro, T.V.; Neculita, C.M.; Bussière, B.; Benzaazoua, M.; Zagury, G.J. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: A review. Environ. Sci. Pollut. Res. 2017, 24, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Jouini, M.; Benzaazoua, M.; Neculita, C.M.; Genty, T. Performances of stabilization/solidification process of acid mine drainage passive treatment residues: Assessment of the environmental and mechanical behaviors. J. Environ. Manag. 2020, 269, 110764. [Google Scholar] [CrossRef] [PubMed]
- Fanfani, L.; Zuddas, P.; Chessa, A. Heavy metals speciation analysis as a tool for studying mine tailings weathering. J. Geochem. Explor. 1997, 58, 241–248. [Google Scholar] [CrossRef]
- Khorasanipour, M.; Tangestani, M.H.; Naseh, R.; Hajmohammadi, H. Hydrochemistry, mineralogy and chemical fractionation of mine and processing wastes associated with porphyry copper mines: A case study from the Sarcheshmeh mine, SE Iran. Appl. Geochem. 2011, 26, 714–730. [Google Scholar] [CrossRef]
- Ribeta, I.; Ptacek, C.J.; Blowes, D.W.; Jambor, J.L. The potential for metal release by reductive dissolution of weathered mine tailings. J. Contam. Hydrol. 1995, 17, 239–273. [Google Scholar] [CrossRef]
- Dold, B. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J. Geochem. Explor. 2003, 80, 55–68. [Google Scholar] [CrossRef]
- Sahuquillo, A.; Rigol, A.; Rauret, G. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. TrAC Trends Anal. Chem. 2003, 22, 152–159. [Google Scholar] [CrossRef]
- USEPA (U.S. Environmental Protection Agency). Guidelines for Human Exposure Assessment; (EPA/100/B-19/001); Risk Assessment Forum, U.S. EPA: Washington, DC, USA, 2019.
- Delgado, J.; Ayala, D.; Simón Páez, H. Treatment system to improve the drainage water quality of the Puyango River environmental liabilities. Geogaceta 2018, 64, 63–66. [Google Scholar]
- Betancourt, O.; Narváez, A.; Roulet, M. Small-scale Gold Mining in the Puyango River Basin, Southern Ecuador: A Study of Environmental Impacts andHuman Exposures. Ecohealth 2005, 2, 323–332. [Google Scholar] [CrossRef]
- Delgado, J.; Barba-Brioso, C.; Boski, T. Mine wastes characterisation and experimental design of a controlled tailing storage in the Zaruma-Portovelo mining district (SE Ecuador). Geogaceta 2018, 64, 135–138. [Google Scholar]
- Guimaraes, J.R.D.; Betancourt, O.; Miranda, M.R.; Barriga, R.; Cueva, E.; Betancourt, S. Long-range effect of cyanide on mercury methylation in a gold mining area in southern Ecuador. Sci. Total. Environ. 2011, 409, 5026–5033. [Google Scholar] [CrossRef]
- Tarras-Wahlberg, N.H.; Flachier, A.; Lane, S.N.; Sangfors, O. Environmental impacts and metal exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: The Puyango River basin, southern Ecuador. Sci. Total. Environ. 2001, 278, 239–261. [Google Scholar] [CrossRef] [PubMed]
- Tarras-Wahlberg, N.H.; Lane, S.N. Suspended sediment yield and metal contamination in a river catchment affected by El Niño events and gold mining activities: The Puyango river basin, southern Ecuador. Hydrol. Process. 2003, 17, 3101–3123. [Google Scholar] [CrossRef]
- Rötting, T.S.; Ayora, C.; Carrera, J. Improved Passive Treatment of High Zn and Mn Concentrations Using Caustic Magnesia (MgO): Particle Size Effects. Environ. Sci. Technol. 2008, 42, 9370–9377. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, G.; Pérez, R.; Gómez, J.M.; Ábalos, A.; Cantero, D. Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J. Hazard. Mater. 2006, 135, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Cortina, J.L.; Lagreca, I.H.; de Pablo, J.; Cama, J.; Ayora, C. Passive in situ remediation of metal-polluted water with caustic magnesia: Evidence from column experiments. Environ. Sci. Technol. 2003, 37, 1971–1977. [Google Scholar] [CrossRef] [PubMed]
