Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (490)

Search Parameters:
Keywords = repurposing approved drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 2336 KiB  
Review
Omics-Mediated Treatment for Advanced Prostate Cancer: Moving Towards Precision Oncology
by Yasra Fatima, Kirubel Nigusu Jobre, Enrique Gomez-Gomez, Bartosz Małkiewicz, Antonia Vlahou, Marika Mokou, Harald Mischak, Maria Frantzi and Vera Jankowski
Int. J. Mol. Sci. 2025, 26(15), 7475; https://doi.org/10.3390/ijms26157475 - 2 Aug 2025
Viewed by 334
Abstract
Prostate cancer accounts for approximately 1.5 million new diagnoses and 400,000 deaths every year worldwide, and demographic projections indicate a near-doubling of both figures by 2040. Despite existing treatments, 10–20% of patients eventually progress to metastatic castration-resistant disease (mCRPC). The median overall survival [...] Read more.
Prostate cancer accounts for approximately 1.5 million new diagnoses and 400,000 deaths every year worldwide, and demographic projections indicate a near-doubling of both figures by 2040. Despite existing treatments, 10–20% of patients eventually progress to metastatic castration-resistant disease (mCRPC). The median overall survival (OS) after progression to mCPRC drops to 24 months, and efficacy drops severely after each additional line of treatment. Omics platforms have reached advanced levels and enable the acquisition of high-resolution large datasets that can provide insights into the molecular mechanisms underlying PCa pathology. Genomics, especially DDR (DNA damage response) gene alterations, detected via tissue and/or circulating tumor DNA, efficiently guides therapy in advanced prostate cancer. Given recent developments, we have performed a comprehensive literature search to cover recent research and clinical trial reports (over the last five years) that integrate omics along three converging trajectories in therapeutic development: (i) predicting response to approved agents with demonstrated survival benefits, (ii) stratifying patients to receive therapies in clinical trials, (iii) guiding drug development as part of drug repurposing frameworks. Collectively, this review is intended to serve as a comprehensive resource of recent advancements in omics-guided therapies for advanced prostate cancer, a clinical setting with existing clinical needs and poor outcomes. Full article
(This article belongs to the Special Issue Molecular Research on Prostate Cancer)
Show Figures

Figure 1

23 pages, 1139 KiB  
Article
A Critical Appraisal of Off-Label Use and Repurposing of Statins for Non-Cardiovascular Indications: A Systematic Mini-Update and Regulatory Analysis
by Anna Artner, Irem Diler, Balázs Hankó, Szilvia Sebők and Romána Zelkó
J. Clin. Med. 2025, 14(15), 5436; https://doi.org/10.3390/jcm14155436 - 1 Aug 2025
Viewed by 267
Abstract
Background: Statins exhibit pleiotropic anti-inflammatory, antioxidant, and immunomodulatory effects, suggesting their potential in non-cardiovascular conditions. However, evidence supporting their repurposing remains limited, and off-label prescribing policies vary globally. Objective: To systematically review evidence on statin repurposing in oncology and infectious diseases, and to [...] Read more.
Background: Statins exhibit pleiotropic anti-inflammatory, antioxidant, and immunomodulatory effects, suggesting their potential in non-cardiovascular conditions. However, evidence supporting their repurposing remains limited, and off-label prescribing policies vary globally. Objective: To systematically review evidence on statin repurposing in oncology and infectious diseases, and to assess Hungarian regulatory practices regarding off-label statin use. Methods: A systematic literature search (PubMed, Web of Science, Scopus, ScienceDirect; 2010–May 2025) was conducted using the terms “drug repositioning” OR “off-label prescription” AND “statin” NOT “cardiovascular,” following PRISMA guidelines. Hungarian off-label usage data from the NNGYK (2008–2025) were also analyzed. Results: Out of 205 publications, 12 met the inclusion criteria—75% were oncology-focused, and 25% focused on infectious diseases. Most were preclinical (58%); only 25% offered strong clinical evidence. Applications included hematologic malignancies, solid tumors, Cryptococcus neoformans, SARS-CoV-2, and dengue virus. Mechanisms involved mevalonate pathway inhibition and modulation of host immune responses. Hungarian data revealed five approved off-label statin uses—three dermatologic and two pediatric metabolic—supported by the literature and requiring post-treatment reporting. Conclusions: While preclinical findings are promising, clinical validation of off-label statin use remains limited. Statins should be continued in cancer patients with cardiovascular indications, but initiation for other purposes should be trial-based. Future directions include biomarker-based personalization, regulatory harmonization, and cost-effectiveness studies. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

