Next Article in Journal
Deep Generative Models for the Discovery of Antiviral Peptides Targeting Dengue Virus: A Systematic Review
Next Article in Special Issue
Exploring the Role of Peripheral Macrophages in Glioma Progression: The Metabolic Significance of Cyclooxygenase-2 (COX-2)
Previous Article in Journal
Micro- and Nanoplastics as Disruptors of the Endocrine System—A Review of the Threats and Consequences Associated with Plastic Exposure
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Perspective

A New Adjuvant Treatment for Glioblastoma Using Aprepitant, Vortioxetine, Roflumilast and Olanzapine: The AVRO Regimen

by
Richard E. Kast
1,*,
Bruno Marques Vieira
2 and
Erasmo Barros da Silva, Jr.
3
1
IIAIGC Study Center, Burlington, VT 05408, USA
2
Brain Biochemistry Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
3
Neurosurgery Department-Neuro-Oncology, Instituto de Neurologia de Curitiba, Rua Jeremias Maciel Perretto, 300-Campo Comprido, Curitiba 81210-310, Brazil
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2025, 26(13), 6158; https://doi.org/10.3390/ijms26136158
Submission received: 31 May 2025 / Revised: 20 June 2025 / Accepted: 21 June 2025 / Published: 26 June 2025

Abstract

AVRO is an adjunctive four-drug regimen designed to increase the effectiveness of current standard treatment of glioblastoma (GB). AVRO is a repurposed drug regimen consisting of the antinausea drug aprepitant, the antidepressant vortioxetine, the emphysema treatment drug roflumilast, and the antipsychotic drug olanzapine. All four are EMA/FDA approved for nononcology indications, all four have strong research evidence showing inhibition of GB growth, and all four carry a low side effect risk. The goal of adding AVRO is to further retard GB growth, improving survival. Aprepitant is an antinausea drug that blocks NK-1 signaling, with a database of 59 studies showing growth inhibition in 22 different cancers, 12 of which were specific to GB. Fully 30 studies demonstrated that the SSRI class of antidepressants inhibited GB growth; accordingly, we chose one such agent, vortioxetine, to add to AVRO. Elevation of intracellular cAMP slowed GB growth in 21 independent studies. Accordingly, we added the emphysema treatment drug roflumilast, which inhibits cAMP degradation. Among the 27 currently marketed D2-blocking antipsychotic drugs, 24 have preclinical evidence of GB growth inhibition in a combined 84 independent study database. One of these 24 drugs is olanzapine, added to AVRO. Given the short median survival of GB as of mid-2025, the clinician and researcher community will benefit from wider awareness of the anti-GB effects of these four nononcology drugs.

1. Introduction

The marked intrinsic invasiveness and the extreme molecular heterogeneity of glioblastoma (GB) limit the effectiveness of current treatments. Microscopic islands of GB cells are found throughout the entire brain at the time of diagnosis. With the current standard of care, consisting of macroscopic tumor resection, irradiation, temozolomide, and the use of the Optune™ device, which delivers low-energy radio frequency nonionizing irradiation, median GB survival remains less than two or three years after diagnosis [1,2,3]. A remarkably large array of clinical trials of different chemotherapies, immunotherapies, irradiation schedules, and kinase inhibitors and combinations of these regimens have failed to improve this dismal survival rate.
AVRO is an adjunctive four-drug regimen designed to increase the effectiveness of the current standard of care. It consists of the antinausea drug aprepitant, the antidepressant drug vortioxetine, the antipsychotic drug olanzapine, and the emphysema treatment drug roflumilast. At first glance, it may seem strange that these four nononcology drugs interfere with GB growth, but as we outline here, the database does show that they do so. The biochemical/physiological rationale behind each drug’s GB inhibition is sound.
As a contribution to the school of thought in modern oncology that a multidrug chemotherapy regimen will be needed to effectively halt growth in the common currently incurable cancers, we present in this paper the AVRO regimen. AVRO augments standard treatment by targeting diverse yet complementary aspects of GB biology, including inflammation, neurotransmission, and oncogenic signaling, through the repurposing of clinically approved drugs. AVRO has a favorable safety profile and, as we show here, a physiologically based rationale.
The reason why multiagent chemotherapy is needed to address the different subpopulations within a GB and the growth drive flexibility of GBs, has been reviewed by us and others [4,5,6,7,8,9]. AVRO represents our further thoughts on GB physiology, with additional data on drugs and deeper insights into GB pathophysiology since the discovery of CUSP9v3 [10]. Four-drug AVRO is less daunting than the ten-drug regimen CUSP9v3. AVRO is an alternative regimen, not a replacement of CUSP9v3.

2. Aprepitant

NK-1 is a ubiquitous 11 amino acid signaling molecule that is synonymous with Substance P. Aprepitant is an NK-1 receptor inhibitory drug that is marketed and commonly used for the reduction of nausea and vomiting during emetogenic chemotherapies [11,12,13,14,15]. NK-1 strongly colocalizes with serotonin in gut enterochromaffin cells but is widely expressed throughout the body.
Emetogenic chemotherapies increase the blood levels of NK-1 [16,17]. Given that, as we show below, NK-1 is a growth driver in GB, controlling nausea becomes important and a valuable addition throughout the course of GB. Aprepitant has a long half-life (days) and few side effects. Aprepitant is metabolized primarily by CYP3A4 but also inhibits CYP3A4, contributing to its long half-life [18,19]. A plasma aprepitant concentration of 10 ng/mL resulted in 50% brain NK-1 receptor occupancy; 100 ng/mL resulted in 90% occupancy [13]. These plasma levels are readily obtained in aprepitant’s clinical use. GB tumor tissue NK-1 receptor occupancy after aprepitant has not yet been studied.
We added aprepitant to the AVRO regimen on the basis of the strong dataset showing that aprepitant inhibits NK-1 signaling and that NK-1 signaling forms part of the suite of growth-driving forces in GB. Three currently marketed drugs inhibit NK-1 signaling at its receptor: aprepitant, fosaprepitant, and rolaprepitant. We present here only data collected specifically on aprepitant. The role of NK-1, and its signaling at the NK-1 receptor as part of a suite of signaling systems driving GB growth, was recognized three decades ago. Data on this topic have been reviewed periodically since then [20,21,22,23,24].
NK-1 signaling at its receptor promotes or facilitates malignant growth and metastasis as a general phenomenon observed in common human cancers, as shown in Table 1. In light of this and the good tolerability of aprepitant, the risk/benefit balance favors adding aprepitant to the current GB standard of care as part of a multidrug adjunctive regimen. Table 1 shows references to 59 published studies of growth inhibition by aprepitant in 22 different cancers, indicating that NK-1 may be a pan-malignant growth element. Overall, 12 of these 59 studies demonstrated growth inhibition specifically in GB [9,25,26,27,28,29,30,31,32,33,34,35]. After reviewing several of these studies, Munoz and Russo concluded in 2025 that “…all glioma cells express NK-1R, and NK-1R is essential for the viability of glioma cells and not of normal cells” [24]. Typically, in these studies, the GB growth inhibition IC50 of aprepitant lies in the range of 10–40 μM.
As a corollary to the data in Table 1, a study reported that the addition of exogenous NK-1 to cell cultures stimulated growth and enhanced in vitro migration in cells of acute lymphocytic leukemia, breast cancer, cervical cancer, colon cancer, gastric cancer, GB, laryngeal cancer, melanoma, ovarian cancer, neuroblastoma, small cell and non-small cell lung cancer, pancreatic cancer, and prostate cancer [28,30,36,37,38,39,40,41,42,43,44,45,46,47,48,49].
Table 1. References to aprepitant growth inhibition across 22 different cancers. ALL, acute lymphoblastic leukemia; AML, acute myelogenous leukemia; APL, acute promyelocytic leukemia; cholangio, cholangiocarcinoma; CML, chronic myelogenous leukemia; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer.
Table 1. References to aprepitant growth inhibition across 22 different cancers. ALL, acute lymphoblastic leukemia; AML, acute myelogenous leukemia; APL, acute promyelocytic leukemia; cholangio, cholangiocarcinoma; CML, chronic myelogenous leukemia; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer.
Cancer TypeAprepitant Effects, References
ALLapoptosis, cytostatic, additive with doxorubicin [49,50]
AMLinhibited in vitro and xenograft growth [51,52,53,54]
APLgrowth inhibition and additive with vincristine [55,56]
breastinhibited in vitro and xenograft growth [30,36,57,58,59,60,61,62,63]
cervicalinhibited growth in vitro [37,64]
cholangioinhibited growth, in vitro and xenograft [65,66]
CMLapoptosis and decreased colony formation [52,54]
coloninhibited exosome release, xenograft growth [59,67,68,69,70]
esophagealinhibited growth in vitro and xenograft [71,72]
glioblastomaxenograft and potential clinical growth inhibition [10,25,26,27,28,30,31,32,33,34,35,73]
hepatoblastomastem cell inhibition by Wnt suppression [74,75]
hepatocellularin vitro cytotoxicity and xenograft inhibition [76]
melanomain vitro growth inhibition [77]
myelomainhibited metabolism and growth in vitro [56,78]
neuroblastomaxenograft growth inhibition [47,79]
NSCLCNK-1 stimulated aprepitant inhibited growth in vitro [80,81]
osteosarcomainhibited growth in vitro [82,83]
ovarianinhibited growth, synergy with doxorubicin in vitro [39,40]
rhabdoidgrowth inhibition and apoptosis in vitro [84]
pancreaticinhibited growth and motilityin vitro [85,86]
prostateinhibited growth in vitro [87,88,89,90,91]
SCLCNK-1 stimulated aprepitant inhibited growth in vitro [41]
It should be appreciated that there is no other nontoxic molecule or marketed drug that has so little effect on normal cells yet inhibits growth of such a wide variety of human cancers. Aprepitant is unique.
Both NK-1 overexpression and NK-1 receptor overexpression are common findings across human cancers [73,92,93,94,95]. All patients with GB heavily expressed NK-1 receptors according to immunohistochemical biopsy analysis [96]. Breast cancer patients with low NK-1R expression according to immunohistochemical analysis of biopsy tissue survived longer than those with high NK-1R expression [97].
On the basis of an extensive database showing that NK-1 signaling contributes to malignant growth across several different cancer types, the repurposing of NK-1 signaling to inhibit cancer growth was straightforward [98,99,100].
The additional benefit of adding aprepitant to any GB treatment is its ability to reduce brain edema. Excess NK-1 release drives much of the brain edema after traumatic brain injury, and accordingly, an experimental NK-1 inhibitor, n-acetyl-L-tryptophan, reduces that edema [101,102,103]. NK-1 overexpression contributes to the peritumoral edema of experimental melanoma brain metastases, and accordingly, aprepitant reduces that edema [104,105]. Similarly, an experimental NK-1 antagonist (EU-C-001, PresSura Pharmaceuticals) reduced experimentally induced ischemia-related intracranial pressure elevation and peri-infarct edema in sheep [106]. NK-1 antagonism as a treatment for brain edema was reviewed in 2013 [107]. Data on the potential MOA come from lungs exposed to hypoxia that begin overexpressing NK-1 concomitantly with increased cytokine release and edema formation [108]. This response to the hypoxic areas of the GB, which are likewise associated with edematous areas, could explain the reduction in edema in the GB caused by aprepitant. Why aprepitant is not currently used for brain edema reduction has never been explained in print. Olanzapine added to aprepitant regimens was safe and provided additional nausea control after cisplatin [109].
Perhaps the strongest evidence for the role of NK-1 in promoting cancer growth comes from six clinical studies of serum NK-1 levels in human cancers. The serum NK-1 concentration was 13 ± 3 ng/mL in papillary thyroid carcinoma patients and 6 ± 2 ng/mL in controls [110]. A second study reported that the serum NK-1 concentration was 14 ± 4 ng/mL in colon cancer patients and 5 ± 1 ng/mL in controls [111]. A third study reported 19 ± 5 ng/mL in colon cancer patients and 1 ± 0.2 ng/mL in controls [112]. A fourth study reported that the serum NK-1 concentration was 10 ± 3 ng/mL in endometrial cancer patients and 5 ± 2 ng/mL in controls [113]. A fifth study reported that the serum NK-1 concentration was 17 ± 12 ng/mL in bladder cancer patients and 2 ± 2 ng/mL in controls [114]. A sixth study reported that the serum NK-1 concentration was 16 ± 3 ng/mL in breast cancer patients and 5 ± 1 ng/mL in controls [115]. These dramatic results are notable on several accounts: (i) the close concordance between several studies, (ii) the similarity of findings across different cancers, and (iii) the unusual finding of nonoverlapping ranges between controls and patients.
ACE, DPP-IV, and neprilysin are three endopeptidases that degrade NK-1 [116,117,118,119,120]. Therefore, ACE inhibitors and DPP-IV inhibitors (“gliptins”) are best avoided during cancer treatment or during treatment in any setting where NK-1 has been shown to play a pathogenic role.
In three healthy humans, a single dose of oral aprepitant at 100 mg resulted in plasma levels of 0.08, 0.5, and 1.1 μg/mL, corresponding to brain NK-1 receptor occupancies of 91%, 95%, and 94%, respectively [121]. Coadministration of ritonavir with aprepitant 375 mg per day resulted in plasma aprepitant levels of 31 μg/mL on day 14 and 23 μg/mL on day 28, reflecting the induction of aprepitant metabolism [122]. Aprepitant 375 mg per day for 14 days without ritonavir resulted in plasma aprepitant levels of 8 μg/mL, reflecting the major effect of ritonavir’s inhibition of aprepitant metabolism [122].
The addition of 125 mg of continuous aprepitant once daily indefinitely during the entire course of GB treatment and follow-up has the potential to prolong survival, particularly if it is used as part of a multidrug regimen. It is predicted to be well tolerated if known drug-drug interactions are taken into consideration when other drugs are dosed. On the basis of the data in Table 1 and the assembled data here, NK-1 receptor inhibition with aprepitant may be active in inhibiting many different cancers.

3. Vortioxetine

Vortioxetine is an antidepressant related to the serotonin reuptake inhibitor group (SSRIs; citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline). Vortioxetine inhibits the reuptake of serotonin, as do the other SSRIs, but it has meaningful differences from the other SSRIs. The side effect profile of vortioxetine differed from that of the other drugs in the SSRI group. Although all of these drugs inhibit the serotonin reuptake pump on neurons and glia, vortioxetine has a lower incidence of sleep disturbances, sexual dysfunction, weight gain, and only rare discontinuation symptoms [122]. Vortioxetine has a half-life of 2–3 days. Vortioxetine also inhibits the serotonin receptors 5-HT1D, 5-HT3, and 5-HT7 and has partial agonist activity on the 5-HT1A and 5-HT1B receptors, an attribute lacking in other SSRIs [123,124,125]. Previous reviews of GB growth inhibition by pharmacologic inhibition of 5-HT7 receptors have been published [126,127,128]. Vortioxetine is also safe and effective when used as an antidepressant in people with cancer [129].
Vortioxetine’s inhibition of GB growth could be an SSRI class phenomenon in that the related SSRIs fluoxetine and sertraline have extensive databases showing growth arrest in GB cells—for example, fluoxetine [130,131,132,133,134,135,136,137,138] and sertraline [9,28,30,34,35,139,140,141,142,143,144,145]. A study by Bielecka-Wajdman et al. revealed that 10 µM fluoxetine reduced several GB stem cell markers without reducing viability [146]. Figure 1 outlines several core elements of tryptophan metabolism beyond its use in proteins. The main branch point for tryptophan metabolism leads to either serotonin and melatonin synthesis or to the kynurenine pathway.
Vortioxetine inhibited gastric cancer cell growth by reducing the kinase activity of JAK2 and Src [147], but other data, while confirming growth inhibition, indicated that the inhibition of gastric cancer cell growth by vortioxetine involved PI3K/AKT [148].
In 2024, two studies addressed the effects of vortioxetine specifically in GB. A large chemical library screen identified vortioxetine as having the strongest synergy with temozolomide in GB inhibition [149]. Another in vitro study showed that growth, migration and cell survival were suppressed by 5 to 12 µM vortioxetine alone [150]. A 2025 study identified vortioxetine as having an in vitro IC50 of between 5 and 12 µM, depending on the GB cell line tested [151]. They identified PI3K/AKT inhibition as the MOA, in accordance with the gastric cancer studies referenced above. A detailed pathway analysis by Zhuo et al. in 2025 outlined the intersection of the targets of vortioxetine and the GB growth networks inhibited by vortioxetine [152]. A 2025 study by Wang et al. revealed some in vitro growth inhibition of nontransformed normal astrocytes (IC50 of 4.5 µM), but for human GB cells, the cytotoxicity of vortioxetine was half that (IC50 of 1.9 µM) [153]. Notably, we have no evidence of vortioxetine toxicity to normal brain cells during clinical use in tens of thousands of patients.
Vortioxetine decreases quinolinic acid production, but the locus and MOA of this effect is unknown [154]. Lowering quinolinic acid levels is a worthwhile goal during GB treatment for several reasons. Quinolinic acid, an excitatory N-methyl-D-aspartate (NMDA) glutaminergic receptor agonist, is neurotoxic [155,156,157,158,159]. Shifts toward the kynurenine pathway increase GB’s immunosuppressive indoleamine 2,3-dioxygenase (IDO) synthesis [158]. Quinolinic acid phosphoribosyltransferase (QPRT) is the rate-determining enzyme for the de novo synthesis of NAD+ from tryptophan via the intermediate quinolinic acid, an upregulated system in GB that furthers GB cell survival [159]. The resistance of GB cells to histone deacetylase inhibitors such as panobinostat depends on fully functioning quinolinic acid for NAD+ biosynthesis [160]. Quinolinic acid-induced NMDA glutamate receptor activation in macrophages triggers a more supportive tumor phenotype [161].