- Gibert, O.; de Pablo, J.; Cortina, J.L.; Ayora, C. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage. Water Res. 2005, 39, 2827–2838. [Google Scholar] [CrossRef]
- Rötting, T.S.; Cama, J.; Ayora, C.; Cortina, J.L.; De Pablo, J. Use of caustic magnesia to remove cadmium, nickel, and cobalt from water in passive treatment systems: Column experiments. Environ. Sci. Technol. 2006, 40, 6438–6443. [Google Scholar] [CrossRef] [PubMed]
- Caraballo, M.A.; Rötting, T.S.; Nieto, J.M.; Ayora, C. Sequential extraction and DXRD applicability to poorly crystalline Fe- and Al-phase characterization from an acid mine water passive remediation system. Am. Min. 2009, 94, 1029–1038. [Google Scholar] [CrossRef]
- Delgado, J.; Barba-Brioso, C.; Nieto, J.M.; Boski, T. Speciation and ecological risk of toxic elements in estuarine sediments affected by multiple anthropogenic contributions (Guadiana saltmarshes, SW Iberian Peninsula): I. Surficial sediments. Sci. Total. Environ. 2011, 409, 3666–3679. [Google Scholar] [CrossRef] [PubMed]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Rao, C.R.M.; Sahuquillo, A.; Lopez Sanchez, J.F. A Review of the Different Methods Applied in Environmental Geochemistry for Single and Sequential Extraction of Trace Elements in Soils and Related Materials. Water Air Soil Pollut. 2008, 189, 291–333. [Google Scholar] [CrossRef]
- Consani, S.; Ianni, M.C.; Dinelli, E.; Capello, M.; Cutroneo, L.; Carbone, C. Assessment of metal distribution in different Fe precipitates related to Acid Mine Drainage through two sequential extraction procedures. J. Geochem. Explor. 2019, 196, 247–258. [Google Scholar] [CrossRef]
- Hernández, J.; Meurer, E. Óxidos de hierro en los suelos: Sus propiedades y su caracterización con énfasis en los estudios de retención de fósforo. Agrociencia 1997, 1, 1–14. [Google Scholar] [CrossRef]
- Sánchez-España, J.; Yusta, I.; Gray, J.; Burgos, W.D. Geochemistry of dissolved aluminum at low pH: Extent and significance of Al–Fe(III) coprecipitation below pH 4.0. Geochim. Cosmochim. Acta 2016, 175, 128–149. [Google Scholar] [CrossRef]
- Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Kornfeld, J.M. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments. Chem. Geol. 2005, 215, 407–431. [Google Scholar] [CrossRef]
- Marescotti, P.; Carbone, C.; Comodi, P.; Frondini, F.; Lucchetti, G. Mineralogical and chemical evolution of ochreous precipitates from the Libiola Fe–Cu-sulfide mine (Eastern Liguria, Italy). Appl. Geochem. 2012, 27, 577–589. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Alpers, C.N. Geochemistry of acid mine waters. In The Environmental Geochemistry of Mineral Deposits, Reviews in Economic Geology; Plumlee, G.S., Logsdon, M.J., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1999; Volume 6A, pp. 133–160. [Google Scholar]
- Delgado, J.; Sarmiento, A.M.; Condesso De Melo, M.T.; Nieto, J.M. Environmental impact of mining activities in the southern sector of the Guadiana Basin (SW of the Iberian Peninsula). Water Air Soil. Pollut. 2009, 199, 323–341. [Google Scholar] [CrossRef]
- Baes, C.F.; Mesmer, R.S. The Hydrolysis of Cations; John Wiley & Sons: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada, 1977; Volume 81, pp. 245–246. [Google Scholar] [CrossRef]
- Carbone, C.; Dinelli, E.; Marescotti, P.; Gasparotto, G.; Lucchetti, G. The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests. J. Geochem. Explor. 2013, 132, 188–200. [Google Scholar] [CrossRef]