22 pages, 6758 KiB  
Article
Screening of an FDA-Approved Drug Library: Menadione Induces Multiple Forms of Programmed Cell Death in Colorectal Cancer Cells via MAPK8 Cascades
by Liyuan Cao, Weiwei Song, Jinli Sun, Yang Ge, Wei Mu and Lei Li
Pharmaceuticals 2025, 18(8), 1145; https://doi.org/10.3390/ph18081145 - 31 Jul 2025
Viewed by 287
Abstract
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing [...] Read more.
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing new drugs is time-consuming and resource-intensive. As a more efficient approach, drug repurposing offers a promising alternative for discovering new therapies. Methods: In this study, we screened 1068 small molecular compounds from an FDA-approved drug library in CRC cells. Menadione was selected for further study based on its activity profile. Mechanistic analysis included a cell death pathway PCR array, differential gene expression, enrichment, and network analysis. Gene expressions were validated by RT-qPCR. Results: We identified menadione as a potent anti-tumor drug. Menadione induced three programmed cell death (PCD) signaling pathways: necroptosis, apoptosis, and autophagy. Furthermore, we found that the anti-tumor effect induced by menadione in CRC cells was mediated through a key gene: MAPK8. Conclusions: By employing methods of cell biology, molecular biology, and bioinformatics, we conclude that menadione can induce multiple forms of PCD in CRC cells by activating MAPK8, providing a foundation for repurposing the “new use” of the “old drug” menadione in CRC treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

22 pages, 2357 KiB  
Article
Targeting GLP-1 Signaling Ameliorates Cystogenesis in a Zebrafish Model of Nephronophthisis
by Priska Eckert, Maike Nöller, Merle Müller, Rebecca Haas, Johannes Ruf, Henriette Franz, Katharina Moos, Jia-ao Yu, Dongfang Zhao, Wanqiu Xie, Melanie Boerries, Gerd Walz and Toma A. Yakulov
Int. J. Mol. Sci. 2025, 26(15), 7366; https://doi.org/10.3390/ijms26157366 - 30 Jul 2025
Viewed by 190
Abstract
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing [...] Read more.
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing screen in zebrafish. By simultaneously depleting nphp1 and nphp4, we developed a robust zebrafish model that reproduces key features of human NPH, including glomerular cyst formation. Our screen revealed that dipeptidyl peptidase-4 (DPP4) inhibitors (Omarigliptin and Linagliptin) and GLP-1 receptor agonists (Semaglutide) significantly reduce cystogenesis in a dose-dependent manner. Genetic analysis demonstrated that GLP-1 receptor signaling is important for maintaining pronephros integrity, with gcgra and gcgrb (GLP-1 receptor genes) playing a particularly important role. Transcriptomic profiling identified adenosine receptor A2ab (adora2ab) as a key downstream effector of GLP-1 signaling, which regulates ciliary morphology and prevents cyst formation. Notably, nphp1/nphp4 double mutant zebrafish exhibited the upregulation of gcgra as a compensatory mechanism, which might explain their resistance to cystogenesis. This compensation was disrupted by the targeted depletion of GLP-1 receptors or the inhibition of adenylate cyclase, resulting in enhanced cyst formation, specifically in the mutant background. Our findings establish a signaling cascade from GLP-1 receptors to adora2ab in terms of regulating ciliary organization and preventing cystogenesis, offering new therapeutic opportunities for NPH through the repurposing of FDA-approved medications with established safety profiles. Full article
(This article belongs to the Special Issue Zebrafish as a Model in Human Disease: 3rd Edition)
Show Figures