4. Roflumilast and PDE4

Roflumilast, introduced in clinical practice two decades ago, is a phosphodiesterase 4 (PDE4) inhibitor that is well tolerated and approved for treating psoriasis and emphysema [162,163,164,165]. In a dozen randomized clinical trials, side effects did not significantly differ from those of placebo [166]. PDE4 has several isoforms, each of which is a product of different genes [167,168]. By inhibiting PDE4, roflumilast increases the level of intracellular cAMP by diminishing the conversion of cAMP to AMP, as depicted in Figure 2.
Adenylate cyclase catalyzes the conversion of AMP to cAMP. PDE4 catalyzes the reverse reaction, the conversion of cAMP to AMP. Agonism at D5 increases cAMP synthesis by activating adenylate cyclase. Agonism at D2 decreases cAMP synthesis by deactivating adenylate cyclase. In light of Prabhu et al.’s demonstration that a greater D5 to D2 ratio is associated with longer survival in GB, we conclude that lowering intracellular cAMP enhances GB growth and that increasing intracellular cAMP slows GB growth and that the choice of antipsychotic drug should be guided by this; i.e., it is best to use a drug heavily weighted to D2 rather than D1 blockade. A paper in 2011 reviewed evidence of an inverse relationship between a glioma’s intracellular cAMP level and its malignancy grade, suggesting that increasing cAMP levels via PDE4 inhibition is a treatment approach for GB [169]. We add here data collected since then.
In addition to roflumilast, we have clinical experience with two other PDE4 inhibitors, rolipram and apremilast. Rolipram has been clinically tested as an antidepressant, for which it was effective, but rolipram has never been marketed. Apremilast is a PDE4 inhibitor marketed and used for indications (psoriasis and emphysema) similar to those for roflumilast. The same rationale as for roflumilast would apply to apremilast or rolipram as an adjunct to GB treatment. This was reviewed in 2018 [170].
Fully ten independent studies have shown that the PDE4 inhibitor rolipram inhibits in vitro or murine graft GB growth [171,172,173,174,175,176,177,178,179,180]. Two of these studies were in vivo murine graft studies demonstrating GB growth inhibition; Dixit et al. reported that rolipram inhibited GB xenograft growth but not in vitro growth [171], and Goldhoff et al. reported less orthotopic xenograft GB growth with rolipram, temozolomide, and irradiation than in controls receiving only temozolomide and irradiation [173].
Forskolin is a phytochemical that forms hydrogen bonds with adenylate cyclase, stabilizing the catalytic area of adenylate cyclase in the active conformation and protecting it from inactivation, thereby increasing the level of intracellular cAMP [181,182,183].
Ionizing radiation induces cancer stem cell attributes in some of the surviving nonstem cancer cells [184,185,186,187,188]. He et al. reviewed data specifically on GB cell irradiation increasing stem cell attributes in some surviving cells [188]. Forskolin’s increase in cAMP redirected this irradiation-induced plasticity away from stemness toward differentiation into microglia and neuronal phenotypes [188]. Survival after GB grafting increased, and the GB stem cell population decreased in the grafted mice receiving irradiation + forskolin compared with those in the grafted and irradiated groups. Data from the 1980s demonstrated that increasing intracellular cAMP promoted GB cell differentiation toward a neuronal phenotype [175,189]. Forskolin alone decreased viability and was an additive with temozolomide in some, but not all, GB cell lines [190].
Dibutyryl cAMP has a cAMP-related end effect that is similar to that of roflumilast, apremilast, and rolipram. Dibutyryl cAMP is a cell-permeable cAMP mimic that resists PDE4 degradation. It triggers a decrease in GB cell aerobic glycolysis and an increase in the number of mitochondria and promotes GB differentiation into neuron-like cells [191,192]. Forskolin also decreases GB cell aerobic glycolysis, increases the number of mitochondria, and prompts their differentiation into neuron-like cells [192]. Similarly, increased intracellular cAMP by either adenylate cyclase activation by forskolin or the addition of dibutyryl cyclic AMP decreased GB cell migration and the in vitro growth rate of GB cells [193]. However, while confirming that dibutyryl cAMP triggered senescence markers and differentiation toward neuron-like cells in vitro, others reported that dibutyryl cAMP increased the extracellular acidification rate and IL-6 secretion [194].
The role of cAMP signaling in cancer generally cannot be stated categorically. Both growth promotion and growth suppression in response to increased intracellular cAMP are recognized, depending on the experimental conditions, cancer type, and stage [195]. Perhaps most importantly, as with most of our other interventions, changing cAMP signaling can simultaneously engage both growth-inhibiting and growth-stimulating elements. It is the net effect that determines our decisions to use, and when to use an intervention or not: cf. the chess aphorism “all moves create strengths and weaknesses”.

5. Olanzapine, D2 Dopamine Receptors, cAMP, and GB

Multiple convergent lines of evidence indicate that dopamine receptor D2 agonism increases GB growth. Here, we report that at least one of the MOAs that enhance GB growth is D2. Among the 27 antipsychotic drugs marketed and used worldwide to block or reduce D2 signaling, 24 have preclinical data showing GB growth inhibition, as listed in Table 2. Empirically, 84 experimental studies of these 24 different currently marketed D2 blocking antipsychotic drugs have shown that GB growth is inhibited by the respective studied drugs. Convergent lines of evidence that blocking D2 with antipsychotic drugs increases the level of intracellular cAMP, thereby interfering with GB growth, are discussed below.
There are five subtypes of receptors activated by dopamine: D1, D2, D3, D4, and D5. These receptors are divided into two groups: the D1 and D5 group, which couple to Gαs, increasing adenylate cyclase activity, and the D2, D3, and D4 group, which couple to Gαi/o, decreasing adenylate cyclase activity [196,197].
There are, however, other potential second messengers from these dopamine receptors. D2 includes a second messenger branch point leading to either Gi/o or β-arrestin [196,198]. Six independent studies have reported D2 receptor overexpression in GB tissue compared with that in the surrounding brain [199,200,201,202,203,204]. GB cells themselves synthesize dopamine [200,205]; thus, we have evidence that autocrine dopaminergic signaling contributes to GB growth drive.
Table 2 lists 84 studies of clinically used antipsychotic drugs that show experimental GB growth inhibition. All inhibit D2 signaling. These studies attributed GB inhibition to several MOAs, but the only common denominator among all 24 drugs in all 84 studies was D2 blocking. Among these 24 antipsychotic drugs, we chose olanzapine for AVRO on the basis of (i) its good tolerability and (ii) its ability to increase appetite, inhibit nausea, and improve sleep quality.
Table 2. List of 27 FDA- and/or EMA-approved D2 blocking drugs that are used to treat psychosis. Of these 27 currently marketed D2 blocking antipsychotic drugs, 24 have preclinical evidence of GB growth inhibition in a combined 84-study database, the references of which are listed below. The three antipsychotic drugs that do not inhibit GB growth have not been tested for such activity.
Table 2. List of 27 FDA- and/or EMA-approved D2 blocking drugs that are used to treat psychosis. Of these 27 currently marketed D2 blocking antipsychotic drugs, 24 have preclinical evidence of GB growth inhibition in a combined 84-study database, the references of which are listed below. The three antipsychotic drugs that do not inhibit GB growth have not been tested for such activity.
Drug2020 to 2024Prior to 2020
aripiprazole---[206,207]
asenapine[208]---
brexpiprazole---[209,210]
cariprazine------
chlorpromazine[141,211,212,213,214,215][216,217,218,219,220,221]
clozapine---[222]
droperidol------
fluphenazine[141][219,220,223]
fluspirilene[129,223,224][225]
haloperidol[226,227,228,229,230,231][231,232]
iloperidone[233]---
levomepromazine[230]---
loxapine---[219]
lurasidone[234]---
metoclopramide---[235,236,237]
molindone---[219]
olanzapine[238][239,240,241]
paliperidone[242]---
penfluridol[129][220,243,244,245]
perphenazine[246,247][130,248,249,250]
pimozide[129,203,229,251,252,253,254,255][256,257,258,259,260]
prochlorperazine[247][248]
quetiapine[34,261][262,263]
risperidone[242,264,265][227,266]
thioridazine[229,267][268,269,270,271]
thiothixene------
trifluoperazine[272,273,274,275][216,276,277]
Crucially, for GB treatment, temozolomide exposure increases GB cell D2 expression [204,205,226,227]. This was associated with a decrease in intracellular cAMP, as expected from increased D2 signaling via Gi/o inhibition of adenylate cyclase. The D2 blocking antipsychotic drug haloperidol reversed the decrease in cAMP and was synergistic with temozolomide in mediating GB cell cytotoxicity [226]. These results reflect a core aspect of mammalian homeostatic physiology: a disturbance of a given state tends to provoke compensatory changes to restore the state prior to the disturbance.
D2 readily heterodimerizes [278,279]. Although the heterodimer partners for D2 specifically in GB have not yet been determined, in other contexts, some of the heterodimer partners previously identified are adenosine A2A [198], CB1 cannabinoid [280], oxytocin [281], bradykinin receptor B2 [282], 5HT2 [198], and importantly, for GB pathophysiology, heterodimers with dopamine receptor D5 [283]. D2-D5 heterodimers are particularly important for understanding GBs because agonism at D5 opposes or reduces the effects of agonism at D2. Prabhu et al. provided a demonstration of this phenomenon. They showed that ONC201, a D2-inhibiting drug developed for GB treatment, was more effective in those with higher D5-D2 dimer expression [283].
We now understand many elements of the physiological, electrochemical brain changes of psychosis that mediate disordered cognition, perception, and affect. Specifically, inhibiting brain D2 signaling commonly stops or reduces overtly psychotic elements [284,285]. We have many D2 blocking drugs due to the ~1% prevalence of psychosis across human societies worldwide.
A recently recognized D2-centered amplifying feedback loop operates in GB, as shown in Figure 3. This GB signaling loop was recently reported by Yan Wang et al., who demonstrated that dopaminergic signaling at D2 activates the signaling hub ERK, which results in the nuclear upregulation of tyrosine hydroxylase, a required enzyme that catalyzes the conversion of L-DOPA to dopamine [286]. The resulting increase in dopamine synthesis in turn increases signaling at D2. ERK overdrive is a core aspect of GB pathophysiology [126,246,287].
The prediction in 2020 that the antipsychotic drug perphenazine would augment temozolomide-mediated growth inhibition of GB was recently experimentally confirmed [246,288,289]. The primary evidence supporting the addition of a D2 blocking antipsychotic drug to GB treatment might be the empirical demonstration in the 84 research papers in Table 2, in which 24 different drugs that inhibit GB growth have one thing in common: they block D2 receptors.
The ideal antipsychotic drug in Table 2 for use during GB treatment has not yet been determined. We suggest olanzapine as a good drug to start clinical testing on the basis of its ancillary potential benefits and good tolerability in nonpsychotic patients.
Olanzapine is an inexpensive, generically available antipsychotic drug used widely to treat schizophrenia and other psychoses around the world. At a blood level of ~20 ng/mL 12 h post-dose, olanzapine occupies 65–80% of brain D2 receptors [290]. Olanzapine is an inverse agonist at D2; i.e., it reduces baseline and unliganded D2 activity and correspondingly increases intracellular cAMP [291]. Olanzapine’s inhibition of D2 exceeds its inhibition of D1 [292,293]. The brain tissue levels of olanzapine are 2 to 15 times greater than the plasma levels [294,295].
Olanzapine is usually well tolerated in psychiatric and nonpsychiatric use. Olanzapine is a potent antinausea drug and is frequently used as an effective addition to other antinausea medicines during emetogenic chemotherapies [296,297,298]. Olanzapine also reduces nausea during temozolomide treatment of GB.
Studies have shown that olanzapine provides better control of nausea than does aprepitant during highly emetogenic chemotherapy for myeloma [299]. Olanzapine combined with aprepitant provided better nausea suppression during highly emetogenic chemotherapies than did aprepitant alone [300]. In cases of intractable nausea, the addition of olanzapine to those with a partial response to triple therapy with aprepitant, ondansetron, and dexamethasone converts them to full responders [301].
Almost all psychiatric patients and many oncology patients will gain weight after starting olanzapine due to olanzapine’s strong appetite stimulation, which is an unwanted side effect of its psychiatric use but an effect that could become advantageous during GB or other cancer treatments. Unwanted side effects of extrapyramidal movement disorders and affective blunting can occur but are not common with olanzapine [302].
In cancer-related anorexia unrelated to pain or to chemotherapy, the addition of adjunctive olanzapine frequently improves appetite and quality of life without increasing the burden of side effects [296,303,304,305]. Further benefits of olanzapine not seen with most other D2 blocking drugs are (i) increases in sleep efficiency, (ii) increased duration of slow wave sleep, (iii) increased duration of total time asleep, and (iv) increased enjoyment of eating [304,306]. Notably, poor or inadequate sleep is common in GB patients and tends to cluster with fatigue, depression, cognitive impairment, and shortened survival [307,308,309].
Summary of data on D2, D5, and cAMP in GB:
  • Agonism at D5 increases, agonism at D2 decreases cAMP production. A greater D5 to D2 ratio is associated with longer survival in GB.
  • D2 agonism decreases intracellular cAMP and enhances GB growth.
  • D2-blocking drugs such as olanzapine diminish the D2 mediated inhibition of adenylate cyclase. This is the primary theory on how antipsychotic drugs decrease GB growth.
  • Several different drugs (rolipram, forskolin, and dibutyryl cAMP) that increase the intracellular cAMP level via different MOAs slow GB growth both in vitro and in rodent graft studies.
  • Rolipram, apremilast, and roflumilast are related PDE4 inhibitors. Ten studies demonstrated the ability of rolipram to inhibit GB growth.
Several different MOAs for D2 inhibition-mediated GB growth inhibition have been shown in in vitro studies. No consensus exists on which effects are primary effects and which are secondary phenomena. Although possible, we believe that these GB growth inhibition MOAs are unlikely to be independent direct effects of D2 inhibition. More likely, they are downstream effects of a limited number of primary D2 receptor signaling losses. The 24 drugs listed in Table 2 that have data on GB inhibition belong to different chemical classes, have different side effect profiles, and have different receptor binding profiles to other neuronal or glial receptors. D2 inhibition is the only common denominator among these drugs.
An interesting further aspect favoring the use of D2 blocking drugs in GB is the effect of these medicines on eosinophils. In psychosis treatment, for several months after starting olanzapine or the archetypal antipsychotic drug haloperidol, patients’ eosinophil counts gradually increase [310]. Both the absolute eosinophil count and the eosinophil count as a percentage of total leukocytes slightly increase weekly, reaching a plateau at or near the upper range of normal. This condition is almost always asymptomatic, although isolated case reports of eosinophilic pleural effusions do exist. In a 2020 study, Vaios et al. reported that in newly diagnosed GB patients receiving standard treatment followed by bevacizumab, those with higher eosinophil counts survived longer than those with lower eosinophil counts [311]. The effect was not trivial. Multiple studies have confirmed the association of a higher absolute eosinophil count with longer GB survival [312,313,314,315].

6. Discussion

Clinicians decide to adopt a treatment on the basis of the preponderance of evidence and the consideration of balancing risks of treatment versus risks of the target disease. This consideration reflects an old wisdom expressed in the myth of Scylla and Charybdis. As a metaphor, we face these two monsters today when confronting GB or any metastatic cancer. The Ionian poet Homer (~800 BCE) advises that we pass by Scylla, losing a few sailors eaten by Scylla rather than losing the entire ship swallowed up by the whirlpool of Charybdis. The ever-reasonable Erasmus (1469–1536) advised “The wise navigator will steer between Scylla and Charybdis…”. We aim to follow this injunction with AVRO. We judge the reluctance of adding four low-risk drugs to standard GB treatment to be the equivalent of sailing straight into Charybdis. We know the outcome of standard GB treatment in 2025.
Given (i) the benign nature of these four drugs, (ii) the current <2 year median survival of GB, (iii) the 84 studies showing that 24 different D2-blocking drugs inhibit GB growth and (iv) 10 studies showing GB growth inhibition by aprepitant, exploring the potential of AVRO drugs as adjuvants to standard GB treatment is reasonable. Although the AVRO drugs tend to be well tolerated, careful monitoring will be required.
With respect to D2, the 2023 paper of Yan Wang et al. [203] has great importance for both (i) understanding GB and (ii) understanding a puzzling finding in psychiatry. They outlined evidence for a dopaminergic, D2-centered amplifying feedback loop operating in GB. This loop is schematically depicted in Figure 3. They identified the cellular physiology of an amplifying feedback loop in GB in which dopamine signaling at D2 increased ERK pathway activation, which then resulted in increased dopamine production that furthers D2 signaling (Figure 3) [203]. This amplifying feedback cycle partly explains the characteristic GB D2 receptor overexpression [199,200,201,202,203,204,205].
With respect to psychiatry’s understanding of D2 in depression, Yan Wang et al. reported increased D2 expression in resected GB tissue from people with depression compared to GB tissue resected from people without depression. They further reported that the degree of D2 increase was inversely correlated with survival duration [203]. For several decades, standard psychiatric practice has included the addition of a D2 receptor-blocking antipsychotic drug in people with severe depression who have not, or only partially, responded to a first-line antidepressant drug. This addition frequently results in full resolution of treatment-resistant depression [316,317].
This demonstration of upregulated D2 expression in depression could explain this phenomenon. D2 upregulation is part of the depression-driven physiological changes that result in depression. D2 blockade reverses that driver. The feedback cycle of Wang et al. would also explain the well-known phenomenon in psychiatry that the longer an untreated psychosis persists, the more treatment-resistant it becomes.
The prevalence of depression in GB varies from 16% to 41%, and that of anxiety varies from 24% to 48% [318]. These comorbidities are major detriments to quality of life and, particularly for depression or anxiety, shorten overall survival [319]. Vortioxetine and olanzapine have good potential to improve these symptoms and even remain candidates for adding to the standard of care in GB on that basis.
Nausea after temozolomide, when it occurs, tends to be mild to moderate and is usually delayed to post-dose day 3, but when it occurs, it requires treatment. Nausea is more common and more severe in those with depression [320], making olanzapine plus vortioxetine of double benefit in those patients.
Seizures in GB patients occur in ~60% of patients [321]. Levetiracetam and lacosamide are preferred as first-line treatments because of their effectiveness, favorable pharmacokinetics, and lack of relevant interactions with chemotherapy drugs and dexamethasone or prednisone [322]. As there is a potential interaction between levetiracetam and vortioxetine/olanzapine, lacosamide may be a preferable seizure prophylaxis or treatment for patients under the AVRO regime.
Within a given patient’s GB reside an array of subpopulations. Each subpopulation has slightly different metabolic vulnerabilities, backup signaling pathways, and arrays of overexpressed drug efflux transporters [323,324]. Furthermore, GB cells have a stem cell shuttling ability—stem-to-nonstem and nonstem-to-stem.
In light of this, we ask, would not that wide set of GB attributes imply that, in effect, we face many different tumors within an individual case of GB? And would that not in turn imply the need for a multidrug approach such as adjunctive CUSP9v3 or AVRO? The conceptual foundation of the AVRO regimen lies in its multitarget approach to the complex biology of GB, integrating agents that reduce the action of key elements of tumor progression: inflammation, immune evasion, neurotransmitter dysregulation, and cellular proliferation. We reported data on the convergence of the effects of AVRO drugs on inhibiting tumor growth directly and reconditioning the GB niche toward reduced malignancy and increased therapeutic responsiveness.
The AVRO drug target dosages listed in Table 3 must be adjusted up or down to patient tolerability. Repurposing established drugs such as in AVRO for the treatment of cancer allows fast clinical translation, improved quality of life, and drug development cost benefits. These considerations plus the established safety of AVRO drugs justify a phase II study.
In sum, no predictable serious drug–drug interactions can be foreseen. Caution will be warranted when using other drugs that are metabolized by 3A4 in that both aprepitant and vortioxetine inhibit 3A4. Adding olanzapine and vortioxetine has good potential to improve quality of life in GB, independent from any anti-tumor effect.