- Zachara, J.M.; Cowan, C.E.; Resch, C.T. Sorption of divalent metals on calcite. Geochim. Cosmochim. Acta 1991, 55, 1549–1562. [Google Scholar] [CrossRef]
- Papassiopi, N.; Zaharia, C.; Xenidis, A.; Adam, K.; Liakopoulos, A.; Romaidis, I. Assessment of contaminants transport in a watershed affected by acid mine drainage, by coupling hydrological and geochemical modeling tools. Miner. Eng. 2014, 64, 78–91. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Jamieson, H.E.; Lottermoser, B.G. Mine wastes: Past, present, future. Elements 2011, 7, 375–380. [Google Scholar] [CrossRef]
- Behum, P.; Kim, K. Workshop for the Application of Passive Technology to the Treatment of Acid Mine Drainage; Office of Surface Mines: Alton, IL, USA, 1999; Presented at Jasper, Indiana. [Google Scholar]
- Shum, M.; Lavkulich, L. Speciation and solubility relationships of Al, Cu and Fe in solutions associated with sulfuric acid leached mine waste rock. Environ. Geol. 1999, 38, 59–68. [Google Scholar] [CrossRef]
- Barba-Brioso, C.; Martín, D.; Romero-Baena, A.; Campos, P.; Delgado, J. Revalorisation of Fine Recycled Concrete in Acid Mine Water Treatment: A Challenge to a Circular Economy. Minerals 2023, 13, 1028. [Google Scholar] [CrossRef]
- Katsioti, M.; Tsakiridis, P.E.; Leonardou-Agatzini, S.; Oustadakis, P. Examination of the jarosite–alunite precipitate addition in the raw meal for the production of sulfoaluminate cement clinker. J. Hazard. Mater. 2006, 131, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Warr, L.N. IMA–CNMNC approved mineral symbols. Mineral Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Jensen, D.L.; Boddum, J.K.; Tjell, J.C.; Christensen, T.H. The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments. Appl. Geochem. 2002, 17, 503–511. [Google Scholar] [CrossRef]
- Jambor, J.L.; Nordstrom, D.K.; Alpers, C.N. Metal-sulfate Salts from Sulfide Mineral Oxidation. Rev. Miner. Geochem. 2000, 40, 303–350. [Google Scholar] [CrossRef]
- USEPA. (U.S. Environmental Protection Agency). National Recommended Water Quality Criteria—Aquatic Life Criteria Table. 2016. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 24 July 2024).
- Decision 2003/33-2003/33/EC: Council Decision of 19 December 2002 Establishing Criteria and Procedures for the Acceptance of Waste at Landfills Pursuant to Article 16 of and Annex II to Directive 1999/31/EC-EU Monitor. Available online: https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vitgbgich8nt (accessed on 23 December 2024).
- Mehdaoui, H.Y.; Guesmi, Y.; Jouini, M.; Neculita, C.M.; Pabst, T.; Benzaazoua, M. Passive treatment residues of mine drainage: Mineralogical and environmental assessment, and management avenues. Miner. Eng. 2023, 204, 108362. [Google Scholar] [CrossRef]
- Vasquez, Y.; Neculita, C.M.; Caicedo, G.; Cubillos, J.; Franco, J.; Vásquez, M.; Hernández, A.; Roldan, F. Passive multi-unit field-pilot for acid mine drainage remediation: Performance and environmental assessment of post-treatment solid waste. Chemosphere 2022, 291, 133051. [Google Scholar] [CrossRef]
- McCann, J.I.; Nairn, R.W. Characterization of residual solids from mine water passive treatment oxidation ponds at the tar creek 750 superfund site, Oklahoma, USA: Potential for reuse or disposal. Clean. Waste Syst. 2022, 3, 100031. [Google Scholar] [CrossRef]
- Real Decreto 646/2020, de 7 de Julio, por el que se Regula la Eliminación de Residuos Mediante Depósito en Vertedero. Boletín Oficial del Estado, n. 187, de 8 de Julio de 2020. Available online: https://www.fao.org/faolex/results/details/es/c/LEX-FAOC203782/ (accessed on 25 July 2024).