Figure 1

13 pages, 596 KiB  
Review
Drug Repurposing of New Treatments for Neuroendocrine Tumors
by Stefania Bellino, Daniela Lucente and Anna La Salvia
Cancers 2025, 17(15), 2488; https://doi.org/10.3390/cancers17152488 - 28 Jul 2025
Viewed by 382
Abstract
Drug repurposing or drug repositioning is the process of identifying new therapeutic uses for approved or investigational drugs beyond the original treatment indication. The discovery of new drugs for cancer therapy needs this cost-effective and time-saving alternative strategy to traditional drug development for [...] Read more.
Drug repurposing or drug repositioning is the process of identifying new therapeutic uses for approved or investigational drugs beyond the original treatment indication. The discovery of new drugs for cancer therapy needs this cost-effective and time-saving alternative strategy to traditional drug development for a rapid clinical translation in Phase II/III studies, especially for unmet medical needs and rare diseases. Neuroendocrine tumors (NETs) are a heterogeneous group of rare neoplasms arising from cells of the neuroendocrine system that, though often indolent, can be aggressive and metastatic. In this context, drug repurposing has emerged as a promising strategy to improve treatment options due to the limited number of effective treatments and the heterogeneity of the disease. Indeed, a large number of non-oncology drugs have the potential to address more than one target that could be therapeutic for cancer patients. Although many repurposed drugs are used off-label, efficacy for the new use must be demonstrated in clinical trials. Within regulatory frameworks, both the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have procedures to reduce the need for extensive new studies and to expedite the review of drugs for serious conditions when preliminary evidence indicates substantial clinical improvement over available therapy. In spite of several advantages, including reduced development time, lower costs, known safety profiles, and faster regulatory approval, difficulty in obtaining new patents for old drugs with limited protection for intellectual property may reduce commercial returns and disincentivize investments. This review aims to provide comprehensive information on some marketed drugs currently under investigation to be repurposed or used in clinical practice for NETs and to discuss the major clinical challenges. Although drug repurposing is a useful strategy for early access to medicines, the monitoring of the clinical benefit of oncologic drugs during the post-marketing authorization is crucial to support the safety and effectiveness of treatments. Full article
(This article belongs to the Special Issue Advances in Drug Repurposing to Overcome Cancers)
Show Figures

Graphical abstract

24 pages, 2292 KiB  
Article
Integrating Molecular Dynamics, Molecular Docking, and Machine Learning for Predicting SARS-CoV-2 Papain-like Protease Binders
by Ann Varghese, Jie Liu, Tucker A. Patterson and Huixiao Hong
Molecules 2025, 30(14), 2985; https://doi.org/10.3390/molecules30142985 - 16 Jul 2025
Viewed by 588
Abstract
Coronavirus disease 2019 (COVID-19) produced devastating health and economic impacts worldwide. While progress has been made in vaccine development, effective antiviral treatments remain limited, particularly those targeting the papain-like protease (PLpro) of SARS-CoV-2. PLpro plays a key role in viral replication and immune [...] Read more.
Coronavirus disease 2019 (COVID-19) produced devastating health and economic impacts worldwide. While progress has been made in vaccine development, effective antiviral treatments remain limited, particularly those targeting the papain-like protease (PLpro) of SARS-CoV-2. PLpro plays a key role in viral replication and immune evasion, making it an attractive yet underexplored target for drug repurposing. In this study, we combined machine learning, molecular dynamics, and molecular docking to identify potential PLpro inhibitors in existing drugs. We performed long-timescale molecular dynamics simulations on PLpro–ligand complexes at two known binding sites, followed by structural clustering to capture representative structures. These were used for molecular docking, including a training set of 127 compounds and a library of 1107 FDA-approved drugs. A random forest model, trained on the docking scores of the representative conformations, yielded 76.4% accuracy via leave-one-out cross-validation. Applying the model to the drug library and filtering results based on prediction confidence and the applicability domain, we identified five drugs as promising candidates for repurposing for COVID-19 treatment. Our findings demonstrate the power of integrating computational modeling with machine learning to accelerate drug repurposing against emerging viral targets. Full article
Show Figures