7. Caveats

  • The 12 studies in Table 2 showing GB growth inhibition by the antipsychotic drug chlorpromazine prompted a 2023 clinical study by Pace et al. [325]. There was no clinical benefit from adding chlorpromazine 50 mg/day to GB’s standard of care [325]. Several problems limit the significance of this study. (i) As reviewed elsewhere, a multidrug regimen is needed to retard GB growth (in the absence of a silver bullet) [2,3,4,5,6,7,8,9]. (ii) The dose of chlorpromazine was too low to occupy and inhibit a significant percentage of the D2 receptors in the brain or tumor. (iii) As an inverse agonist at D1 [326], chlorpromazine would not be the ideal D2-blocking drug. Inverse agonism at D1 functionally lowers basal intracellular cAMP, the opposite of what we are aiming for.
  • The database for D2 blockade resulting in GB growth arrest or cell death includes studies ascribing this to autophagy inhibition, while other studies ascribe this to autophagy stimulation. How do we resolve this apparent contradiction?
  • Are we dealing with the metaphor of “blind men examining an elephant”? Are the many different MOAs ascribed to the inhibition of GB growth by antipsychotic drugs just the downstream consequences of a single D2 receptor event?
  • Some of the studies supporting GB inhibition by the AVRO drugs reported low microM range IC50 values. Ideally, we seek candidate drugs with low nM IC50 inhibition.
  • Most of the 84 studies shown in Table 2 and the 59 studies shown in Table 1 involved vitro cell culture or murine grafts. Often, such preclinical studies fail to translate into clinical benefit.

8. Conclusions

This paper has outlined a sound rationale for a small pilot study of the AVRO regimen as an adjunct to standard GB treatment. The data reviewed support the notion that the pharmacological maintenance of elevated intracellular cAMP represents a valuable goal throughout the disease course of GB and that both roflumilast and olanzapine contribute to achieving this goal. Furthermore, the evidence presented highlights the role of NK-1 signaling as a growth-promoting mechanism in GB. Each of the four drugs included in the AVRO regimen is well characterized in clinical practice, readily available, and associated with a low risk of adverse events. Taken together, these findings support the initiation of a pilot clinical study evaluating the safety and potential efficacy of adding AVRO to the current standard of care for GB.

Author Contributions

All authors contributes to all aspects of this work. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data sharing is not applicable.

Conflicts of Interest

This was unfunded research carried out under the nonfinancial aegis of the IIAIGC Study Center. The IIAIGC Study Center had no role or influence on the contents of this work. All the authors contributed equally.

Abbreviations

AVRO: the regimen of aprepitant, vortioxetine, roflumilast, olanzapine added to standard GB treatment; D2, dopamine receptor 2; GB, glioblastoma; HR, hazard ratio, rounded to tenth place; 5-HT, serotonin; MOA, mechanism of action; PDE, phosphodiesterase.