- Vass, C.R.; Noble, A.; Ziemkiewicz, P.F. The Occurrence and Concentration of Rare Earth Elements in Acid Mine Drainage and Treatment By-products: Part 1—Initial Survey of the Northern Appalachian Coal Basin. Min. Metall. Explor. 2019, 36, 903–916. [Google Scholar] [CrossRef]
- Vaziri Hassas, B.; Shekarian, Y.; Rezaee, M.; Pisupati, S.V. Selective recovery of high-grade rare earth, Al, and Co-Mn from acid mine drainage treatment sludge material. Miner. Eng. 2022, 187, 107813. [Google Scholar] [CrossRef]
Sequential Extraction Step | * Dissolved Phases | Elements Released into Solution | Possible Dissolved Phases | Preferentially Dissolved Minerals |
---|---|---|---|---|
(1) Water soluble fraction: 200 mg of sample and 20 mL deionizied water, shake for 12 h at room temperature. | Gypsum | Ca and SO42−; Fe, K, Mg, Mn, Zn and Cd-Co | Gypsum, secondary sulfates and other salts, hydroxides. Fe-amorphous | Secondary sulfates and other salts |
(2) Sorbed and exchangeable fraction: 20 mL of 1 M NH-acetate (4.5 pH buffer). shake for 1 h at RT. | Calcite | Ca and adsorbed elements; Fe and Al- K, As, Cu, Mn, Zn | Metal-divalent carbonate type, including calcite; Fe-amorphous or very poorly ordered Fe(III) precipitates | Calcite and some clay minerals |
(3) Poorly ordered Fe(III) oxyhydroxides and oxyhydroxysulfates: 20 mL of 0.2 M NHy-oxalate (3 pH buffer). 30 min shake in darkness and at RT. | Schwertmannite, hydrobasaluminite and gibbsite | Fe, Al and SO42− and trace associated Residual Ca | schwertmannite; jarosite- alunite group | Mainly schwertmannite and 2-line ferrihydrite |
(4) Highly ordered Fe (III) hydroxides and oxides: 20 mL of 0.2 M NH4-oxalate (3 pH buffer), 80 °C water bath for 1h. | Goethite | K, Fe, Al and SO42−; also As, Cu, Zn, Mn, Mg Residual Ca | jarosite-alunite group; residual Ca-Mg-Mn oxides | Goethite, jarosite, 6-line ferrihydrite and hematite |
(5) Residue digestion: 3 mL of HNO3 + 7.5 mL of HF + 2.5 mL of HClO4 | Residue (wood chips) | Organic elements | Wood and residual silicates and clay assimilated | Silicates |
Das—Ca | Das—Mg | |||||||
---|---|---|---|---|---|---|---|---|
Ca1 | Ca2 | Ca3 | Ca4 | Ca5 | Mg1 | Mg2 | ||
Ag | mg/kg | 9.74 | 23.23 | 16.33 | 36.15 | 100.76 | 11.82 | 60.0 |
Fe | mg/kg | 336,422 | 30,527 | 149,324 | 3096 | 2324 | 32,842 | 727 |
Al | mg/kg | 2497 | 43,040 | 7091 | 56,474 | 8288 | 1576 | 162 |
As | mg/kg | 6616 | 127 | 1215 | 37.6 | 11.2 | 43.0 | 31.1 |
Ca | mg/kg | 1085 | 145,278 | 19,878 | 160,770 | 257,355 | 11,060 | 116,385 |