Figure 1

17 pages, 5071 KiB  
Article
Defactinib in Combination with Mitotane Can Be an Effective Treatment in Human Adrenocortical Carcinoma
by Henriett Butz, Lőrinc Pongor, Lilla Krokker, Borbála Szabó, Katalin Dezső, Titanilla Dankó, Anna Sebestyén, Dániel Sztankovics, József Tóvári, Sára Eszter Surguta, István Likó, Katalin Mészáros, Andrea Deák, Fanni Fekete, Ramóna Vida, László Báthory-Fülöp, Erika Tóth, Péter Igaz and Attila Patócs
Int. J. Mol. Sci. 2025, 26(13), 6539; https://doi.org/10.3390/ijms26136539 - 7 Jul 2025
Viewed by 554
Abstract
Adrenocortical carcinoma (ACC) is an aggressive cancer with a poor prognosis. Mitotane, the only FDA-approved treatment for ACC, targets adrenocortical cells and reduces cortisol levels. Although it remains the cornerstone of systemic therapy, its overall impact on long-term outcomes is still a matter [...] Read more.
Adrenocortical carcinoma (ACC) is an aggressive cancer with a poor prognosis. Mitotane, the only FDA-approved treatment for ACC, targets adrenocortical cells and reduces cortisol levels. Although it remains the cornerstone of systemic therapy, its overall impact on long-term outcomes is still a matter of ongoing clinical debate. Drug repurposing is a cost-effective way to identify new therapies, and defactinib, currently in clinical trials as part of combination therapies for various solid tumours, may enhance ACC treatment. We aimed to assess its efficacy in combination with mitotane. We tested the combination of mitotane and defactinib in H295R, SW13, and mitotane-sensitive and -resistant HAC15 cells, using functional assays, transcriptomic profiling, 2D and 3D cultures, bioprinted tissues, and xenografts. We assessed drug interactions with NMR and toxicity in vivo, as mitotane and defactinib have never been previously administered together. Genomic data from 228 human ACC and 158 normal adrenal samples were also analysed. Transcriptomic analysis revealed dysregulation of focal adhesion along with mitotane-related pathways. Focal adhesion kinase (FAK) signalling was enhanced in ACC compared to normal adrenal glands, with PTK2 (encoding FAK) upregulated in 44% of tumour samples due to copy number alterations. High FAK signature scores correlated with worse survival outcomes. FAK inhibition by defactinib, both alone and in combination with mitotane, showed effective anti-tumour activity in vitro. No toxicity or drug—drug interactions were observed in vivo. Combination treatment significantly reduced tumour volume and the number of macrometastases compared to those in the mitotane and control groups, with defactinib-treated tumours showing increased necrosis in xenografts. Defactinib combined with conventionally used mitotane shows promise as a novel combination therapy for ACC and warrants further investigation. Full article
(This article belongs to the Special Issue Signalling Pathways in Metabolic Diseases and Cancers)
Show Figures

Graphical abstract

15 pages, 2039 KiB  
Article
Homoharringtonine Inhibits CVS-11 and Clinical Isolates of Rabies Virus In Vitro: Identified via High-Throughput Screening of an FDA-Approved Drug Library
by Kalenahalli Rajappa Harisha, Varun Kailaje, Ravinder Reddy Kondreddi, Chandra Sekhar Gudla, Shraddha Singh, Sharada Ramakrishnaiah, Shrikrishna Isloor, Shridhar Narayanan, Radha Krishan Shandil and Gudepalya Renukaiah Rudramurthy
Viruses 2025, 17(7), 945; https://doi.org/10.3390/v17070945 - 4 Jul 2025
Viewed by 592
Abstract
Rabies, a viral encephalitis caused by rabies virus (RABV), is 100% fatal upon the onset of symptoms. Effective post-exposure prophylaxis (PEP) measures are available, but they are often difficult to access in low-income countries. WHO estimates about 59,000 deaths due to rabies globally, [...] Read more.
Rabies, a viral encephalitis caused by rabies virus (RABV), is 100% fatal upon the onset of symptoms. Effective post-exposure prophylaxis (PEP) measures are available, but they are often difficult to access in low-income countries. WHO estimates about 59,000 deaths due to rabies globally, and the majority are contributed by developing countries. Hence, developing drugs for the treatment of post-symptomatic rabies is an urgent and unmet demand. It is worth noting that previous efforts regarding antiviral strategies, such as small-interfering RNA, antibodies and small-molecule inhibitors, against the rabies virus have failed to show efficacy in pre-clinical studies, especially when the virus has reached the central nervous system (CNS). Therefore, drug repurposing seems to be an alternative tool for the development of new anti-rabies drugs. We validated and used a high-throughput, FITC-conjugated antibody-based flow cytometry assay to expedite the identification of repurposable new drug candidates against the RABV. The assay was validated using ribavirin and salinomycin as reference compounds, which showed EC50 values of 10.08 µM and 0.07 µM, respectively. We screened a SelleckChem library comprising 3035 FDA-approved compounds against RABV (CVS-11) at 10 µM concentration. Five compounds (clofazimine, tiamulin, difloxacin, harringtonine and homoharringtonine) were active against RABV, with greater than 90% inhibition. Homoharringtonine (HHT) identified in the present study is active against laboratory-adapted RABV (CVS-11) and clinical isolates of RABV, with an average EC50 of 0.3 µM in both BHK-21 and Neuro-2a cell lines and exhibits post-entry inhibition. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