References

  1. van Dijck, J.T.J.M.; Ardon, H.; Balvers, R.K.; Bos, E.M.; Bosscher, L.; Brouwers, H.B.; Ho, V.K.Y.; Hovinga, K.; Kwee, L.; ter Laan, M.; et al. Survival prediction in glioblastoma: 10-year follow-up from the Dutch Neurosurgery Quality Registry. J. Neurooncol. 2025. [Google Scholar] [CrossRef] [PubMed]
  2. Hainfellner, A.; Borkovec, M.; Seebrecht, L.; Neuhauser, M.; Roetzer-Pejrimovsky, T.; Greutter, L.; Surböck, B.; Hager-Seifert, A.; Hof, D.G.-V.; Urbanic-Purkart, T.; et al. Glioblastoma in the real-world setting: Patterns of care and outcome in the Austrian population. J. Neurooncol. 2024, 170, 407–418. [Google Scholar] [CrossRef]
  3. Vollmann-Zwerenz, A.; Leidgens, V.; Feliciello, G.; Klein, C.A.; Hau, P. Tumor Cell Invasion in Glioblastoma. Int. J. Mol. Sci. 2020, 21, 1932. [Google Scholar] [CrossRef] [PubMed]
  4. Kast, R.E.; Alfieri, A.; Assi, H.I.; Burns, T.C.; Elyamany, A.M.; Gonzalez-Cao, M.; Karpel-Massler, G.; Marosi, C.; Salacz, M.E.; Sardi, I.; et al. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers 2022, 14, 2563. [Google Scholar] [CrossRef] [PubMed]
  5. Kilmister, E.J.; Koh, S.P.; Weth, F.R.; Gray, C.; Tan, S.T. Cancer Metastasis and Treatment Resistance: Mechanistic Insights and Therapeutic Targeting of Cancer Stem Cells and the Tumor Microenvironment. Biomedicines 2022, 10, 2988. [Google Scholar] [CrossRef]
  6. Hwangbo, H.; Patterson, S.C.; Dai, A.; Plana, D.; Palmer, A.C. Additivity predicts the efficacy of most approved combination therapies for advanced cancer. Nat. Cancer 2023, 4, 1693–1704. [Google Scholar] [CrossRef]
  7. Kast, R.E.; Boockvar, J.A.; Brüning, A.; Cappello, F.; Chang, W.-W.; Cvek, B.; Dou, Q.P.; Duenas-Gonzalez, A.; Efferth, T.; Focosi, D.; et al. A conceptually new treatment approach for relapsed glioblastoma: Coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget 2013, 4, 502–530. [Google Scholar] [CrossRef]
  8. Duenas-Gonzalez, A.; Gonzalez-Fierro, A.; Bornstein-Quevedo, L.; Gutierrez-Delgado, F.; Kast, R.E.; Chavez-Blanco, A.; Dominguez-Gomez, G.; Candelaria, M.; Romo-Pérez, A.; Correa-Basurto, J.; et al. Multitargeted polypharmacotherapy for cancer treatment. theoretical concepts and proposals. Expert Rev. Anticancer Ther. 2024, 24, 665–677. [Google Scholar] [CrossRef]
  9. Johanssen, T.; McVeigh, L.; Erridge, S.; Higgins, G.; Straehla, J.; Frame, M.; Aittokallio, T.; Carragher, N.O.; Ebner, D. Glioblastoma and the search for non-hypothesis driven combination therapeutics in academia. Front. Oncol. 2023, 12, 1075559. [Google Scholar] [CrossRef]
  10. Halatsch, M.E.; Kast, R.E.; Karpel-Massler, G.; Mayer, B.; Zolk, O.; Schmitz, B.; Scheuerle, A.; Maier, L.; Bullinger, L.; Mayer-Steinacker, R.; et al. A phase Ib/IIa trial of 9 repurposed drugs combined with temozolomide for the treatment of recurrent glioblastoma: CUSP9v3. NeuroOncol Adv. 2021, 3, vdab075. [Google Scholar] [CrossRef]
  11. Qiu, T.; Men, P.; Xu, X.; Zhai, S.; Cui, X. Antiemetic regimen with aprepitant in the prevention of chemotherapy-induced nausea and vomiting: An updated systematic review and meta-analysis. Medicine 2020, 99, e21559. [Google Scholar] [CrossRef] [PubMed]
  12. Aapro, M.S.; Schmoll, H.J.; Jahn, F.; Carides, A.D.; Webb, R.T. Review of the efficacy of aprepitant for the prevention of chemotherapy-induced nausea and vomiting in a range of tumor types. Cancer Treat. Rev. 2013, 39, 113–117. [Google Scholar] [CrossRef] [PubMed]
  13. Dando, T.M.; Perry, C.M. Aprepitant: A review of its use in the prevention of chemotherapy-induced nausea and vomiting. Drugs 2004, 64, 777–794. [Google Scholar] [CrossRef]
  14. Hargreaves, R.; Ferreira, J.C.; Hughes, D.; Brands, J.; Hale, J.; Mattson, B.; Mills, S. Development of aprepitant, the first neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. Ann. N. Y. Acad. Sci. 2011, 1222, 40–48. [Google Scholar] [CrossRef]
  15. Stoutenburg, J.P.; Raftopoulos, H. Antiemetic studies on the NK1 receptor antagonist aprepitant. J. Natl. Compr. Cancer Netw. 2004, 2, 491–497. [Google Scholar] [CrossRef]
  16. Higa, G.M.; Auber, M.L.; Altaha, R.; Kurian, S.; Hobbs, G. Concordance between substance P levels and antiemetic guidelines. J. Support Oncol. 2009, 7, 138–142. [Google Scholar] [CrossRef]
  17. Park, H.S.; Won, H.S.; An, H.J.; Cho, S.S.; Kim, H.H.; Sun, S.; Ko, Y.H.; Shim, B.Y. Elevated serum substance P level as a predictive marker for moderately emetogenic chemotherapy induced nausea and vomiting: A prospective cohort study. Cancer Med. 2021, 10, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
  18. Padilla, A.; Habib, A.S. A pharmacological overview of aprepitant for the prevention of postoperative nausea and vomiting. Expert Rev. Clin. Pharmacol. 2023, 16, 491–505. [Google Scholar] [CrossRef]
  19. Sanchez, R.I.; Wang, R.W.; Newton, D.J.; Bakhtiar, R.; Lu, P.; Chiu, S.H.; Evans, D.C.; Huskey, S.E. Cytochrome P450 3A4 is the major enzyme involved in the metabolism of the substance P receptor antagonist aprepitant. Drug Metab. Dispos. 2004, 32, 1287–1292. [Google Scholar] [CrossRef]
  20. Łazarczyk, M.; Matyja, E.; Lipkowski, A. Substance P and its receptors—A potential target for novel medicines in malignant brain tumour therapies (mini-review). Folia Neuropathol. 2007, 45, 99–107. [Google Scholar]
  21. Gitter, B.D.; Regoli, D.; Howbert, J.J.; Glasebrook, A.L.; Waters, D.C. Interleukin-6 secretion from human astrocytoma cells induced by substance P. J. Neuroimmunol. 1994, 51, 101–108. [Google Scholar] [CrossRef] [PubMed]
  22. Palma, C.; Manzini, S. Substance P induces secretion of immunomodulatory cytokines by human astrocytoma cells. J. Neuroimmunol. 1998, 81, 127–137. [Google Scholar] [CrossRef]
  23. Palma, C.; Maggi, C.A. The role of tachykinins via NK1 receptors in progression of human gliomas. Life Sci. 2000, 67, 985–1001. [Google Scholar] [CrossRef] [PubMed]
  24. Muñoz, M.; Rosso, M. Radiotherapy Plus the Neurokinin-1 Receptor Antagonist Aprepitant: A Potent Therapeutic Strategy for the Treatment of Diffuse Intrinsic Pontine Glioma. Cancers 2025, 17, 520. [Google Scholar] [CrossRef]
  25. Ebrahimi, S.; Mirzavi, F.; Hashemy, S.I.; Ghadiri, M.K.; Stummer, W.; Gorji, A. The in vitro anti-cancer synergy of neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid in glioblastoma. Biofactors 2023, 49, 900–911. [Google Scholar] [CrossRef] [PubMed]
  26. Rezaei, S.; Darban, R.A.; Javid, H.; Hashemy, S.I. The Therapeutic Potential of Aprepitant in Glioblastoma Cancer Cells through Redox Modification. Biomed Res. Int. 2022, 2022, 8540403. [Google Scholar] [CrossRef]
  27. Han, J.M.; Kim, Y.J.; Jung, H.J. Discovery of a New CaMKII-Targeted Synthetic Lethal Therapy against Glioblastoma Stem-like Cells. Cancers 2022, 14, 1315. [Google Scholar] [CrossRef]
  28. Halatsch, M.-E.; Dwucet, A.; Schmidt, C.J.; Mühlnickel, J.; Heiland, T.; Zeiler, K.; Siegelin, M.D.; Kast, R.E.; Karpel-Massler, G. In Vitro and Clinical Compassionate Use Experiences with the Drug-Repurposing Approach CUSP9v3 in Glioblastoma. Pharmaceuticals 2021, 14, 1241. [Google Scholar] [CrossRef]
  29. Ghahremani, F.; Sabbaghzade, R.; Ebrahimi, S.; Javid, H.; Ghahremani, J.; Hashemy, S.I. Pathogenic role of the SP/NK1R system in GBM cells through inhibiting the thioredoxin system. Iran. J. Basic. Med. Sci. 2021, 24, 499–505. [Google Scholar] [CrossRef]
  30. Muñoz, M.F.; Argüelles, S.; Rosso, M.; Medina, R.; Coveñas, R.; Ayala, A.; Muñoz, M. The Neurokinin-1 Receptor Is Essential for the Viability of Human Glioma Cells: A Possible Target for Treating Glioblastoma. Biomed Res. Int. 2022, 2022, 6291504. [Google Scholar] [CrossRef]
  31. Mehrabani, N.; Kakhki, M.R.V.; Javid, H.; Ebrahimi, S.; Hashemy, S.I.; Bronstein, J. The SP/NK1R System-Mediated ROS Generation in GBM Cells through Inhibiting Glutaredoxin Protein. Neurol. Res. Int. 2021, 2021, 9966000. [Google Scholar] [CrossRef] [PubMed]
  32. Korfi, F.; Javid, H.; Darban, R.A.; Hashemy, S.I. The Effect of SP/NK1R on the Expression and Activity of Catalase and Superoxide Dismutase in Glioblastoma Cancer Cells. Biochem. Res. Int. 2021, 2021, 6620708. [Google Scholar] [CrossRef] [PubMed]
  33. Kast, R.E.; Ramiro, S.; Lladó, S.; Toro, S.; Coveñas, R.; Muñoz, M. Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells. J. Neurooncol. 2016, 126, 425–431. [Google Scholar] [CrossRef]
  34. Skaga, E.; Skaga, I.Ø.; Grieg, Z.; Sandberg, C.J.; Langmoen, I.A.; Vik-Mo, E.O. The efficacy of a coordinated pharmacological blockade in glioblastoma stem cells with nine repurposed drugs using the CUSP9 strategy. J. Cancer Res. Clin. Oncol. 2019, 145, 1495–1507. [Google Scholar] [CrossRef]
  35. Cao, Q.; Hajosch, A.; Kast, R.E.; Loehmann, C.; Hlavac, M.; Fischer-Posovszky, P.; Strobel, H.; Westhoff, M.-A.; Siegelin, M.D.; Wirtz, C.R.; et al. Tumor Treating Fields (TTFields) combined with the drug repurposing approach, C.U.SP9v3 induce metabolic reprogramming and synergistic anti-glioblastoma activity in vitro. Br. J. Cancer 2024, 130, 1365–1376. [Google Scholar] [CrossRef]
  36. Gutierrez, S.; Boada, M.D. NK1 receptor blockade disrupts microtumor growth and aggregation in a three-dimensional murine breast cancer model. Neuropeptides 2025, 109, 102479. [Google Scholar] [CrossRef]
  37. Mozafari, M.; Ebrahimi, S.; Darban, R.A.; Hashemy, S.I. Potential in vitro therapeutic effects of targeting SP/NK1R system in cervical cancer. Mol. Biol. Rep. 2022, 49, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
  38. Golestaneh, M.; Firoozrai, M.; Javid, H.; Hashemy, S.I. The substance P/neurokinin-1 receptor signaling pathway mediates metastasis in human colorectal SW480 cancer cells. Mol. Biol. Rep. 2022, 49, 4893–4900. [Google Scholar] [CrossRef]
  39. AlAlikhan, A.; Ghahremanloo, A.; Javid, H.; Ebrahimi, S.; Hashemy, S.I. The Effect of Blocking Neurokinin-1 Receptor by Aprepitant on the Inflammatory and Apoptosis Pathways in Human Ovarian Cancer Cells. Cell Biochem. Biophys. 2022, 80, 819–827. [Google Scholar] [CrossRef]
  40. Razmgah, M.M.; Ghahremanloo, A.; Javid, H.; AlAlikhan, A.; Afshari, A.-R.; Hashemy, S.I. The effect of substance P and its specific antagonist (aprepitant) on the expression of MMP-2, MMP-9, VEGF, and VEGFR in ovarian cancer cells. Mol. Biol. Rep. 2022, 49, 9307–9314. [Google Scholar] [CrossRef]
  41. Munoz, M.; Recio, S.; Rosso, M.; Redondo, M.; Covenas, R. The antiproliferative action of [D-Arg(1), D-Phe(5), D-Trp(7,9), LEU(11)] substance P analogue antagonist against small-cell- and non-small-cell lung cancer cells could be due to the pharmacological profile of its tachykinin receptor antagonist. J. Physiol. Pharmacol. 2015, 66, 421–426. [Google Scholar] [PubMed]
  42. Luo, W.; Sharif, T.R.; Sharif, M. Substance P-induced mitogenesis in human astrocytoma cells correlates with activation of the mitogen-activated protein kinase signaling pathway. Cancer Res. 1996, 56, 4983–4991. [Google Scholar]
  43. Mukerji, I.; Ramkissoon, S.H.; Reddy, K.K.; Rameshwar, P. Autocrine proliferation of neuroblastoma cells is partly mediated through neurokinin receptors: Relevance to bone marrow metastasis. J. Neurooncol. 2005, 71, 91–98. [Google Scholar] [CrossRef] [PubMed]
  44. Munoz, M.; Rosso, M.; Gonzalez-Ortega, A.; Coveñas, R. The NK-1 receptor antagonist L732,138 induces apoptosis and counteracts substance P-related mitogenesis in human melanoma cell lines. Cancers 2010, 2, 611–623. [Google Scholar] [CrossRef]
  45. Rosso, M.; Robles-Frías, M.J.; Coveñas, R.; Salinas-Martín, M.V.; Muñoz, M. The NK-1 receptor is expressed in human primary gastric and colon adenocarcinomas and is involved in the antitumor action of L-733,060 and the mitogenic action of substance P on human gastrointestinal cancer cell lines. Tumour Biol. 2008, 29, 245–254. [Google Scholar] [CrossRef]
  46. Muñoz, M.; Rosso, M.; Aguilar, F.J.; A González-Moles, M.; Redondo, M.; Esteban, F. NK-1 receptor antagonists induce apoptosis and counteract substance P-related mitogenesis in human laryngeal cancer cell line HEp-2. Investig. New Drugs 2008, 26, 111–118. [Google Scholar] [CrossRef] [PubMed]
  47. Muñoz, M.; Rosso, M.; Pérez, A.; Coveñas, R.; Rosso, R.; Zamarriego, C.; Piruat, J. The NK1 receptor is involved in the antitumoural action of L-733,060 and in the mitogenic action of substance P on neuroblastoma and glioma cell lines. Neuropeptides 2005, 39, 427–432. [Google Scholar] [CrossRef]
  48. Lang, K.; Drell, T.L.; Lindecke, A.; Niggemann, B.; Kaltschmidt, C.; Zaenker, K.S.; Entschladen, F. Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int. J. Cancer. 2004, 112, 231–238. [Google Scholar] [CrossRef]
  49. Muñoz, M.; González-Ortega, A.; Coveñas, R. The NK-1 receptor is expressed in human leukemia and is involved in the antitumor action of aprepitant and other NK-1 receptor antagonists on acute lymphoblastic leukemia cell lines. Investig. New Drugs. 2012, 30, 529–540. [Google Scholar] [CrossRef]
  50. Bayati, S.; Bashash, D.; Ahmadian, S.; Safaroghli-Azar, A.; Alimoghaddam, K.; Ghavamzadeh, A.; Ghaffari, S.H. Inhibition of tachykinin NK1 receptor using aprepitant induces apoptotic cell death and G1 arrest through Akt/p53 axis in pre-B acute lymphoblastic leukemia cells. Eur. J. Pharmacol. 2016, 791, 274–283. [Google Scholar] [CrossRef]
  51. Wu, H.; Cheng, X.; Huang, F.; Shao, G.; Meng, Y.; Wang, L.; Wang, T.; Jia, X.; Yang, T.; Wang, X.; et al. Aprepitant Sensitizes Acute Myeloid Leukemia Cells to the Cytotoxic Effects of Cytosine Arabinoside in vitro and in vivo. Drug Des. Devel. Ther. 2020, 14, 2413–2422. [Google Scholar] [CrossRef]
  52. Dikmen, M.; Gökhaner, G.; Cantürk, Z. Evaluation of the antileukemic effects of neurokinin-1 receptor antagonists, aprepitant, and L-733,060, in chronic and acute myeloid leukemic cells. Anticancer Drugs 2019, 30, e0769. [Google Scholar] [CrossRef]
  53. Molinos-Quintana, A.; Trujillo-Hacha, P.; Piruat, J.I.; Bejarano-García, J.A.; García-Guerrero, E.; Pérez-Simón, J.A.; Muñoz, M. Human acute myeloid leukemia cells express Neurokinin-1 receptor, which is involved in the antileukemic effect of Neurokinin-1 receptor antagonists. Investig. New Drugs 2019, 37, 17–26. [Google Scholar] [CrossRef]
  54. Ge, C.; Huang, H.; Huang, F.; Yang, T.; Zhang, T.; Wu, H.; Zhou, H.; Chen, Q.; Shi, Y.; Sun, Y.; et al. Neurokinin-1 receptor is an effective target for treating leukemia by inducing oxidative stress through mitochondrial calcium overload. Proc. Natl. Acad. Sci. USA 2019, 116, 19635–19645. [Google Scholar] [CrossRef]
  55. Bashash, D.; Safaroghli-Azar, A.; Bayati, S.; Razani, E.; Pourbagheri-Sigaroodi, A.; Gharehbaghian, A.; Momeny, M.; Sanjadi, M.; Rezaie-Tavirani, M.; Ghaffari, S.H. Neurokinin-1 receptor (NK1R) inhibition sensitizes APL cells to anti-tumor effect of arsenic trioxide via restriction of NF-κB axis: Shedding new light on resistance to Aprepitant. Int. J. Biochem. Cell Biol. 2018, 103, 105–114. [Google Scholar] [CrossRef]
  56. Bayati, S.; Razani, E.; Bashash, D.; Safaroghli-Azar, A.; Safa, M.; Ghaffari, S.H. Antileukemic effects of neurokinin-1 receptor inhibition on hematologic malignant cells: A novel therapeutic potential for aprepitant. Anticancer Drugs 2018, 29, 243–252. [Google Scholar] [CrossRef] [PubMed]
  57. Padmanaban, V.; Keller, I.; Seltzer, E.S.; Ostendorf, B.N.; Kerner, Z.; Tavazoie, S.F. Neuronal substance P drives metastasis through an extracellular RNA-TLR7 axis. Nature 2024, 633, 207–215. [Google Scholar] [CrossRef] [PubMed]
  58. Jafarinezhad, S.; Darban, R.A.; Javid, H.; Hashemy, S.I. The SP/NK1R system promotes the proliferation of breast cancer cells through NF-κB-mediated inflammatory responses. Cell Biochem. Biophys. 2023, 81, 787–794. [Google Scholar] [CrossRef] [PubMed]
  59. Dai, X.; Zhu, J.; Perry, S.; Jiang, Q.; Shapiro, D.J. How FDA-approved drug, Aprepitant, induces immunogenic death of cancer cells. Cancer Res. 2024, 84 (Suppl. S6), 5995. [Google Scholar] [CrossRef]
  60. Nizam, E.; Erin, N. Differential consequences of neurokinin receptor 1 and 2 antagonists in metastatic breast carcinoma cells; Effects independent of Substance P. Biomed. Pharmacother. 2018, 108, 263–270. [Google Scholar] [CrossRef]
  61. Zhang, L.; Wang, L.; Dong, D.; Wang, Z.; Ji, W.; Yu, M.; Zhang, F.; Niu, R.; Zhou, Y. MiR-34b/c-5p and the neurokinin-1 receptor regulate breast cancer cell proliferation and apoptosis. Cell Prolif. 2019, 52, e12527. [Google Scholar] [CrossRef]