Cd | mg/kg | 39.6 | 0.71 | 9.75 | <d.l. | 34.7 | 5347 | 4453 |
Co | mg/kg | 3.49 | <d.l. | 2.41 | <d.l. | <d.l. | 773 | 4565 |
Cr | mg/kg | 118 | 21.4 | 28.6 | 14.0 | 19.2 | 20.2 | 68.4 |
Cu | mg/kg | 423 | 41,688 | 1015 | 4632 | 9842 | 909,599 | 11,385 |
K | mg/kg | 2626 | 1227 | 1114 | 1672 | 3603 | 4023 | 943 |
Mg | mg/kg | 290 | 1305 | 347 | 1330 | 2597 | 916 | 8253 |
Mn | mg/kg | 107 | 1223 | 74 | 1024 | 2471 | 13,181 | 75,841 |
Mo | mg/kg | <d.l. | 17.7 | 1.27 | 25.3 | 24.9 | 0.86 | 4.87 |
Na | mg/kg | 745 | 554 | 492 | 579 | 1174 | 1257 | 460 |
Ni | mg/kg | 4.01 | 12.4 | 2.29 | 1.49 | <d.l. | 486 | 1883 |
Pb | mg/kg | 39.0 | 1.80 | 47.3 | <d.l. | <d.l. | 888 | 41.2 |
Sb | mg/kg | 112 | 62.3 | 70.2 | 68.1 | 68.6 | 92.3 | 112 |
Sr | mg/kg | 21.1 | 574 | 36 | 588 | 1130 | 69.8 | 1364 |
Zn | mg/kg | 139 | 3860 | 86 | 320 | 517 | 517,344 | 465,916 |
Landfill Type | As | Ba | Cd | Cr | Cu | Ni | Pb | Zn | Sulfate |
---|---|---|---|---|---|---|---|---|---|
DAS-Ca | <d.l | <d.l | <d.l | 0.7 | 50 | 4.0 | 10 | 104 | <5000 |
DAS-Mg | <d.l | <d.l | 901 | 9.4 | 164 | <d.l | <d.l | 206 | <5000 |
Inert wastes | 0.5 | 20 | 0.04 | 0.5 | 2.0 | 0.4 | 0.5 | 4.0 | 1000 |
Non-Hazardous wastes | 2.0 | 100 | 1 | 10 | 50 | 10 | 10 | 50 | 20,000 |
Hazardous wastes | 25 | 300 | 5 | 70 | 100 | 50 | 50 | 200 | 50,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, J.; Lozano, O.; Ayala, D.; Martín, D.; Barba-Brioso, C. Geochemistry and Mineralogy of Precipitates from Passive Treatment of Acid Mine Drainage: Implications for Future Management Strategies. Minerals 2025, 15, 15. https://doi.org/10.3390/min15010015
Delgado J, Lozano O, Ayala D, Martín D, Barba-Brioso C. Geochemistry and Mineralogy of Precipitates from Passive Treatment of Acid Mine Drainage: Implications for Future Management Strategies. Minerals. 2025; 15(1):15. https://doi.org/10.3390/min15010015
Chicago/Turabian StyleDelgado, Joaquín, Olivia Lozano, Diana Ayala, Domingo Martín, and Cinta Barba-Brioso. 2025. "Geochemistry and Mineralogy of Precipitates from Passive Treatment of Acid Mine Drainage: Implications for Future Management Strategies" Minerals 15, no. 1: 15. https://doi.org/10.3390/min15010015
APA StyleDelgado, J., Lozano, O., Ayala, D., Martín, D., & Barba-Brioso, C. (2025). Geochemistry and Mineralogy of Precipitates from Passive Treatment of Acid Mine Drainage: Implications for Future Management Strategies. Minerals, 15(1), 15. https://doi.org/10.3390/min15010015