29 pages, 1083 KiB  
Perspective
A New Adjuvant Treatment for Glioblastoma Using Aprepitant, Vortioxetine, Roflumilast and Olanzapine: The AVRO Regimen
by Richard E. Kast, Bruno Marques Vieira and Erasmo Barros da Silva
Int. J. Mol. Sci. 2025, 26(13), 6158; https://doi.org/10.3390/ijms26136158 - 26 Jun 2025
Viewed by 721
Abstract
AVRO is an adjunctive four-drug regimen designed to increase the effectiveness of current standard treatment of glioblastoma (GB). AVRO is a repurposed drug regimen consisting of the antinausea drug aprepitant, the antidepressant vortioxetine, the emphysema treatment drug roflumilast, and the antipsychotic drug olanzapine. [...] Read more.
AVRO is an adjunctive four-drug regimen designed to increase the effectiveness of current standard treatment of glioblastoma (GB). AVRO is a repurposed drug regimen consisting of the antinausea drug aprepitant, the antidepressant vortioxetine, the emphysema treatment drug roflumilast, and the antipsychotic drug olanzapine. All four are EMA/FDA approved for nononcology indications, all four have strong research evidence showing inhibition of GB growth, and all four carry a low side effect risk. The goal of adding AVRO is to further retard GB growth, improving survival. Aprepitant is an antinausea drug that blocks NK-1 signaling, with a database of 59 studies showing growth inhibition in 22 different cancers, 12 of which were specific to GB. Fully 30 studies demonstrated that the SSRI class of antidepressants inhibited GB growth; accordingly, we chose one such agent, vortioxetine, to add to AVRO. Elevation of intracellular cAMP slowed GB growth in 21 independent studies. Accordingly, we added the emphysema treatment drug roflumilast, which inhibits cAMP degradation. Among the 27 currently marketed D2-blocking antipsychotic drugs, 24 have preclinical evidence of GB growth inhibition in a combined 84 independent study database. One of these 24 drugs is olanzapine, added to AVRO. Given the short median survival of GB as of mid-2025, the clinician and researcher community will benefit from wider awareness of the anti-GB effects of these four nononcology drugs. Full article
Show Figures

Figure 1

23 pages, 986 KiB  
Review
COVID-19 and a Tale of Three Drugs: To Repurpose, or Not to Repurpose–That Was the Question
by Chris R. Triggle and Ross MacDonald
Viruses 2025, 17(7), 881; https://doi.org/10.3390/v17070881 - 23 Jun 2025
Viewed by 962
Abstract
On 11 March 2020, the World Health Organisation (WHO) declared a global pandemic caused by the SARS-CoV-2 coronavirus that earlier in February 2020 the WHO had named COVID-19 (coronavirus disease 2019). There were neither drugs nor vaccines that were known to be effective [...] Read more.
On 11 March 2020, the World Health Organisation (WHO) declared a global pandemic caused by the SARS-CoV-2 coronavirus that earlier in February 2020 the WHO had named COVID-19 (coronavirus disease 2019). There were neither drugs nor vaccines that were known to be effective against the virus, stimulating an urgent worldwide search for treatments. An evaluation of existing drugs by ‘repurposing’ was initiated followed by a transition to de novo drug discovery. Repurposing of an already approved drug may accelerate the introduction of that drug into clinical use by circumventing early, including preclinical studies otherwise essential for a de novo drug and reducing development costs. Early in the pandemic three drugs were identified as repurposing candidates for the treatment of COVID-19: (i) hydroxychloroquine, an anti-malarial also used to treat rheumatoid arthritis and lupus; (ii) ivermectin, an antiparasitic approved for both human and veterinary use; (iii) remdesivir, an anti-viral originally developed to treat hepatitis C. The scientific evidence, both for and against the efficacy of these three drugs as treatments for COVID-19, vied with public demand and politicization as unqualified opinions clashed with evidence-based medicine. To quote Hippocrates, “There are in fact two things, science and opinion; the former begets knowledge, the latter ignorance”. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