  62. Rodriguez, E.; Pei, G.; Kim, S.T.; German, A.; Robinson, P. Substance P Antagonism as a Novel Therapeutic Option to Enhance Efficacy of Cisplatin in Triple Negative Breast Cancer and Protect PC12 Cells against Cisplatin-Induced Oxidative Stress and Apoptosis. Cancers 2021, 13, 3871. [Google Scholar] [CrossRef] [PubMed]
  63. Ghahremanloo, A.; Erfani, B.; Asgharzadeh, F.; Mansoori, S.; Gheybi, F.; Hashemy, S.I. Reducing toxicity and enhancing efficacy of doxorubicin by liposomal doxorubicin and aprepitant in breast cancer. Sci. Rep. 2025, 15, 9798. [Google Scholar] [CrossRef] [PubMed]
  64. Guan, L.; Yuan, S.; Ma, J.; Liu, H.; Huang, L.; Zhang, F. Neurokinin-1 receptor is highly expressed in cervical cancer and its antagonist induces cervical cancer cell apoptosis. Eur. J. Histochem. 2023, 67, 3570. [Google Scholar] [CrossRef] [PubMed]
  65. Yang, Y.; Cao, X.; Wang, Y.; Wu, X.; Zhou, P.; Miao, L.; Deng, X. Neurokinin-1 receptor antagonist aprepitant regulates autophagy and apoptosis via ROS/JNK in intrahepatic cholangiocarcinoma. Liver Int. 2024, 44, 1651–1667. [Google Scholar] [CrossRef]
  66. Cao, X.; Yang, Y.; Zhou, W.; Wang, Y.; Wang, X.; Ge, X.; Wang, F.; Zhou, F.; Deng, X.; Miao, L. Aprepitant inhibits the development and metastasis of gallbladder cancer via ROS. and MAPK activation. BMC Cancer 2023, 23, 471. [Google Scholar] [CrossRef]
  67. Alalikhan, A.; Ebrahimi, S.; Aliee, A.; Mirzavi, F.; Hashemy, S.I. The combined anti-tumor effects of 5-fluorouracil and neurokinin receptor inhibitor, aprepitant, against colorectal cancer: In vitro and in vivo study. Med. Oncol. 2024, 41, 70. [Google Scholar] [CrossRef]
  68. Shi, Y.; Wang, X.; Meng, Y.; Ma, J.; Zhang, Q.; Shao, G.; Wang, L.; Cheng, X.; Hong, X.; Wang, Y.; et al. A Novel Mechanism of Endoplasmic Reticulum Stress- and c-Myc-Degradation-Mediated Therapeutic Benefits of Antineurokinin-1 Receptor Drugs in Colorectal Cancer. Adv Sci. 2021, 8, e2101936. [Google Scholar] [CrossRef]
  69. Ghahremanloo, A.; Javid, H.; Afshari, A.R.; Hashemy, S.I. Investigation of the Role of Neurokinin-1 Receptor Inhibition Using Aprepitant in the Apoptotic Cell Death through PI3K/Akt/NF-κB Signal Transduction Pathways in Colon Cancer Cells. Biomed Res. Int. 2021, 2021, 1383878. [Google Scholar] [CrossRef]
  70. Garnier, A.; Vykoukal, J.; Hubertus, J.; Alt, E.; von Schweinitz, D.; Kappler, R.; Berger, M.; Ilmer, M. Targeting the neurokinin-1 receptor inhibits growth of human colon cancer cells. Int. J. Oncol. 2015, 47, 151–160. [Google Scholar] [CrossRef]
  71. Zheng, Y.; Sang, M.; Liu, F.; Gu, L.; Li, J.; Wu, Y.; Shan, B. Aprepitant inhibits the progression of esophageal squamous cancer by blocking the truncated neurokinin-1 receptor. Oncol. Rep. 2023, 50, 131. [Google Scholar] [CrossRef] [PubMed]
  72. Javid, H.; Afshari, A.R.; Zahedi Avval, F.; Asadi, J.; Hashemy, S.I. Aprepitant Promotes Caspase-Dependent Apoptotic Cell Death and G2/M. Arrest through PI3K/Akt/NF-κB Axis in Cancer Stem-Like Esophageal Squamous Cell Carcinoma Spheres. Biomed Res. Int. 2021, 2021, 8808214. [Google Scholar] [CrossRef] [PubMed]
  73. Rezaei, S.; Javid, H.; Iranpour, S.; Darban, R.A.; Hashemy, S.I. Unveiling the Promising Role of Substance P/Neurokinin 1 Receptor in Cancer Cell Proliferation and Cell Cycle Regulation in Human Malignancies. Curr. Med. Chem. 2024, 31. [Google Scholar] [CrossRef] [PubMed]
  74. Berger, M.; Neth, O.; Ilmer, M.; Garnier, A.; Salinas-Martín, M.V.; de Agustín Asencio, J.C.; von Schweinitz, D.; Kappler, R.; Muñoz, M. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J. Hepatol. 2014, 60, 985–994. [Google Scholar] [CrossRef]
  75. Ilmer, M.; Garnier, A.; Vykoukal, J.; Alt, E.; von Schweinitz, D.; Kappler, R.; Berger, M. Targeting the Neurokinin-1 Receptor Compromises Canonical Wnt Signaling in Hepatoblastoma. Mol. Cancer Ther. 2015, 14, 2712–2721. [Google Scholar] [CrossRef]
  76. Li, Y.; Wu, J.; Lu, Q.; Liu, X.; Wen, J.; Qi, X.; Liu, J.; Lian, B.; Zhang, B.; Sun, H.; et al. G.A.&HA-Modified Liposomes for Co-Delivery of Aprepitant and Curcumin to Inhibit Drug-Resistance and Metastasis of Hepatocellular Carcinoma. Int. J. Nanomed. 2022, 17, 2559–2575. [Google Scholar] [CrossRef]
  77. Muñoz, M.; Rosso, M.; Robles-Frias, M.J.; Salinas-Martín, M.V.; Rosso, R.; González-Ortega, A.; Coveñas, R. The NK-1 receptor is expressed in human melanoma and is involved in the antitumor action of the NK-1 receptor antagonist aprepitant on melanoma cell lines. Lab. Investig. 2010, 90, 1259–1269. [Google Scholar] [CrossRef]
  78. Razani, E.; Bashash, D. Cytotoxic and apoptotic effects of neurokinin-1 receptor (NK1R) antagonist on multiple myeloma cells. Sci. J. Kurd. Univ. Med. Sci. 2019, 24, 1–11. [Google Scholar] [CrossRef]
  79. Henssen, A.G.; Odersky, A.; Szymansky, A.; Seiler, M.; Althoff, K.; Beckers, A.; Speleman, F.; Schäfers, S.; De Preter, K.; Astrahanseff, K.; et al. Targeting tachykinin receptors in neuroblastoma. Oncotarget 2017, 8, 430–443. [Google Scholar] [CrossRef]
  80. Zhang, X.W.; Li, L.; Hu, W.Q.; Hu, M.N.; Tao, Y.; Hu, H.; Miao, X.K.; Yang, W.L.; Zhu, Q.; Mou, L.Y. Neurokinin-1 receptor promotes non-small cell lung cancer progression through transactivation of EGFR. Cell Death Dis. 2022, 13, 41. [Google Scholar] [CrossRef]
  81. Muñoz, M.; González-Ortega, A.; Rosso, M.; Robles-Frias, M.J.; Carranza, A.; Salinas-Martín, M.V.; Coveñas, R. The substance P/neurokinin-1 receptor system in lung cancer: Focus on the antitumor action of neurokinin-1 receptor antagonists. Peptides 2012, 38, 318–325. [Google Scholar] [CrossRef] [PubMed]
  82. Alsaeed, M.A.; Ebrahimi, S.; Alalikhan, A.; Hashemi, S.F.; Hashemy, S.I. The Potential In Vitro Inhibitory Effects of Neurokinin-1 Receptor (NK-1R) Antagonist, Aprepitant, in Osteosarcoma Cell Migration and Metastasis. Biomed Res. Int. 2022, 2022, 8082608. [Google Scholar] [CrossRef] [PubMed]
  83. Muñoz, M.; Berger, M.; Rosso, M.; Gonzalez-Ortega, A.; Carranza, A.; Coveñas, R. Antitumor activity of neurokinin-1 receptor antagonists in MG-63 human osteosarcoma xenografts. Int. J. Oncol. 2014, 44, 137–146. [Google Scholar] [CrossRef]
  84. Kolorz, J.; Demir, S.; Gottschlich, A.; Beirith, I.; Ilmer, M.; Lüthy, D.; Walz, C.; Dorostkar, M.M.; Magg, T.; Hauck, F.; et al. The Neurokinin-1 Receptor Is a Target in Pediatric Rhabdoid Tumors. Curr. Oncol. 2021, 29, 94–110. [Google Scholar] [CrossRef]
  85. Beirith, I.; Renz, B.W.; Mudusetti, S.; Ring, N.S.; Kolorz, J.; Koch, D.; Bazhin, A.V.; Berger, M.; Wang, J.; Angele, M.K.; et al. Identification of the Neurokinin-1 Receptor as Targetable Stratification Factor for Drug Repurposing in Pancreatic Cancer. Cancers 2021, 13, 2703. [Google Scholar] [CrossRef]
  86. Li, X.; Ma, G.; Ma, Q.; Li, W.; Liu, J.; Han, L.; Duan, W.; Xu, Q.; Liu, H.; Wang, Z.; et al. Neurotransmitter substance P mediates pancreatic cancer perineural invasion via NK-1R in cancer cells. Mol. Cancer Res. 2013, 11, 294–302. [Google Scholar] [CrossRef]
  87. Wang, Z.; Zou, J.; Zhang, L.; Liu, H.; Jiang, B.; Liang, Y.; Zhang, Y. Comprehensive analysis of the progression mechanisms of CRPC and its inhibitor discovery based on machine learning algorithms. Front. Genet. 2023, 14, 1184704. [Google Scholar] [CrossRef]
  88. Akbari, S.; Assaran Darban, R.; Javid, H.; Esparham, A.; Hashemy, S.I. The anti-tumoral role of Hesperidin and Aprepitant on prostate cancer cells through redox modifications. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 3559–3567. [Google Scholar] [CrossRef] [PubMed]
  89. Ebrahimi, S.; Erfani, B.; Alalikhan, A.; Ghorbani, H.; Farzadnia, M.; Afshari, A.R.; Mashkani, B.; Hashemy, S.I. The In Vitro Pro-inflammatory Functions of the SP/NK1R System in Prostate Cancer: A Focus on Nuclear Factor-Kappa B (NF-κB) and Its Pro-inflammatory Target Genes. Appl. Biochem. Biotechnol. 2023, 195, 7796–7807. [Google Scholar] [CrossRef]
  90. Shandiz, S.Z.; Darban, R.A.; Javid, H.; Ghahremanloo, A.; Hashemy, S.I. The effect of SP/NK1R on expression and activity of glutaredoxin and thioredoxin proteins in prostate cancer cells. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 5875–5882. [Google Scholar] [CrossRef]
  91. Zhang, X.-W.; Li, J.-Y.; Li, L.; Hu, W.-Q.; Tao, Y.; Gao, W.-Y.; Ye, Z.-N.; Jia, H.-Y.; Wang, J.-N.; Miao, X.-K.; et al. Neurokinin-1 receptor drives PKCɑ-AURKA/N-Myc signaling to facilitate the neuroendocrine progression of prostate cancer. Cell Death Dis. 2023, 14, 384. [Google Scholar] [CrossRef] [PubMed]
  92. Rodriguez, F.D.; Covenas, R. Association of Neurokinin-1 Receptor Signaling Pathways with Cancer. Curr. Med. Chem. 2024, 31, 6460–6486. [Google Scholar] [CrossRef]
  93. Coveñas, R.; Muñoz, M. Involvement of the Substance P/Neurokinin-1 Receptor System in Cancer. Cancers 2022, 14, 3539. [Google Scholar] [CrossRef] [PubMed]
  94. Javid, H.; Mohammadi, F.; Zahiri, E.; Hashemy, S.I. The emerging role of substance P/neurokinin-1 receptor signaling pathways in growth and development of tumor cells. J. Physiol. Biochem. 2019, 75, 415–421. [Google Scholar] [CrossRef]
  95. García-Aranda, M.; Téllez, T.; McKenna, L.; Redondo, M. Neurokinin-1 Receptor (NK-1R) Antagonists as a New Strategy to Overcome Cancer Resistance. Cancers 2022, 14, 2255. [Google Scholar] [CrossRef] [PubMed]
  96. De Mehboob, R.; Kurdi, M.; Baeesa, S.; Fawzy Halawa, T.; Tanvir, I.; Maghrabi, Y.; Hakamy, S.; Saeedi, R.; Moshref, R.; Nasief, H.; et al. Immunolocalization of neurokinin 1 receptor in WHO grade 4 astrocytomas, oral squamous cell and urothelial carcinoma. Folia Neuropathol. 2022, 60, 165–176. [Google Scholar] [CrossRef]
  97. Wang, L.; Wang, N.; Zhang, R.; Dong, D.; Liu, R.; Zhang, L.; Ji, W.; Yu, M.; Zhang, F.; Niu, R.; et al. TGFβ regulates NK1R-Tr to affect the proliferation and apoptosis of breast cancer cells. Life Sci. 2020, 256, 117674. [Google Scholar] [CrossRef]
  98. Coveñas, R.; Rodríguez, F.D.; Robinson, P.; Muñoz, M. The Repurposing of Non-Peptide Neurokinin-1 Receptor Antagonists as Antitumor Drugs: An Urgent Challenge for Aprepitant. Int. J. Mol. Sci. 2023, 24, 15936. [Google Scholar] [CrossRef]
  99. Muñoz, M.; Coveñas, R. The Neurokinin-1 Receptor Antagonist Aprepitant: An Intelligent Bullet against Cancer? Cancers 2020, 12, 2682. [Google Scholar] [CrossRef]
  100. Robinson, P.; Coveñas, R.; Muñoz, M. Combination Therapy of Chemotherapy or Radiotherapy and the Neurokinin-1 Receptor Antagonist Aprepitant: A New Antitumor Strategy? Curr. Med. Chem. 2023, 30, 1798–1812. [Google Scholar] [CrossRef]
  101. Donkin, J.J.; Nimmo, A.J.; Cernak, I.; Blumbergs, P.C.; Vink, R. Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J. Cereb. Blood Flow Metab. 2009, 29, 1388–1398. [Google Scholar] [CrossRef] [PubMed]
  102. Vink, R.; Young, A.; Bennett, C.J.; Hu, X.; Connor, C.O.; Cernak, I.; Nimmo, A.J. Neuropeptide release influences brain edema formation after diffuse traumatic brain injury. Acta Neurochir. Suppl. 2003, 86, 257–260. [Google Scholar] [CrossRef]
  103. Turner, R.J.; Helps, S.C.; Thornton, E.; Vink, R. A substance P antagonist improves outcome when administered 4 h after onset of ischaemic stroke. Brain Res. 2011, 1393, 84–90. [Google Scholar] [CrossRef] [PubMed]
  104. Harford-Wright, E.; Lewis, K.M.; Ghabriel, M.N.; Vink, R. Treatment with the NK1 antagonist emend reduces blood brain barrier dysfunction and edema formation in an experimental model of brain tumors. PLoS ONE 2014, 9, e97002. [Google Scholar] [CrossRef]
  105. Harford-Wright, E.; Lewis, K.M.; Vink, R. The potential for substance P antagonists as anti-cancer agents in brain tumours. Recent Pat. CNS Drug Discov. 2013, 8, 13–23. [Google Scholar] [CrossRef]
  106. Sorby-Adams, A.J.; Marian, O.C.; Bilecki, I.M.; Elms, L.E.; Yassi, N.; Hood, R.J.; Coller, J.K.; Stuckey, S.M.; Kimberly, W.T.; Farr, T.D.; et al. NK1 tachykinin receptor antagonist treatment reduces cerebral edema and intracranial pressure in an ovine model of ischemic stroke. J. Cereb. Blood Flow. Metab. 2024, 44, 1759–1773. [Google Scholar] [CrossRef]
  107. Gabrielian, L.; Helps, S.C.; Thornton, E.; Turner, R.J.; Leonard, A.V.; Vink, R. Substance P antagonists as a novel intervention for brain edema and raised intracranial pressure. Acta Neurochir. Suppl. 2013, 118, 201–204. [Google Scholar] [CrossRef] [PubMed]
  108. Zee, E.D.; Schomberg, S.; Carpenter, T.C. Hypoxia upregulates lung microvascular neurokinin-1 receptor expression. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 291, L102–L110. [Google Scholar] [CrossRef]
  109. Ostwal, V.; Ramaswamy, A.; Mandavkar, S.; Bhargava, P.; Naughane, D.; Sunn, S.F.; Srinivas, S.; Kapoor, A.; Mishra, B.K.; Gupta, A.; et al. Olanzapine as Antiemetic Prophylaxis in Moderately Emetogenic Chemotherapy: A Phase 3 Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2426076. [Google Scholar] [CrossRef]
  110. Asadi, M.; Mirdoosti, S.M.; Majidi, S.; Boroumand, N.; Jafarian, A.H.; Hashemy, S.I. Evaluation of serum substance P level and tissue distribution of NK-1 receptor in papillary thyroid cancer. Middle East J. Cancer 2021, 12, 491–498. [Google Scholar]
  111. Lorestani, S.; Ghahremanloo, A.; Jangjoo, A.; Abedi, M.; Hashemy, S.I. Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in colorectal cancer. Mol. Biol. Rep. 2020, 47, 3469–3474. [Google Scholar] [CrossRef] [PubMed]
  112. Șerban, R.E.; Boldeanu, M.V.; Florescu, D.N.; Ionescu, M.; Șerbănescu, M.S.; Boldeanu, L.; Florescu, M.M.; Stepan, M.D.; Obleagă, V.C.; Constantin, C.; et al. Comparison between Substance P and Calcitonin Gene-Related Peptide and Their Receptors in Colorectal Adenocarcinoma. J. Clin. Med. 2024, 13, 5616. [Google Scholar] [CrossRef]
  113. Gharaee, N.; Pourali, L.; Jafarian, A.H.; Hashemy, S.I. Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in endometrial cancer. Mol. Biol. Rep. 2018, 45, 2257–2262. [Google Scholar] [CrossRef]
  114. Zahiri, E.; Ghorbani, H.; Moradi, A.; Mehrad-Majd, H.; Mohammadi, F.; Sharifi Sistani, N.; Hashemy, S.I. Prognostic Significance of Substance P and Neurokinin-1 Receptor in Bladder Cancer. Rep. Biochem. Mol. Biol. 2022, 11, 411–420. [Google Scholar] [CrossRef] [PubMed]
  115. Davoodian, M.; Boroumand, N.; Mehrabi Bahar, M.; Jafarian, A.H.; Asadi, M.; Hashemy, S.I. Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in breast cancer. Mol. Biol. Rep. 2019, 46, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
  116. Singh, H.; Sharma, J.; Sikarwar, P.; Kakkar, A.K. Dipeptidyl peptidase 4 (DPP-4) inhibitors and the risk of lung cancer: Current evidence and future directions. Expert Rev. Clin. Pharmacol. 2023, 16, 39–47. [Google Scholar] [CrossRef]
  117. Scholzen, T.E.; Luger, T.A. Neutral endopeptidase and angiotensin-converting enzyme -- key enzymes terminating the action of neuroendocrine mediators. Exp. Dermatol. 2004, 13 (Suppl. S4), 22–26. [Google Scholar] [CrossRef]
  118. Choi, J.G.; Choi, S.R.; Kang, D.W.; Shin, H.J.; Lee, M.; Hwang, J.; Kim, H.W. Inhibition of angiotensin converting enzyme increases PKCβI isoform expression via activation of substance P and bradykinin receptors in cultured astrocytes of mice. J. Vet. Sci. 2023, 24, e26. [Google Scholar] [CrossRef]
  119. Choi, J.G.; Choi, S.R.; Kang, D.W.; Kim, J.; Park, J.B.; Kim, H.W. Inhibition of angiotensin converting enzyme induces mechanical allodynia through increasing substance P expression in mice. Neurochem. Int. 2021, 146, 105020. [Google Scholar] [CrossRef]
  120. Wilson, J.R.; Kerman, S.J.; A Hubers, S.; Yu, C.; Nian, H.; Grouzmann, E.; Eugster, P.J.; Mayfield, D.S.; Brown, N.J. Dipeptidyl Peptidase 4 Inhibition Increases Postprandial Norepinephrine via Substance P (NK1 Receptor) During RAAS Inhibition. J. Endocr. Soc. 2019, 3, 1784–1798. [Google Scholar] [CrossRef]
  121. Bergström, M.; Hargreaves, R.J.; Burns, H.D.; Goldberg, M.R.; Sciberras, D.; Reines, S.A.; Petty, K.J.; Ögren, M.; Antoni, G.; Långström, B.; et al. Human positron emission tomography studies of brain neurokinin 1 receptor occupancy by aprepitant. Biol. Psychiatry 2004, 55, 1007–1012. [Google Scholar] [CrossRef]
  122. Spitsin, S.; Tebas, P.; Barrett, J.S.; Pappa, V.; Kim, D.; Taylor, D.; Evans, D.L.; Douglas, S.D. Antiinflammatory effects of aprepitant coadministration with cART regimen containing ritonavir in HIV-infected adults. JCI Insight 2017, 2, e95893. [Google Scholar] [CrossRef]
  123. Krupa, A.J.; Wojtasik-Bakalarz, K.; Siwek, M. Vortioxetine—Pharmacological properties and use in mood disorders. The current state of knowledge. Psychiatr. Pol. 2023, 57, 1109–1126. [Google Scholar] [CrossRef] [PubMed]