17 pages, 3664 KiB  
Article
Neuroprotective Effect of Methylene Blue in a Rat Model of Traumatic Optic Neuropathy
by Nicolás S. Ciranna, Ronan Nakamura, Rafael Peláez, Álvaro Pérez-Sala, Patricia Sarrión, Juan C. Fernández, Alejandra Paganelli, Agustín P. Aranalde, Ulises P. Ruiz, Juan J. López-Costa, César F. Loidl, Alfredo Martínez and Manuel Rey-Funes
Pharmaceuticals 2025, 18(6), 920; https://doi.org/10.3390/ph18060920 - 19 Jun 2025
Viewed by 784
Abstract
Background: Traumatic optic neuropathy (TON) represents a major cause of vision loss worldwide, and treatment options are limited. Here, we study whether methylene blue (MB), a free radical scavenger, is able to prevent morphological and electrophysiological hallmarks of neuropathy in an animal [...] Read more.
Background: Traumatic optic neuropathy (TON) represents a major cause of vision loss worldwide, and treatment options are limited. Here, we study whether methylene blue (MB), a free radical scavenger, is able to prevent morphological and electrophysiological hallmarks of neuropathy in an animal model of TON. Methods: The left eyes of Wistar rats were subjected to intraorbital nerve crush (IONC) while the right ones were sham operated. The group of rats treated with MB (n = 16) received five intraperitoneal injections with 2.0 mg/kg MB in the 24 h following IONC while the control group (n = 16) received just vehicle (PBS) as a control. Twenty-one days after surgery, scotopic full field (scERG), scotopic oscillatory potentials (OP), photopic full field (phERG) and pattern (PERG) electroretinography were performed for retinal function assessment. Furthermore, the number of cell nuclei in the ganglion cell layer (GCL) was recorded in post mortem histological sections. Results: IONC induced very significant reductions in electrophysiological parameters including scotopic a- and b-wave, OPs, photopic b-wave, PhNR amplitude and N2 amplitude. In addition, it also generated a significant prolongation of the N2 implicit time, indicating a profound impact on retinal function. This was further corroborated by a very significant reduction in the number of neuronal nuclei in the GCL, suggesting an intense loss and functional impairment of retinal ganglion cells. MB treatment was able to prevent, partially or completely, all those parameters, indicating the efficiency of such approach. Conclusions: Since MB is already approved for clinical use and presents a high safety profile, it could be repurposed as a neuroprotective drug for ophthalmological applications once proper phase 2 clinical trials are accomplished. Full article
Show Figures

Figure 1

28 pages, 13615 KiB  
Article
The Anti-Parkinsonian A2A Receptor Antagonist Istradefylline (KW-6002) Attenuates Behavioral Abnormalities, Neuroinflammation, and Neurodegeneration in Cerebral Ischemia: An Adenosinergic Signaling Link Between Stroke and Parkinson’s Disease
by Michael G. Zaki, Elisabet Jakova, Mahboubeh Pordeli, Elina Setork, Changiz Taghibiglou and Francisco S. Cayabyab
Int. J. Mol. Sci. 2025, 26(12), 5680; https://doi.org/10.3390/ijms26125680 - 13 Jun 2025
Viewed by 1424
Abstract
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target [...] Read more.
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target in neurodegenerative disorders involving extracellular adenosine elevation. Istradefylline, a selective A2AR antagonist, has been approved for Parkinson’s disease (PD) adjunctive therapy and showed neuroprotective effects in PD and Alzheimer’s disease. However, the role of A2ARs in post-stroke neuronal damage and behavioral deficits remains unclear. We recently showed that A2AR antagonism prevented the adenosine-induced post-hypoxia synaptic potentiation of glutamatergic neurotransmission following the hypoxia/reperfusion of hippocampal slices. Here, we investigated the potential neuroprotective effects of istradefylline in male Sprague-Dawley rats subjected to pial vessel disruption (PVD) used to model a small-vessel stroke. Rats were treated with either a vehicle control or istradefylline (3 mg/kg i.p.) following PVD surgery for three days. Istradefylline administration prevented anxiety and depressive-like behaviors caused by PVD stroke. In addition, istradefylline significantly attenuated ischemia-induced cognitive impairment and motor deficits. Moreover, istradefylline markedly reduced hippocampal neurodegeneration, as well as GFAP/Iba-1, TNF-α, nNOS, and iNOS levels after PVD, but prevented the downregulation of anti-inflammatory markers TGF-β1 and IL-4. Together, these results suggest a molecular link between stroke and PD and that the anti-PD drug istradefylline displays translational potential for drug repurposing as a neuroprotective agent for cerebral ischemic damage. Full article
Show Figures

Figure 1

26 pages, 2878 KiB  
Article
Comparative Pharmacovigilance Analysis of Approved and Repurposed Antivirals for COVID-19: Insights from EudraVigilance Data
by Paul Andrei Negru, Delia Mirela Tit, Andrei Flavius Radu, Gabriela Bungau, Raluca Anca Corb Aron and Ruxandra Cristina Marin
Biomedicines 2025, 13(6), 1387; https://doi.org/10.3390/biomedicines13061387 - 5 Jun 2025
Cited by 1 | Viewed by 756
Abstract
Background/Objectives: During the COVID-19 pandemic, several antivirals were approved or repurposed, but their safety profiles have not been fully compared. Pharmacovigilance data help clarify how these drugs perform in real-world use. Methods: This study performed a comparative pharmacovigilance analysis of eight [...] Read more.
Background/Objectives: During the COVID-19 pandemic, several antivirals were approved or repurposed, but their safety profiles have not been fully compared. Pharmacovigilance data help clarify how these drugs perform in real-world use. Methods: This study performed a comparative pharmacovigilance analysis of eight antivirals used or tested during the COVID-19 pandemic, based on individual case safety reports (ICSRs) retrieved from the EudraVigilance database, reported up to 9 February 2025 and extracted from the official platform on 12 February 2025. Adverse reactions were assessed by system organ class (SOC), demographic patterns, and seriousness, and disproportionality analysis (reporting odds ratio (ROR)) was conducted to identify potential safety signals. Results: A total of 64,776 ICSRs were analyzed. Among approved antivirals, nirmatrelvir/ritonavir (NTV/r) accounted for 13.4% (n = 8693) of reports, while remdesivir (RDV) represented 6.3% (n = 4105). Repurposed antivirals such as ribavirin and lopinavir/ritonavir dominated the dataset, together making up over 80% (n = 51,978) of all reports. RDV was associated with a high proportion of serious adverse events (84%, n = 3448), and showed consistent ROR signals in hepatobiliary, renal, cardiac, and general disorders, with values exceeding 2 in several comparisons. NTV/r displayed a milder overall profile, but with positive RORs for psychiatric disorders, gastrointestinal disorders, and product-related issues. The most affected SOCs across all drugs included general disorders (31.6%, n = 20,493), gastrointestinal (19.5%, n = 12,625), nervous system (17.8%, n = 11,511), and investigations (20.4%, n = 13,219). Demographic analysis showed that most events occurred in adults aged 18–64, with RDV more often reported in elderly patients and NTV/r more frequently associated with reports from female patients and non-healthcare reporters. Conclusions: This study highlights distinct pharmacovigilance profiles of COVID-19 antivirals and supports the role of real-world data in guiding safer therapeutic choices. Full article
Show Figures