  124. Mørk, A.; Pehrson, A.; Brennum, L.T.; Nielsen, S.M.; Zhong, H.; Lassen, A.B.; Miller, S.; Westrich, L.; Boyle, N.J.; Sánchez, C.; et al. Pharmacological effects of Lu AA21004: A novel multimodal compound for the treatment of major depressive disorder. J. Pharmacol. Exp. Ther. 2012, 340, 666–675. [Google Scholar] [CrossRef]
  125. Berardelli, I.; Rogante, E.; Formica, F.; Iannazzo, R.; Mammoliti, A.V.; Riccioni, R.; Veizi, S.; McIntyre, R.S.; Pompili, M. The efficacy of vortioxetine in the acute treatment of major depressive disorder: A systematic review and meta-analysis. J. Psychopharmacol. 2025, 39, 92–105. [Google Scholar] [CrossRef] [PubMed]
  126. Kast, R.E. Glioblastoma chemotherapy adjunct via potent serotonin receptor-7 inhibition using currently marketed high-affinity antipsychotic medicines. Br. J. Pharmacol. 2010, 161, 481–487. [Google Scholar] [CrossRef] [PubMed]
  127. Mahé, C.; Bernhard, M.; Bobirnac, I.; Keser, C.; Loetscher, E.; Feuerbach, D.; Dev, K.K.; Schoeffter, P. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines. Br. J. Pharmacol. 2004, 143, 404–410. [Google Scholar] [CrossRef]
  128. Elmaci, I.; Altinoz, M.A. Targeting the cellular schizophrenia. Likely employment of the antipsychotic agent pimozide in treatment of refractory cancers and glioblastoma. Crit. Rev. Oncol. Hematol. 2018, 128, 96–109. [Google Scholar] [CrossRef]
  129. Varalda, M.; Antona, A.; Bettio, V.; Roy, K.; Vachamaram, A.; Yellenki, V.; Massarotti, A.; Baldanzi, G.; Capello, D. Psychotropic Drugs Show Anticancer Activity by Disrupting Mitochondrial and Lysosomal Function. Front. Oncol. 2020, 10, 562196. [Google Scholar] [CrossRef]
  130. Tzadok, S.; Beery, E.; Israeli, M.; Uziel, O.; Lahav, M.; Fenig, E.; Gil-Ad, I.; Weizman, A.; Nordenberg, J. In vitro novel combinations of psychotropics and anti-cancer modalities in U87 human glioblastoma cells. Int. J. Oncol. 2010, 37, 1043–1051. [Google Scholar] [CrossRef]
  131. Levkovitz, Y.; Gil-Ad, I.; Zeldich, E.; Dayag, M.; Weizman, A. Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: Evidence for p-c-Jun, cytochrome c, and caspase-3 involvement. J. Mol. Neurosci. 2005, 27, 29–42. [Google Scholar] [CrossRef] [PubMed]
  132. Stepulak, A.; Rzeski, W.; Sifringer, M.; Brocke, K.; Gratopp, A.; Kupisz, K.; Turski, L.; Ikonomidou, C. Fluoxetine inhibits the extracellular signal regulated kinase pathway and suppresses growth of cancer cells. Cancer Biol. Ther. 2008, 7, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
  133. Hosseinimehr, S.J.; Najafi, S.H.; Shafiee, F.; Hassanzadeh, S.; Farzipour, S.; Ghasemi, A.; Asgarian-Omran, H. Fluoxetine as an antidepressant medicine improves the effects of ionizing radiation for the treatment of glioma. J. Bioenerg. Biomembr. 2020, 52, 165–174. [Google Scholar] [CrossRef] [PubMed]
  134. Liu, K.H.; Yang, S.T.; Lin, Y.K.; Lin, J.W.; Lee, Y.H.; Wang, J.Y.; Hu, C.J.; Lin, E.Y.; Chen, S.M.; Then, C.K.; et al. Fluoxetine, an antidepressant, suppresses glioblastoma by evoking, A.M.PAR-mediated calcium-dependent apoptosis. Oncotarget 2015, 6, 5088–5101. [Google Scholar] [CrossRef]
  135. Ma, J.; Yang, Y.R.; Chen, W.; Chen, M.H.; Wang, H.; Wang, X.D.; Sun, L.L.; Wang, F.Z.; Wang, D.C. Fluoxetine synergizes with temozolomide to induce the, C.H.OP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells. Oncol. Rep. 2016, 36, 676–684. [Google Scholar] [CrossRef]
  136. Song, T.; Li, H.; Tian, Z.; Xu, C.; Liu, J.; Guo, Y. Disruption of NF-κB signaling by fluoxetine attenuates MGMT expression in glioma cells. Onco. Targets Ther. 2015, 8, 2199–2208. [Google Scholar] [CrossRef]
  137. Sarker, A.; Aziz, A.; Hossen, B.; Mollah, M.H.; Amin, A.; Mollah, N.H. Discovery of key molecular signatures for diagnosis and therapies of glioblastoma by combining supervised and unsupervised learning approaches. Sci. Rep. 2024, 14, 27545. [Google Scholar] [CrossRef]
  138. Bi, J.; Khan, A.; Tang, J.; Armando, A.M.; Wu, S.; Zhang, W.; Gimple, R.C.; Reed, A.; Jing, H.; Koga, T.; et al. Targeting glioblastoma signaling and metabolism with a re-purposed brain-penetrant drug. Cell Rep. 2021, 37, 109957. [Google Scholar] [CrossRef]
  139. Chantzi, E.; Hammerling, U.; Gustafsson, M.G. Exhaustive in vitro evaluation of the 9-drug cocktail CUSP9 for treatment of glioblastoma. Comput. Biol. Med. 2024, 178, 108748. [Google Scholar] [CrossRef]
  140. Duarte, D.; Nunes, M.; Ricardo, S.; Vale, N. Combination of Antimalarial and CNS Drugs with Antineoplastic Agents in MCF-7 Breast and HT-29 Colon Cancer Cells: Biosafety Evaluation and Mechanism of Action. Biomolecules 2022, 12, 1490. [Google Scholar] [CrossRef]
  141. Jacob, J.R.; Palanichamy, K.; Chakravarti, A. Antipsychotics possess anti-glioblastoma activity by disrupting lysosomal function and inhibiting oncogenic signaling by stabilizing PTEN. Cell Death Dis. 2024, 15, 414. [Google Scholar] [CrossRef] [PubMed]
  142. Tsuboi, N.; Otani, Y.; Uneda, A.; Ishida, J.; Suruga, Y.; Matsumoto, Y.; Fujimura, A.; Fujii, K.; Matsui, H.; Kurozumi, K.; et al. New Anti-Angiogenic Therapy for Glioblastoma with the Anti-Depressant Sertraline. Cancer Med. 2024, 13, e70288. [Google Scholar] [CrossRef]
  143. Petrosyan, E.; Fares, J.; Cordero, A.; Rashidi, A.; Arrieta, V.A.; Kanojia, D.; Lesniak, M.S. Repurposing autophagy regulators in brain tumors. Int. J. Cancer 2022, 151, 167–180. [Google Scholar] [CrossRef] [PubMed]
  144. Schmidt, L.; Baskaran, S.; Johansson, P.; Padhan, N.; Matuszewski, D.; Green, L.C.; Elfineh, L.; Wee, S.; Häggblad, M.; Martens, U.; et al. Case-specific potentiation of glioblastoma drugs by pterostilbene. Oncotarget 2016, 7, 73200–73215. [Google Scholar] [CrossRef]
  145. Schmidt, L.; Kling, T.; Monsefi, N.; Olsson, M.; Hansson, C.; Baskaran, S.; Lundgren, B.; Martens, U.; Häggblad, M.; Westermark, B.; et al. Comparative drug pair screening across multiple glioblastoma cell lines reveals novel drug-drug interactions. Neuro Oncol. 2013, 15, 1469–1478. [Google Scholar] [CrossRef]
  146. Bielecka-Wajdman, A.M.; Lesiak, M.; Ludyga, T.; Sieroń, A.; Obuchowicz, E. Reversing glioma malignancy: A new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme. Cancer Chemother. Pharmacol. 2017, 79, 1249–1256. [Google Scholar] [CrossRef]
  147. Li, M.; Duan, L.; Wu, W.; Li, W.; Zhao, L.; Li, A.; Lu, X.; He, X.; Dong, Z.; Liu, K.; et al. Vortioxetine hydrobromide inhibits the growth of gastric cancer cells in vivo and in vitro by targeting JAK2 and SRC. Oncogenesis 2023, 12, 24. [Google Scholar] [CrossRef] [PubMed]
  148. Lv, G.B.; Wang, T.T.; Zhu, H.L.; Wang, H.K.; Sun, W.; Zhao, L.F. Vortioxetine induces apoptosis and autophagy of gastric cancer AGS cells via the PI3K/AKT pathway. FEBS Open Bio 2020, 10, 2157–2165. [Google Scholar] [CrossRef]
  149. Lee, S.; Weiss, T.; Bühler, M.; Mena, J.; Lottenbach, Z.; Wegmann, R.; Sun, M.; Bihl, M.; Augustynek, B.; Baumann, S.P.; et al. High-throughput identification of repurposable neuroactive drugs with potent anti-glioblastoma activity. Nat. Med. 2024, 30, 3196–3208. [Google Scholar] [CrossRef]
  150. Devare, M.N.; Kaeberlein, M. An anti-depressant drug vortioxetine suppresses malignant glioblastoma cell growth. MicroPubl Biol. 2024, 2024. [Google Scholar] [CrossRef]
  151. Zhang, H.Q.; Zhang, D.M.; Huang, Z.Z.; Cheng, J.; Zhang, C.; Lin, N.M.; Li, Y. Vortioxetine exhibits anti-glioblastoma activity via the PI3K-Akt signaling pathway. Iran. J. Basic. Med. Sci. 2025, 28, 401–408. [Google Scholar] [CrossRef]
  152. Zhuo, C.; Li, C.; Zhang, Q.; Yang, L.; Zhang, Y.; Chen, X.; Ma, X.; Li, R.; Wang, L.; Tian, H. Molecular targets of vortioxetine mediating glioblastoma suppression revealed by gene and protein network analyses and molecular docking simulations. Int. J. Neuropsychopharmacol. 2025, 28, pyaf029. [Google Scholar] [CrossRef] [PubMed]
  153. Wang, Y.; Siebzehnrubl, D.; Weller, M.; Weiss, T.; Siebzehnrubl, F.A.; Newland, B. Vortioxetine: A Potential Drug for Repurposing for Glioblastoma Treatment via a Microsphere Local Delivery System. ACS Biomater. Sci. Eng. 2025, 11, 2203–2215. [Google Scholar] [CrossRef] [PubMed]
  154. Eskelund, A.; Li, Y.; Budac, D.P.; Müller, H.K.; Gulinello, M.; Sanchez, C.; Wegener, G. Drugs with antidepressant properties affect tryptophan metabolites differently in rodent models with depression-like behavior. J. Neurochem. 2017, 142, 118–131. [Google Scholar] [CrossRef] [PubMed]
  155. Adams, S.; Teo, C.; McDonald, K.L.; Zinger, A.; Bustamante, S.; Lim, C.K.; Sundaram, G.; Braidy, N.; Brew, B.J.; Guillemin, G.J. Involvement of the kynurenine pathway in human glioma pathophysiology. PLoS ONE 2014, 9, e112945. [Google Scholar] [CrossRef]
  156. Sahm, F.; Oezen, I.; Opitz, C.A.; Radlwimmer, B.; von Deimling, A.; Ahrendt, T.; Adams, S.; Bode, H.B.; Guillemin, G.J.; Wick, W.; et al. The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidativestress. Cancer Res. 2013, 73, 3225–3234. [Google Scholar] [CrossRef]
  157. Bhat, A.; Tan, V.; Heng, B.; Lovejoy, D.B.; Sakharkar, M.K.; Essa, M.M.; Chidambaram, S.B.; Guillemin, G.J. Roflumilast, a cAMP-Specific Phosphodiesterase-4 Inhibitor, Reduces Oxidative Stress and Improves Synapse Functions in Human Cortical Neurons Exposed to the Excitotoxin Quinolinic Acid. ACS Chem. Neurosci. 2020, 11, 4405–4415. [Google Scholar] [CrossRef]
  158. Sordillo, P.P.; Sordillo, L.A.; Helson, L. The Kynurenine Pathway: A Primary Resistance Mechanism in Patients with Glioblastoma. Anticancer Res. 2017, 37, 2159–2171. [Google Scholar] [CrossRef]
  159. Krupa, M.M.; Pienkowski, T.; Tankiewicz-Kwedlo, A.; Lyson, T. Targeting the kynurenine pathway in gliomas: Insights into pathogenesis, therapeutic targets, and clinical advances. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189343. [Google Scholar] [CrossRef]
  160. Jane, E.P.; Premkumar, D.R.; Thambireddy, S.; Golbourn, B.; Agnihotri, S.; Bertrand, K.C.; Mack, S.C.; Myers, M.I.; Chattopadhyay, A.; Taylor, D.L.; et al. Targeting NAD+ Biosynthesis Overcomes Panobinostat and Bortezomib-Induced Malignant Glioma Resistance. Mol. Cancer Res. 2020, 18, 1004–1017. [Google Scholar] [CrossRef]
  161. Kesarwani, P.; Kant, S.; Zhao, Y.; Prabhu, A.; Buelow, K.L.; Miller, C.R.; Chinnaiyan, P. Quinolinate promotes macrophage-induced immune tolerance in glioblastoma through the NMDAR/PPARγ signaling axis. Nat. Commun. 2023, 14, 1459. [Google Scholar] [CrossRef] [PubMed]
  162. Field, S.K. Roflumilast: An oral, once-daily selective PDE-4 inhibitor for the management of COPD and asthma. Expert Opin. Investig. Drugs 2008, 17, 811–818. [Google Scholar] [CrossRef] [PubMed]
  163. Giembycz, M.A.; Field, S.K. Roflumilast: First phosphodiesterase 4 inhibitor approved for treatment of COPD. Drug Des Devel Ther. 2010, 4, 147-q58. [Google Scholar] [CrossRef]
  164. Lahu, G.; Nassr, N.; Hünnemeyer, A. Pharmacokinetic evaluation of roflumilast. Expert Opin. Drug Metab. Toxicol. 2011, 7, 1577–1591. [Google Scholar] [CrossRef]
  165. Rabe, K.F. Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br. J. Pharmacol. 2011, 163, 53–67. [Google Scholar] [CrossRef]
  166. Yuan, L.; Dai, X.; Yang, M.; Cai, Q.; Shao, N. Potential treatment benefits and safety of roflumilast in COPD: A systematic review and meta-analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
  167. Houslay, M.D.; Schafer, P.; Zhang, K.Y. Keynote review: Phosphodiesterase-4 as a therapeutic target. Drug Discov. Today 2005, 10, 1503–1519. [Google Scholar] [CrossRef]
  168. Conti, M.; Beavo, J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: Essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 2007, 76, 481–511. [Google Scholar] [CrossRef]
  169. Sengupta, R.; Sun, T.; Warrington, N.M.; Rubin, J.B. Treating brain tumors with PDE4 inhibitors. Trends Pharmacol. Sci. 2011, 32, 337–344. [Google Scholar] [CrossRef]
  170. Kast, R.E. Paths for Improving Bevacizumab Available in 2018: The ADZT Regimen for Better Glioblastoma Treatment. Med. Sci. 2018, 6, 84. [Google Scholar] [CrossRef]
  171. Dixit, D.; Prager, B.C.; Gimple, R.C.; Miller, T.E.; Wu, Q.; Yomtoubian, S.; Kidwell, R.L.; Lv, D.; Zhao, L.; Qiu, Z.; et al. Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Sci. Transl. Med. 2022, 14, eabf3917. [Google Scholar] [CrossRef]
  172. Ou, M.; Cho, H.Y.; Fu, J.; Thein, T.Z.; Wang, W.; Swenson, S.D.; Minea, R.O.; Stathopoulos, A.; Schönthal, A.H.; Hofman, F.M.; et al. Inhibition of autophagy and induction of glioblastoma cell death by NEO214, a perillyl alcohol-rolipram conjugate. Autophagy 2023, 19, 3169–3188. [Google Scholar] [CrossRef] [PubMed]
  173. Goldhoff, P.; Warrington, N.M.; Limbrick, D.D., Jr.; Hope, A.; Woerner, B.M.; Jackson, E.; Perry, A.; Piwnica-Worms, D.; Rubin, J.B. Targeted Inhibition of Cyclic AMP Phosphodiesterase-4 Promotes Brain Tumor Regression. Clin. Cancer Res. 2008, 14, 7717–7725. [Google Scholar] [CrossRef] [PubMed]
  174. Ramezani, S.; Vousooghi, N.; Kapourchali, F.R.; Hadjighasem, M.; Hayat, P.; Amini, N.; Joghataei, M.T. Rolipram potentiates bevacizumab-induced cell death in human glioblastoma stem-like cells. Life Sci. 2017, 173, 11–19. [Google Scholar] [CrossRef]
  175. Chen, T.C.; Wadsten, P.; Su, S.; Rawlinson, N.; Hofman, F.M.; Hill, C.K.; Schönthal, A.H. The type IV phosphodiesterase inhibitor rolipram induces expression of the cell cycle inhibitors p21(Cip1) and p27(Kip1), resulting in growth inhibition, increased differentiation, and subsequent apoptosis of malignant A-172 glioma cells. Cancer Biol. Ther. 2002, 1, 268–276. [Google Scholar] [CrossRef] [PubMed]
  176. Sahin, Z.; Biltekin, S.N.; Yurttas, L.; Berk, B.; Özhan, Y.; Sipahi, H.; Gao, Z.G.; Jacobson, K.A.; Demirayak, Ş. Novel cyanothiouracil and cyanothiocytosine derivatives as concentration dependent selective inhibitors of U87MG glioblastomas: Adenosine receptor binding and potent PDE4 inhibition. Eur. J. Med. Chem. 2021, 212, 113125. [Google Scholar] [CrossRef]
  177. Ramezani, S.; Vousooghi, N.; Ramezani Kapourchali, F.; Yousefzadeh-Chabok, S.; Reihanian, Z.; Alizadeh, A.M.; Khodayari, S.; Khodayari, H. Rolipram optimizes therapeutic effect of bevacizumab by enhancing proapoptotic, antiproliferative signals in a glioblastoma heterotopic model. Life Sci. 2019, 239, 116880. [Google Scholar] [CrossRef]
  178. Yang, L.; Jackson, E.; Woerner, B.M.; Perry, A.; Piwnica-Worms, D.; Rubin, J.B. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res. 2007, 67, 651–658. [Google Scholar] [CrossRef]
  179. Moon, E.Y.; Lee, G.H.; Lee, M.S.; Kim, H.M.; Lee, J.W. Phosphodiesterase inhibitors control A172 human glioblastoma cell death through cAMP-mediated activation of protein kinase A and Epac1/Rap1 pathways. Life Sci. 2012, 90, 373–380. [Google Scholar] [CrossRef]
  180. Kang, T.W.; Choi, S.W.; Yang, S.R.; Shin, T.H.; Kim, H.S.; Yu, K.R.; Hong, I.S.; Ro, S.; Cho, J.M.; Kang, K.S. Growth arrest and forced differentiation of human primary glioblastoma multiforme by a novel small molecule. Sci Rep. 2014, 4, 5546. [Google Scholar] [CrossRef]
  181. Awad, J.A.; Johnson, R.A.; Jakobs, K.H.; Schultz, G. Interactions of forskolin and adenylate cyclase. Effects on substrate kinetics and protection against inactivation by heat and N-ethylmaleimide. J. Biol. Chem. 1983, 258, 2960–2965. [Google Scholar] [CrossRef] [PubMed]
  182. Pinto, C.; Papa, D.; Hübner, M.; Mou, T.C.; Lushington, G.H.; Seifert, R. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs. J. Pharmacol. Exp. Ther. 2008, 325, 27–36. [Google Scholar] [CrossRef]
  183. Qi, C.; Lavriha, P.; Mehta, V.; Khanppnavar, B.; Mohammed, I.; Li, Y.; Lazaratos, M.; Schaefer, J.V.; Dreier, B.; Plückthun, A.; et al. Structural basis of adenylyl cyclase 9 activation. Nat. Commun. 2022, 13, 1045. [Google Scholar] [CrossRef]
  184. Li, F.; Zhou, K.; Gao, L.; Zhang, B.; Li, W.; Yan, W.; Song, X.; Yu, H.; Wang, S.; Yu, N.; et al. Radiation induces the generation of cancer stem cells: A novel mechanism for cancer radioresistance. Oncol. Lett. 2016, 12, 3059–3065. [Google Scholar] [CrossRef] [PubMed]
  185. Chen, X.; Liao, R.; Li, D.; Sun, J. Induced cancer stem cells generated by radiochemotherapy and their therapeutic implications. Oncotarget 2017, 8, 17301–17312. [Google Scholar] [CrossRef] [PubMed]
  186. Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444, 756–760. [Google Scholar] [CrossRef]
  187. Pisco, A.O.; Huang, S. Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘What does not kill me strengthens me’. Br. J. Cancer 2015, 112, 1725–1732. [Google Scholar] [CrossRef]
  188. He, L.; Azizad, D.; Bhat, K.; Ioannidis, A.; Hoffmann, C.J.; Arambula, E.; Eghbali, M.; Bhaduri, A.; Kornblum, H.I.; Pajonk, F. Radiation-induced cellular plasticity primes glioblastoma for forskolin-mediated differentiation. Proc. Natl. Acad. Sci. USA 2025, 122, e2415557122. [Google Scholar] [CrossRef]