Graphical abstract

37 pages, 8170 KiB  
Article
Drug Repurposing to Inhibit Oncostatin M in Crohn’s Disease
by Faranak Bahramimehr, Axel Guthart, Stefanie Kurz, Yuanping Hai, Mona Dawood, Rümeysa Yücer, Nasim Shahhamzehei, Ralf Weiskirchen, Wilfried Roth, Wolfgang Stremmel, Gerhard Bringmann and Thomas Efferth
Molecules 2025, 30(9), 1897; https://doi.org/10.3390/molecules30091897 - 24 Apr 2025
Viewed by 1063
Abstract
Crohn’s disease is an inflammatory bowel disease (IBD) that currently lacks satisfactory treatment options. Therefore, new targets for new drugs are urgently needed to combat this disease. In the present study, we investigated the transcriptomics-based mRNA expression of intestinal biopsies from patients with [...] Read more.
Crohn’s disease is an inflammatory bowel disease (IBD) that currently lacks satisfactory treatment options. Therefore, new targets for new drugs are urgently needed to combat this disease. In the present study, we investigated the transcriptomics-based mRNA expression of intestinal biopsies from patients with Crohn’s disease. We compared the mRNA expression profiles of the ileum and colon of patients with those of healthy individuals. A total of 72 genes in the ileum and 33 genes in the colon were differentially regulated. Among these, six genes were overexpressed in both tissues, including IL1B, TCL1A, HCAR3, IGHG1, S100AB, and OSM. We further focused on OSM/oncostatin M. To confirm the responsiveness of intestinal tissues from patients with Crohn’s disease to oncostatin M inhibition, we examined the expression of the oncostatin M using immunohistochemistry in patient biopsies as well as in kindlin-1−/− and kindlin-2−/− knockout mice, which exhibit an inflammatory bowel disease (IBD) phenotype, and found strong oncostatin M expression in all samples examined. Next, we conducted a drug-repurposing study using the supercomputer MOGON and bioinformatic methods. A total of 13 candidate compounds out of 1577 FDA-approved drugs were identified by PyRx-based virtual drug screening and AutoDock-based molecular docking. Their lowest binding energies (LBEs) ranged from −10.46 (±0.08) to −8.77 (±0.08) kcal/mol, and their predicted inhibition constants (pKi) ranged from 21.62 (±2.97) to 373.78 (±36.78) nM. Ecamsule has an interesting stereostructure with two C2-symmetric enantiomers (1S,4R-1′S,4′R and 1R,4S-1′R,4′S) (1a and 1b) and one meso diastereomer (1S,4R-1′R,4′S) (1c). These three stereoisomers showed strong, albeit differing, binding affinities in molecular docking. As examined by nuclear magnetic resonance and polarimetry, the 1S,4R-1′S,4′R isomer was the stereoisomer present in our commercially available preparations used for microscale thermophoresis. Ecamsule (1a) was chosen for in vitro validation using recombinant oncostatin M and microscale thermophoresis. Considerable dissociation constants were obtained for ecamsule after three repetitions with a Kd value of 11.36 ± 2.83 µM. Subsequently, we evaluated, by qRT-PCR, the efficacy of ecamsule (1a) as a potential drug that could prevent oncostatin M activation by inhibiting downstream inflammatory marker genes (IL6, TNFA, and CXCL11). In conclusion, we have identified oncostatin M as a promising new drug target for Crohn’s disease through transcriptomics and ecamsule as a potential new drug candidate for Crohn’s disease through a drug-repurposing approach both in silico and in vitro. Full article
(This article belongs to the Special Issue Bioorganic Chemistry in Europe)
Show Figures

Figure 1

11 pages, 1819 KiB  
Article
Co-Deposited Proteins in Alzheimer’s Disease as a Potential Treasure Trove for Drug Repurposing
by Avgi E. Apostolakou, Dimitra E. Douska, Zoi I. Litou, Ioannis P. Trougakos and Vassiliki A. Iconomidou
Molecules 2025, 30(8), 1736; https://doi.org/10.3390/molecules30081736 - 13 Apr 2025
Viewed by 507
Abstract
Alzheimer’s disease (AD) affects an increasing number of people as the human population ages. The main pathological feature of AD, amyloid plaques, consists of the key protein amyloid-β and other co-deposited proteins. These co-deposited proteins and their protein interactors could hold some additional [...] Read more.
Alzheimer’s disease (AD) affects an increasing number of people as the human population ages. The main pathological feature of AD, amyloid plaques, consists of the key protein amyloid-β and other co-deposited proteins. These co-deposited proteins and their protein interactors could hold some additional functional insights into AD pathophysiology. For this work, proteins found on amyloid plaques were collected from the AmyCo database. A protein–protein and protein–drug interaction network was constructed with data from the IntAct and DrugBank databases, respectively. In total, there were 12 proteins co-deposited on amyloid plaques that reportedly interact with 513 other proteins and are targets of 72 drugs. These drugs were shown to be almost entirely distinct from the panel of drugs currently approved by the FDA for AD and their corresponding protein targets. In conclusion, this work demonstrates the potential for drug repurposing of drugs that target proteins found in amyloid plaques. Full article
Show Figures

Graphical abstract

Back to TopTop