  189. Sharma, S.K.; Raj, A.B. Transient increase in intracellular concentration of adenosine 3′:5′-cyclic monophosphate results in morphological and biochemical differentiation of C6 glioma cells in culture. J. Neurosci. Res. 1987, 17, 135–141. [Google Scholar] [CrossRef]
  190. Daniel, P.M.; Filiz, G.; Mantamadiotis, T. Sensitivity of GBM cells to cAMP agonist mediated apoptosis correlates with CD44 expression and agonist resistance with MAPK signaling. Cell Death Dis. 2016, 7, e2494. [Google Scholar] [CrossRef]
  191. Black, P.M.; Kornblith, P.L.; Davison, P.F.; Liszczak, T.M.; Merk, L.P.; Smith, B.H.; McKeever, P.E.; Quindlen, E.A. Immunological, biochemical, ultrastructural, and electrophysiological characteristics of a human glioblastoma-derived cell culture line. J. Neurosurg. 1982, 56, 62–72. [Google Scholar] [CrossRef] [PubMed]
  192. Xing, F.; Luan, Y.; Cai, J.; Wu, S.; Mai, J.; Gu, J.; Zhang, H.; Li, K.; Lin, Y.; Xiao, X.; et al. The Anti-Warburg Effect Elicited by the cAMP-PGC1α Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes. Cell Rep. 2017, 18, 468–481. [Google Scholar] [CrossRef]
  193. Wartchow, K.M.; Schmid, B.; Tripal, P.; Stadlbauer, A.; Buchfelder, M.; Gonçalves, C.-A.; Kleindienst, A. Treatment with Cyclic AMP Activators Reduces Glioblastoma Growth and Invasion as Assessed by Two-Photon Microscopy. Cells 2021, 10, 556. [Google Scholar] [CrossRef]
  194. Gu, J.; Wang, J.; Liu, X.; Sai, K.; Mai, J.; Xing, F.; Chen, Z.; Yang, X.; Lu, W.; Guo, C.; et al. IL-6 derived from therapy-induced senescence facilitates the glycolytic phenotype in glioblastoma cells. Am. J. Cancer Res. 2021, 11, 458–478. [Google Scholar] [PubMed]
  195. Zhang, H.; Liu, Y.; Liu, J.; Chen, J.; Wang, J.; Hua, H.; Jiang, Y. cAMP-PKA/EPAC signaling and cancer: The interplay in tumor microenvironment. J. Hematol. Oncol. 2024, 17, 5. [Google Scholar] [CrossRef] [PubMed]
  196. Beaulieu, J.M.; Espinoza, S.; Gainetdinov, R.R. Dopamine receptors—IUPHAR Review 13. Br. J. Pharmacol. 2015, 172, 1–23. [Google Scholar] [CrossRef]
  197. Neve, K.A.; Seamans, J.K.; Trantham-Davidson, H. Dopamine receptor signaling. J. Recept. Signal Transduct. Res. 2004, 24, 165–205. [Google Scholar] [CrossRef]
  198. Fuxe, K.; Tarakanov, A.; Romero Fernandez, W.; Ferraro, L.; Tanganelli, S.; Filip, M.; Agnati, L.F.; Garriga, P.; Diaz-Cabiale, Z.; Borroto-Escuela, D.O. Diversity and Bias through Receptor Receptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization. Front. Endocrinol. 2014, 5, 71. [Google Scholar] [CrossRef]
  199. Kamarudin, M.N.A.; Parhar, I. Emerging therapeutic potential of antipsychotic drugs in the management of human glioma: A comprehensive review. Oncotarget 2019, 10, 3952–3977. [Google Scholar] [CrossRef]
  200. Caragher, S.P.; Shireman, J.M.; Huang, M.; Miska, J.; Atashi, F.; Baisiwala, S.; Hong Park, C.; Saathoff, M.R.; Warnke, L.; Xiao, T.; et al. Activation of Dopamine Receptor 2 Prompts Transcriptomic and Metabolic Plasticity in Glioblastoma. J. Neurosci. 2019, 39, 1982–1993. [Google Scholar] [CrossRef]
  201. Lee, J.K.; Nam, D.H.; Lee, J. Repurposing antipsychotics as glioblastoma therapeutics: Potentials and challenges. Oncol. Lett. 2016, 11, 1281–1286. [Google Scholar] [CrossRef]
  202. Rundle-Thiele, D.; Head, R.; Cosgrove, L.; Martin, J.H. Repurposing some older drugs that cross the blood-brain barrier and have potential anticancer activity to provide new treatment options for glioblastoma. Br. J. Clin. Pharmacol. 2016, 81, 199–209. [Google Scholar] [CrossRef]
  203. Wang, Y.; Wang, X.; Wang, K.; Qi, J.; Zhang, Y.; Wang, X.; Zhang, L.; Zhou, Y.; Gu, L.; Yu, R.; et al. Chronic stress accelerates glioblastoma progression via DRD2/ERK/β-catenin axis and Dopamine/ERK/TH positive feedback loop. J. Exp. Clin. Cancer Res. 2023, 42, 161. [Google Scholar] [CrossRef] [PubMed]
  204. Li, J.; Zhu, S.; Kozono, D.; Ng, K.; Futalan, D.; Shen, Y.; Akers, J.C.; Steed, T.; Kushwaha, D.; Schlabach, M.; et al. Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma. Oncotarget 2014, 5, 882–893. [Google Scholar] [CrossRef] [PubMed]
  205. He, Y.; Li, J.; Koga, T.; Ma, J.; Dhawan, S.; Suzuki, Y.; Furnari, F.; Prabhu, V.V.; E Allen, J.; Chen, C.C. Epidermal growth factor receptor as a molecular determinant of glioblastoma response to dopamine receptor D2 inhibitors. Neuro-Oncol. 2021, 23, 400–411. [Google Scholar] [CrossRef] [PubMed]
  206. Kim, M.S.; Yoo, B.C.; Yang, W.S.; Han, S.Y.; Jeong, D.; Song, J.M.; Kim, K.H.; Aravinthan, A.; Kim, J.H.; Kim, J.-H.; et al. Src is the primary target of aripiprazole, an atypical antipsychotic drug, in its anti-tumor action. Oncotarget 2017, 9, 5979–5992. [Google Scholar] [CrossRef]
  207. Forno, F.; Maatuf, Y.; Boukeileh, S.; Dipta, P.; Mahameed, M.; Darawshi, O.; Ferreira, V.; Rada, P.; García-Martinez, I.; Gross, E.; et al. Aripiprazole Cytotoxicity Coincides with Activation of the Unfolded Protein Response in Human Hepatic Cells. J. Pharmacol. Exp. Ther. 2020, 374, 452–461. [Google Scholar] [CrossRef]
  208. Benítez-García, C.; Martínez-García, D.; Kotev, M.; Pérez-Hernández, M.; Westermaier, Y.; Díaz, L.; Korrodi-Gregório, L.; Fontova, P.; Torres, A.A.; Pérez-Tomás, R.; et al. Identification of the atypical antipsychotic Asenapine as a direct survivin inhibitor with anticancer properties and sensitizing effects to conventional therapies. Biomed. Pharmacother. 2025, 182, 117756. [Google Scholar] [CrossRef]
  209. Suzuki, S.; Yamamoto, M.; Togashi, K.; Sanomachi, T.; Sugai, A.; Seino, S.; Yoshioka, T.; Kitanaka, C.; Okada, M. In vitro and in vivo anti-tumor effects of brexpiprazole, a newly-developed serotonin-dopamine activity modulator with an improved safety profile. Oncotarget 2019, 10, 3547–3558. [Google Scholar] [CrossRef]
  210. Suzuki, S.; Yamamoto, M.; Sanomachi, T.; Togashi, K.; Sugai, A.; Seino, S.; Yoshioka, T.; Kitanaka, C.; Okada, M. Brexpiprazole, a Serotonin-Dopamine Activity Modulator, Can Sensitize Glioma Stem Cells to Osimertinib, a Third-Generation EGFR-TKI, via Survivin Reduction. Cancers 2019, 11, 947. [Google Scholar] [CrossRef]
  211. Matarrese, P.; Signore, M.; Ascione, B.; Fanelli, G.; Paggi, M.G.; Abbruzzese, C. Chlorpromazine overcomes temozolomide resistance in glioblastoma by inhibiting Cx43 and essential DNA repair pathways. J. Transl. Med. 2024, 22, 667. [Google Scholar] [CrossRef] [PubMed]
  212. Abbruzzese, C.; Matteoni, S.; Matarrese, P.; Signore, M.; Ascione, B.; Iessi, E.; Gurtner, A.; Sacconi, A.; Ricci-Vitiani, L.; Pallini, R.; et al. Chlorpromazine affects glioblastoma bioenergetics by interfering with pyruvate kinase M2. Cell Death Dis. 2023, 14, 821. [Google Scholar] [CrossRef] [PubMed]
  213. Chu, C.S.; Lin, Y.S.; Liang, W.Z. The Impact of the Antipsychotic Medication Chlorpromazine on Cytotoxicity through Ca2+ Signaling Pathway in Glial Cell Models. Neurotox. Res. 2022, 40, 791–802. [Google Scholar] [CrossRef] [PubMed]
  214. Matteoni, S.; Matarrese, P.; Ascione, B.; Ricci-Vitiani, L.; Pallini, R.; Villani, V.; Pace, A.; Paggi, M.G.; Abbruzzese, C. Chlorpromazine induces cytotoxic autophagy in glioblastoma cells via endoplasmic reticulum stress and unfolded protein response. J. Exp. Clin. Cancer Res. 2021, 40, 347. [Google Scholar] [CrossRef]
  215. Matteoni, S.; Matarrese, P.; Ascione, B.; Buccarelli, M.; Ricci-Vitiani, L.; Pallini, R.; Villani, V.; Pace, A.; Paggi, M.G.; Abbruzzese, C. Anticancer Properties of the Antipsychotic Drug Chlorpromazine and Its Synergism with Temozolomide in Restraining Human Glioblastoma Proliferation In Vitro. Front. Oncol. 2021, 11, 635472. [Google Scholar] [CrossRef]
  216. Pinheiro, T.; Otrocka, M.; Seashore-Ludlow, B.; Rraklli, V.; Holmberg, J.; Forsberg-Nilsson, K.; Simon, A.; Kirkham, M. A chemical screen identifies trifluoperazine as an inhibitor of glioblastoma growth. Biochem. Biophys. Res. Commun. 2017, 494, 477–483. [Google Scholar] [CrossRef]
  217. Oliva, C.R.; Zhang, W.; Langford, C.; Suto, M.J.; Griguer, C.E. Repositioning chlorpromazine for treating chemoresistant glioma through the inhibition of cytochrome c oxidase bearing the COX4-1 regulatory subunit. Oncotarget 2017, 8, 37568–37583. [Google Scholar] [CrossRef]
  218. Abbruzzese, C.; Matteoni, S.; Persico, M.; Villani, V.; Paggi, M.G. Repurposing chlorpromazine in the treatment of glioblastoma multiforme: Analysis of literature and forthcoming steps. J. Exp. Clin. Cancer Res. 2020, 39, 26. [Google Scholar] [CrossRef]
  219. Munyon, W.H.; Salo, R.; Briones, D.F. Cytotoxic effects of neuroleptic drugs. Psychopharmacology 1987, 91, 182–188. [Google Scholar] [CrossRef]
  220. Hait, W.N.; Gesmonde, J.F.; Lazo, J.S. Effect of anti-calmodulin drugs on the growth and sensitivity of C6 rat glioma cells to bleomycin. Anticancer Res. 1994, 14, 1711–1721. [Google Scholar]
  221. Aas, A.T.; Brun, A.; Pero, R.W.; Salford, L.G. Chlorpromazine in combination with nitrosourea inhibits experimental glioma growth. Br. J. Neurosurg. 1994, 8, 187–192. [Google Scholar] [CrossRef] [PubMed]
  222. Shin, S.Y.; Choi, B.H.; Ko, J.; Kim, S.H.; Kim, Y.S.; Lee, Y.H. Clozapine, a neuroleptic agent, inhibits Akt by counteracting Ca2+/calmodulin in PTEN-negative U-87MG human glioblastoma cells. Cell Signal. 2006, 18, 1876–1886. [Google Scholar] [CrossRef] [PubMed]
  223. Pont, L.M.E.B.; Balvers, R.K.; Kloezeman, J.J.; Nowicki, M.O.; van den Bossche, W.; Kremer, A.; Wakimoto, H.; van den Hoogen, B.G.; Leenstra, S.; Dirven, C.M.F.; et al. In vitro screening of clinical drugs identifies sensitizers of oncolytic viral therapy in glioblastoma stem-like cells. Gene Ther. 2015, 22, 947–959. [Google Scholar] [CrossRef]
  224. Kong, Y.; Zhu, W.; Zhang, Z.; Sun, W.; Cui, G.; Chen, H.; Wang, H. Fluspirilene exerts an anti-glioblastoma effect through suppression of the FOXM1-KIF20A axis. Neoplasma 2024, 71, 333–346. [Google Scholar] [CrossRef]
  225. Dong, Y.; Furuta, T.; Sabit, H.; Kitabayashi, T.; Jiapaer, S.; Kobayashi, M.; Ino, Y.; Todo, T.; Teng, L.; Hirao, A.; et al. Identification of antipsychotic drug fluspirilene as a potential anti-glioma stem cell drug. Oncotarget 2017, 8, 111728–111741. [Google Scholar] [CrossRef]
  226. Shi, L.; Chen, H.; Chen, K.; Zhong, C.; Song, C.; Huang, Y.; Wang, T.; Chen, L.; Li, C.; Huang, A.; et al. The DRD2 Antagonist Haloperidol Mediates Autophagy-Induced Ferroptosis to Increase Temozolomide Sensitivity by Promoting Endoplasmic Reticulum Stress in Glioblastoma. Clin. Cancer Res. 2023, 29, 3172–3188. [Google Scholar] [CrossRef] [PubMed]
  227. Liu, Z.; Jiang, X.; Gao, L.; Liu, X.; Li, J.; Huang, X.; Zeng, T. Synergistic Suppression of Glioblastoma Cell Growth by Combined Application of Temozolomide and Dopamine D2 Receptor Antagonists. World Neurosurg. 2019, 128, e468–e477. [Google Scholar] [CrossRef] [PubMed]
  228. Papadopoulos, F.; Isihou, R.; Alexiou, G.A.; Tsalios, T.; Vartholomatos, E.; Markopoulos, G.S.; Sioka, C.; Tsekeris, P.; Kyritsis, A.P.; Galani, V. Haloperidol Induced Cell Cycle Arrest and Apoptosis in Glioblastoma Cells. Biomedicines 2020, 8, 595. [Google Scholar] [CrossRef]
  229. Weissenrieder, J.S.; Reed, J.L.; Green, M.V.; Moldovan, G.L.; Koubek, E.J.; Neighbors, J.D.; Hohl, R.J. The Dopamine D2 Receptor Contributes to the Spheroid Formation Behavior of U87 Glioblastoma Cells. Pharmacology 2020, 105, 19–27. [Google Scholar] [CrossRef]
  230. Doello, K.; Mesas, C.; Quiñonero, F.; Rama, A.R.; Vélez, C.; Perazzoli, G.; Ortiz, R. Antitumor Effect of Traditional Drugs for Neurological Disorders: Preliminary Studies in Neural Tumor Cell Lines. Neurotox. Res. 2022, 40, 1645–1652. [Google Scholar] [CrossRef]
  231. Gont, A.; Daneshmand, M.; Woulfe, J.; Lavictoire, S.J.; Lorimer, I.A. PREX1 integrates G protein-coupled receptor and phosphoinositide 3-kinase signaling to promote glioblastoma invasion. Oncotarget 2017, 8, 8559–8573. [Google Scholar] [CrossRef] [PubMed]
  232. Mégalizzi, V.; Decaestecker, C.; Debeir, O.; Spiegl-Kreinecker, S.; Berger, W.; Lefranc, F.; Kast, R.E.; Kiss, R. Screening of anti-glioma effects induced by sigma-1 receptor ligands: Potential new use for old anti-psychiatric medicines. Eur. J. Cancer 2009, 45, 2893–2905. [Google Scholar] [CrossRef] [PubMed]
  233. Mubeen, S.; Raza, I.; Ujjan, B.; Wasim, B.; Khan, L.; Naeem, N.; Enam, S.A.; Hanif, F. Iloperidone and Temozolomide Synergistically Inhibit Growth, Migration and Enhance Apoptosis in Glioblastoma Cells. Biomedicines 2024, 12, 1134. [Google Scholar] [CrossRef] [PubMed]
  234. Suzuki, S.; Yamamoto, M.; Sanomachi, T.; Togashi, K.; Seino, S.; Sugai, A.; Yoshioka, T.; Okada, M.; Kitanaka, C. Lurasidone Sensitizes Cancer Cells to Osimertinib by Inducing Autophagy and Reduction of Survivin. Anticancer Res. 2021, 41, 4321–4331. [Google Scholar] [CrossRef]
  235. Hua, J.; Olsson, A.R.; Pero, R.W. Neutral metoclopramide sensitizes cytotoxicity induced by ionizing radiation in, S.C.ID mice xenografted with a human brain astrocytoma. Int. J. Cancer 1997, 73, 871–874. [Google Scholar] [CrossRef]
  236. Olsson, A.; Sheng, Y.; Kjellén, E.; Pero, R.W. In vivo tumor measurement of DNA damage, DNA repair and NAD pools as indicators of radiosensitization by metoclopramide. Carcinogenesis 1995, 16, 1029–1035. [Google Scholar] [CrossRef]
  237. Salford, L.G.; Pero, R.W.; Aas, A.T.; Brun, A. Metoclopramide as a sensitizer of 1,3-bis(2-chloroethyl)-1-nitrosourea treatment of brain tumors in the rat. Anticancer Drugs 1992, 3, 267–272. [Google Scholar] [CrossRef]
  238. Allahgholipour, S.Z.; Farzipour, S.; Ghasemi, A.; Asgarian-Omran, H.; Hosseinimehr, S.J. The Radiosensitizing Effect of Olanzapine as an Antipsychotic Medication on Glioblastoma Cell. Curr. Radiopharm. 2022, 15, 50–55. [Google Scholar] [CrossRef]
  239. Karpel-Massler, G.; Kast, R.E.; Westhoff, M.-A.; Dwucet, A.; Welscher, N.; Nonnenmacher, L.; Hlavac, M.; Siegelin, M.D.; Wirtz, C.R.; Debatin, K.M.; et al. Olanzapine inhibits proliferation, migration and anchorage-independent growth in human glioblastoma cell lines and enhances temozolomide’s antiproliferative effect. J. Neurooncol. 2015, 122, 21–33. [Google Scholar] [CrossRef]
  240. Wang, Y.X.; Xu, S.Q.; Chen, X.H.; Liu, R.S.; Liang, Z.Q. Autophagy involvement in olanzapine mediated cytotoxic effects in human glioma cells. Asian Pac. J. Cancer Prev. 2014, 15, 8107–8113. [Google Scholar] [CrossRef]
  241. Zhu, Y.; Zhao, Y.F.; Liu, R.S.; Xiong, Y.J.; Shen, X.; Wang, Y.; Liang, Z.Q. Olanzapine induced autophagy through suppression of NF-κB activation in human glioma cells. CNS Neurosci. Ther. 2019, 25, 911–921. [Google Scholar] [CrossRef]
  242. Liu, Y.-S.; Huang, B.-R.; Lin, C.-J.; Shen, C.-K.; Lai, S.-W.; Chen, C.-W.; Lin, H.-J.; Lin, C.-H.; Hsieh, Y.-C.; Lu, D.-Y. Paliperidone Inhibits Glioblastoma Growth in Mouse Brain Tumor Model and Reduces PD-L1 Expression. Cancers 2021, 13, 4357. [Google Scholar] [CrossRef] [PubMed]
  243. Ranjan, A.; Wright, S.; Srivastava, S.K. Immune consequences of penfluridol treatment associated with inhibition of glioblastoma tumor growth. Oncotarget 2017, 8, 47632–47641. [Google Scholar] [CrossRef]
  244. Ranjan, A.; Srivastava, S.K. Penfluridol suppresses glioblastoma tumor growth by Akt mediated inhibition of GLI1. Oncotarget 2017, 8, 32960–32976. [Google Scholar] [CrossRef] [PubMed]
  245. Kim, H.; Chong, K.; Ryu, B.-K.; Park, K.-J.; Yu, M.O.; Lee, J.; Chung, S.; Choi, S.; Park, M.-J.; Chung, Y.-G.; et al. Repurposing Penfluridol in Combination with Temozolomide for the Treatment of Glioblastoma. Cancers 2019, 11, 1310. [Google Scholar] [CrossRef]
  246. Hong, J.P.; Chjoi, R.J.; Shim, J.K.; Kim, K.; Kim, R.N.; Cho, H.J.; Kim, S.J.; Kim, S.; Kim, N.H.; Park, H.H.; et al. Synergistic combination of perphenazine and temozolomide suppresses patient-derived glioblastoma tumorspheres. Neuro Oncol. 2024, 27, 654–667. [Google Scholar] [CrossRef]
  247. Otręba, M.; Buszman, E. Perphenazine and prochlorperazine induce concentration dependent loss in human glioblastoma cells viability. Pharmazies 2018, 73, 19–21. [Google Scholar] [CrossRef]
  248. Otręba, M.; Stojko, J.; Kabała-Dzik, A.; Rzepecka-Stojko, A. Perphenazine and prochlorperazine decrease glioblastoma U-87 MG cell migration and invasion: Analysis of the ABCB1 and ABCG2 transporters, E-cadherin, α-tubulin and integrins (α3, α5, and β1) levels. Oncol. Lett. 2022, 23, 182. [Google Scholar] [CrossRef]
  249. Palanichamy, K.; Kanji, S.; Gordon, N.; Thirumoorthy, K.; Jacob, J.R.; Litzenberg, K.T.; Patel, D.; Chakravarti, A. NNMT Silencing Activates Tumor Suppressor PP2A, Inactivates Oncogenic STKs, and Inhibits Tumor Forming Ability. Clin. Cancer Res. 2017, 23, 2325–2334. [Google Scholar] [CrossRef]
  250. Jeon, H.-M.; Oh, Y.T.; Shin, Y.J.; Chang, N.; Kim, D.; Woo, D.; Yeup, Y.; Joo, K.M.; Jo, H.; Yang, H.; et al. Dopamine receptor D2 regulates glioblastoma survival and death through MET and death receptor 4/5. Neoplasia 2023, 39, 100894. [Google Scholar] [CrossRef]
  251. Zhong, Y.; Geng, F.; Mazik, L.; Yin, X.; Becker, A.P.; Mohammed, S.; Su, H.; Xing, E.; Kou, Y.; Chiang, C.-Y.; et al. Combinatorial targeting of glutamine metabolism and lysosomal-based lipid metabolism effectively suppresses glioblastoma. Cell Rep. Med. 2024, 5, 101706. [Google Scholar] [CrossRef] [PubMed]
  252. Remy, J.; Linder, B.; Weirauch, U.; Day, B.W.; Stringer, B.W.; Herold-Mende, C.; Aigner, A.; Krohn, K.; Kögel, D. STAT3 Enhances Sensitivity of Glioblastoma to Drug-Induced Autophagy-Dependent Cell Death. Cancers 2022, 14, 339. [Google Scholar] [CrossRef] [PubMed]
  253. Tulip, I.J.; Kim, S.O.; Kim, E.J.; Kim, J.; Lee, J.Y.; Kim, H.; Kim, S.C. Combined inhibition of STAT and Notch signalling effectively suppresses tumourigenesis by inducing apoptosis and inhibiting proliferation, migration and invasion in glioblastoma cells. Anim. Cells Syst. 2021, 25, 161–170. [Google Scholar] [CrossRef]
  254. Hong, J.-H.; Kang, S.; Sa, J.K.; Park, G.; Oh, Y.T.; Kim, T.H.; Yin, J.; Kim, S.S.; D’Angelo, F.; Koo, H.; et al. Modulation of Nogo receptor 1 expression orchestrates myelin-associated infiltration of glioblastoma. Brain 2021, 144, 636–654. [Google Scholar] [CrossRef]
  255. Meyer, N.; Henkel, L.; Linder, B.; Zielke, S.; Tascher, G.; Trautmann, S.; Geisslinger, G.; Münch, C.; Fulda, S.; Tegeder, I.; et al. Autophagy activation, lipotoxicity and lysosomal membrane permeabilization synergize to promote pimozide- and loperamide-induced glioma cell death. Autophagy 2021, 17, 3424–3443. [Google Scholar] [CrossRef] [PubMed]
  256. Zielke, S.; Meyer, N.; Mari, M.; Abou-El-Ardat, K.; Reggiori, F.; van Wijk, S.J.L.; Kögel, D.; Fulda, S. Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells. Cell Death Dis. 2018, 9, 994. [Google Scholar] [CrossRef]
  257. Rath, B.H.; Camphausen, K.; Tofilon, P.J. Glioblastoma radiosensitization by pimozide. Transl. Cancer Res. 2016, 5 (Suppl. S6), S1029–S1032. [Google Scholar] [CrossRef]
  258. Sachdeva, R.; Wu, M.; Smiljanic, S.; Kaskun, O.; Ghannad-Zadeh, K.; Celebre, A.; Isaev, K.; Morrissy, A.S.; Guan, J.; Tong, J.; et al. ID1 Is Critical for Tumorigenesis and Regulates Chemoresistance in Glioblastoma. Cancer Res. 2019, 79, 4057–4071. [Google Scholar] [CrossRef] [PubMed]
  259. Ranjan, A.; Kaushik, I.; Srivastava, S.K. Pimozide Suppresses the Growth of Brain Tumors by Targeting STAT3-Mediated Autophagy. Cells 2020, 9, 2141. [Google Scholar] [CrossRef]
  260. Roos, A.; Dhruv, H.D.; Peng, S.; Inge, L.J.; Tuncali, S.; Pineda, M.; Millard, N.; Mayo, Z.; Eschbacher, J.M.; Loftus, J.C.; et al. EGFRvIII–Stat5 Signaling Enhances Glioblastoma Cell Migration and Survival. Mol. Cancer Res. 2018, 16, 1185–1195. [Google Scholar] [CrossRef]
  261. Bhat, K.; Saki, M.; Cheng, F.; He, L.; Zhang, L.; Ioannidis, A.; Nathanson, D.; Tsang, J.; Bensinger, S.J.; Nghiemphu, P.L.; et al. Dopamine Receptor Antagonists, Radiation, and Cholesterol Biosynthesis in Mouse Models of Glioblastoma. J. Natl. Cancer Inst. 2021, 113, 1094–1104. [Google Scholar] [CrossRef]
  262. Wang, Y.; Huang, N.; Li, H.; Liu, S.; Chen, X.; Yu, S.; Wu, N.; Bian, X.W.; Shen, H.Y.; Li, C.; et al. Promoting oligodendroglial-oriented differentiation of glioma stem cell: A repurposing of quetiapine for the treatment of malignant glioma. Oncotarget 2017, 8, 37511–37524. [Google Scholar] [CrossRef]
  263. Kast, R.E.; Skuli, N.; Karpel-Massler, G.; Frosina, G.; Ryken, T.; Halatsch, M.E. Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: The EIS regimen. Oncotarget 2017, 8, 60727–60749. [Google Scholar] [CrossRef] [PubMed]
  264. Li, Y.; Wang, T.; Wan, Q.; Wang, Q.; Chen, Z.; Gao, Y.; Ye, Y.; Lin, J.; Zhao, B.; Wang, H.; et al. TRAF4 Maintains Deubiquitination of Caveolin-1 to Drive Glioblastoma Stemness and Temozolomide Resistance. Cancer Res. 2022, 82, 3573–3587. [Google Scholar] [CrossRef]
  265. Somuncu, O.S.; Karaman, I.; Saracoglu, H.P.; Yilmaz, E.; Akin, D. Modeling Schizophrenia with Glioblastoma Cells: In Vitro Analysis of Risperidone Treatment on Glial Spheroids. Psychiatry Clin. Psychopharmacol. 2021, 31, 48–59. [Google Scholar] [CrossRef] [PubMed]
  266. Faraz, S.; Pannullo, S.; Rosenblum, M.; Smith, A.; Wernicke, A.G. Long-term survival in a patient with glioblastoma on antipsychotic therapy for schizophrenia: A case report and literature review. Ther. Adv. Med. Oncol. 2016, 8, 421–428. [Google Scholar] [CrossRef] [PubMed]
  267. Stringer, B.W.; De Silva, M.I.; Greenberg, Z.; Puerta, A.N.; Adams, R.; Milky, B.; Zabolocki, M.; Hurk, M.v.D.; Ebert, L.M.; Bishop, C.F.; et al. Human cerebrospinal fluid affects chemoradiotherapy sensitivities in tumor cells from patients with glioblastoma. Sci. Adv. 2023, 9, eadf1332. [Google Scholar] [CrossRef]
  268. Omoruyi, S.I.; Ekpo, O.E.; Semenya, D.M.; Jardine, A.; Prince, S. Exploitation of a novel phenothiazine derivative for its anti-cancer activities in malignant glioblastoma. Apoptosis 2020, 25, 261–274. [Google Scholar] [CrossRef]
  269. Johannessen, T.; Hasan-Olive, M.; Zhu, H.; Denisova, O.; Grudic, A.; Latif, A.; Saed, H.; Varughese, J.K.; Røsland, G.V.; Yang, N.; et al. Thioridazine inhibits autophagy and sensitizes glioblastoma cells to temozolomide. Int. J. Cancer 2019, 144, 1735–1745. [Google Scholar] [CrossRef]
  270. Chu, C.-W.; Ko, H.-J.; Chou, C.-H.; Cheng, T.-S.; Cheng, H.-W.; Liang, Y.-H.; Lai, Y.-L.; Lin, C.-Y.; Wang, C.; Loh, J.-K.; et al. Thioridazine Enhances P62-Mediated Autophagy and Apoptosis Through Wnt/β-Catenin Signaling Pathway in Glioma Cells. Int. J. Mol. Sci. 2019, 20, 473. [Google Scholar] [CrossRef]
  271. Cheng, H.W.; Liang, Y.H.; Kuo, Y.L.; Chuu, C.P.; Lin, C.Y.; Lee, M.H.; Wu, A.T.; Yeh, C.T.; Chen, E.I.; Whang-Peng, J.; et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015, 6, e1753. [Google Scholar] [CrossRef] [PubMed]
  272. Park, J.; Jeong, J.Y.; Kang, S.S. COX-2 Acts as a Key Mediator of Trifluoperazine-induced Cell Death in U87MG Glioma Cells. Anticancer. Res. 2022, 42, 5773–5781. [Google Scholar] [CrossRef] [PubMed]
  273. Datta, S.; Sears, T.; Cortopassi, G.; Woolard, K.; Angelastro, J.M. Repurposing FDA approved drugs inhibiting mitochondrial function for targeting glioma-stem like cells. Biomed. Pharmacother. 2021, 133, 111058. [Google Scholar] [CrossRef] [PubMed]
  274. Kang, S.; Lee, J.M.; Jeon, B.; Elkamhawy, A.; Paik, S.; Hong, J.; Oh, S.J.; Paek, S.H.; Lee, C.J.; Hassan, A.H.E.; et al. Repositioning of the antipsychotic trifluoperazine: Synthesis, biological evaluation and in silico study of trifluoperazine analogs as anti-glioblastoma agents. Eur. J. Med. Chem. 2018, 151, 186–198. [Google Scholar] [CrossRef]
  275. Zhang, X.; Xu, R.; Zhang, C.; Xu, Y.; Han, M.; Huang, B.; Chen, A.; Qiu, C.; Thorsen, F.; Prestegarden, L.; et al. Trifluoperazine, a novel autophagy inhibitor, increases radiosensitivity in glioblastoma by impairing homologous recombination. J. Exp. Clin. Cancer Res. 2017, 36, 118. [Google Scholar] [CrossRef]
  276. Ramis, G.; Villalonga-Planells, R.; Serra-Sitjar, M.; Brell, M.; de Mattos, S.F.; Villalonga, P. The tumor suppressor FOXO3a mediates the response to EGFR inhibition in glioblastoma cells. Cell Oncol. 2019, 42, 521–536. [Google Scholar] [CrossRef]
  277. Bhat, K.; Saki, M.; Vlashi, E.; Cheng, F.; Duhachek-Muggy, S.; Alli, C.; Yu, G.; Medina, P.; He, L.; Damoiseaux, R.; et al. The dopamine receptor antagonist trifluoperazine prevents phenotype conversion and improves survival in mouse models of glioblastoma. Proc. Natl. Acad. Sci. USA 2020, 117, 11085–11096. [Google Scholar] [CrossRef]
  278. Misganaw, D. Heteromerization of dopaminergic receptors in the brain: Pharmacological implications. Pharmacol. Res. 2021, 170, 105600. [Google Scholar] [CrossRef]
  279. Perreault, M.L.; Hasbi, A.; O’Dowd, B.F.; George, S.R. Heteromeric dopamine receptor signaling complexes: Emerging neurobiology and disease relevance. Neuropsychopharmacology 2014, 39, 156–168. [Google Scholar] [CrossRef]
  280. Khan, S.S.; Lee, F.J. Delineation of domains within the cannabinoid CB1 and dopamine D2 receptors that mediate the formation of the heterodimer complex. J. Mol. Neurosci. 2014, 53, 10–21. [Google Scholar] [CrossRef]
  281. Amato, S.; Averna, M.; Guidolin, D.; Ceccoli, C.; Gatta, E.; Candiani, S.; Pedrazzi, M.; Capraro, M.; Maura, G.; Agnati, L.F.; et al. Heteromerization of Dopamine D2 and Oxytocin Receptor in Adult Striatal Astrocytes. Int. J. Mol. Sci. 2023, 24, 4677. [Google Scholar] [CrossRef] [PubMed]
  282. Niewiarowska-Sendo, A.; Łabędź-Masłowska, A.; Kozik, A.; Guevara-Lora, I. Bradykinin B2 receptor and dopamine D2 receptor cooperatively contribute to the regulation of neutrophil adhesion to endothelial cells. Acta Biochim. Pol. 2018, 65, 367–375. [Google Scholar] [CrossRef] [PubMed]
  283. Prabhu, V.V.; Madhukar, N.S.; Gilvary, C.; Kline, C.L.B.; Oster, S.; El-Deiry, W.S.; Elemento, O.; Doherty, F.; VanEngelenburg, A.; Durrant, J.; et al. Dopamine Receptor D5 is a Modulator of Tumor Response to Dopamine Receptor D2 Antagonism. Clin. Cancer Res. 2019, 25, 2305–2313. [Google Scholar] [CrossRef] [PubMed]
  284. Meyer, J.M. How antipsychotics work in schizophrenia: A primer on mechanisms. CNS Spectr. 2024, 30, e6. [Google Scholar] [CrossRef]
  285. Broyd, A.; Balzan, R.P.; Woodward, T.S.; Allen, P. Dopamine, cognitive biases and assessment of certainty: A neurocognitive model of delusions. Clin. Psychol. Rev. 2017, 54, 96–106. [Google Scholar] [CrossRef]
  286. Yakubov, R.; Kaloti, R.; Persaud, P.; McCracken, A.; Zadeh, G.; Bunda, S. It’s all downstream from here: RTK/Raf/MEK/ERK pathway resistance mechanisms in glioblastoma. J. Neurooncol. 2025, 172, 327–345. [Google Scholar] [CrossRef]
  287. Hasan, S.; Mahmud, Z.; Hossain, M.; Islam, S. Harnessing the role of aberrant cell signaling pathways in glioblastoma multiforme: A prospect towards the targeted therapy. Mol. Biol. Rep. 2024, 51, 1069. [Google Scholar] [CrossRef]
  288. Kast, R.E. Adding perphenazine to increase effectiveness of standard glioblastoma chemoirradiation. J. Balk. Union Oncol. 2020, 25, 1676–1686. [Google Scholar]
  289. Kast, R.E.; Ellingson, B.M.; Marosi, C.; Halatsch, M.E. Glioblastoma treatment using perphenazine to block the subventricular zone’s tumor trophic functions. J. Neurooncol. 2014, 116, 207–212. [Google Scholar] [CrossRef]
  290. Wesner, K.; Hiemke, C.; Bergemann, N.; Egberts, K.M.; Fekete, S.; Gerlach, M.; Havemann-Reinecke, U.; Lense, X.M.; Riemer, T.G.; Schoretsanitis, G.; et al. Therapeutic Reference Range for Olanzapine in Schizophrenia: Systematic Review on Blood Concentrations, Clinical Effects, and Dopamine Receptor Occupancy. J. Clin. Psychiatry 2023, 84, 47964. [Google Scholar] [CrossRef]
  291. Akam, E.; Strange, P.G. Inverse agonist properties of atypical antipsychotic drugs. Biochem. Pharmacol. 2004, 67, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
  292. Bymaster, F.; Perry, K.W.; Nelson, D.L.; Wong, D.T.; Rasmussen, K.; Moore, N.A.; Calligaro, D.O. Olanzapine: A basic science update. Br. J. Psychiatry 1999, 174 (Suppl. S37), 36–40. [Google Scholar] [CrossRef]
  293. Kapur, S.; Zipursky, R.B.; Remington, G.; Jones, C.; DaSilva, J.; Wilson, A.A.; Houle, S. 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: A PET investigation. Am. J. Psychiatry. 1998, 155, 921–928. [Google Scholar] [CrossRef] [PubMed]
  294. Aravagiri, M.; Teper, Y.; Marder, S.R. Pharmacokinetics and tissue distribution of olanzapine in rats. Biopharm. Drug Dispos. 1999, 20, 369–377. [Google Scholar] [CrossRef]
  295. Nedahl, M.; Johansen, S.; Linnet, K. Reference Brain and Blood Concentrations of Olanzapine in Postmortem Cases. J. Anal. Toxicol. 2018, 42, 650–654. [Google Scholar] [CrossRef]
  296. Kast, R.E.; Foley, K.F. Cancer chemotherapy and cachexia: Mirtazapine and olanzapine are 5-HT3 antagonists with good antinausea effects. Eur. J. Cancer Care 2007, 16, 351–354. [Google Scholar] [CrossRef]
  297. Vig, S.; Seibert, L.; Green, M.R. Olanzapine is effective for refractory chemotherapy induced nausea and vomiting irrespective of chemotherapy emetogenicity. J. Cancer Res. Clin. Oncol. 2014, 140, 77–82. [Google Scholar] [CrossRef]
  298. Navari, R.M.; Qin, R.; Ruddy, K.J.; Liu, H.; Powell, S.F.; Bajaj, M.; Dietrich, L.; Biggs, D.; Lafky, J.M.; Loprinzi, C.L. Olanzapine for the Prevention of Chemotherapy-Induced Nausea and Vomiting. N. Engl. J. Med. 2016, 375, 134–142. [Google Scholar] [CrossRef]
  299. Trifilio, S.; Welles, C.; Seeger, K.; Mehta, S.; Fishman, M.; McGowan, K.; Strejcek, K.; Eiten, E.; Pirotte, C.; Lucier, E.; et al. Olanzapine Reduces Chemotherapy induced Nausea and Vomiting Compared with Aprepitant in Myeloma Patients Receiving High-dose Melphalan Before Stem Cell Transplantation: A Retrospective Study. Clin. Lymphoma Myeloma Leuk. 2017, 17, 584–589. [Google Scholar] [CrossRef]
  300. Murakami, M.; Miyata, Y.; Nakashima, K.; Abe, M.; Nishimura, J.; Wada, M.; Iino, K.; Akechi, T.; Iihara, H.; Imamura, C.K.; et al. Clinical benefits of adding olanzapine to 5-HT3 receptor antagonist, NK1 receptor antagonist, and dexamethasone for the prevention of nausea and vomiting in highly emetogenic chemotherapy: A systematic review and meta-analysis of the Clinical Practice Guidelines for Antiemesis 2023 from the Japan Society of Clinical Oncology. Int. J. Clin. Oncol. 2025, 30, 27–39. [Google Scholar] [CrossRef]
  301. Slimano, F.; Netzer, F.; Borget, I.; Lemare, F.; Besse, B. Olanzapine as antiemetic drug in oncology: A retrospective study in non-responders to standard antiemetic therapy. Int. J. Clin. Pharm. 2018, 40, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
  302. Siafis, S.; Wu, H.; Wang, D.; Burschinski, A.; Nomura, N.; Takeuchi, H.; Schneider-Thoma, J.; Davis, J.M.; Leucht, S. Antipsychotic dose, dopamine D2 receptor occupancy and extrapyramidal side-effects: A systematic review and dose-response meta-analysis. Mol. Psychiatry 2023, 28, 3267–3277. [Google Scholar] [CrossRef] [PubMed]
  303. Saudemont, G.; Prod’Homme, C.; Da Silva, A.; Villet, S.; Reich, M.; Penel, N.; Gamblin, V. The use of olanzapine as an antiemetic in palliative medicine: A systematic review of the literature. BMC Palliat. Care 2020, 19, 56. [Google Scholar] [CrossRef]
  304. Šoukalová, Z. Olanzapine in oncology palliative care. Klin. Onkol. 2022, 35, 276–283. [Google Scholar] [CrossRef] [PubMed]
  305. Poon, I.O.; Ajewole, V.; Braun, U.K. A Review of Olanzapine in the Treatment of Cancer Anorexia Cachexia Syndrome. Pharmacy 2024, 12, 34. [Google Scholar] [CrossRef]
  306. Sharpley, A.L.; Attenburrow, M.E.; Hafizi, S.; Cowen, P.J. Olanzapine increases slow wave sleep and sleep continuity in SSRI-resistant depressed patients. J. Clin. Psychiatry 2005, 66, 450–454. [Google Scholar] [CrossRef]
  307. Emamzadeh, N.; Abbasi, F.; Delfan, N.; Etemadi, M.H.; Iranmehr, A. Prevalence, risk factors, and impacts of sleep disturbances in patients with primary brain tumors: A systematic review. Neurosurg. Rev. 2025, 48, 375. [Google Scholar] [CrossRef]
  308. Robertson, M.E.; McSherry, F.; Herndon, J.E.; Peters, K.B. Insomnia and its associations in patients with recurrent glial neoplasms. Springerplus 2016, 5, 823. [Google Scholar] [CrossRef]
  309. Armstrong, T.S.; Shade, M.Y.; Breton, G.; Gilbert, M.R.; Mahajan, A.; Scheurer, M.E.; Vera, E.; Berger, A.M. Sleep-wake disturbance in patients with brain tumors. Neuro Oncol. 2017, 19, 323–335. [Google Scholar] [CrossRef]
  310. Tsamakis, K.; Mueller, C.; Hortis, I.; Kallergi, M.; Tolos, I.; Alevyzakis, E.; Siafakas, N.; Ouranidis, A.; Tsiptsios, D.; Kympouropoulos, S.; et al. Association of antipsychotic use with raised eosinophil count. Exp. Ther. Med. 2021, 21, 513. [Google Scholar] [CrossRef]
  311. Vaios, E.J.; Winter, S.F.; Muzikansky, A.; Nahed, B.V.; Dietrich, J. Eosinophil and lymphocyte counts predict bevacizumab response and survival in recurrent glioblastoma. Neurooncol. Adv. 2020, 2, vdaa031. [Google Scholar] [CrossRef] [PubMed]
  312. Spina, C.; Hsieh, K.; Wolthuis, B.; Elliston, C.; Baez, F.; Smith, D.; Wang, T. Treatment-induced increase in eosinophil count is associated with improved overall survival in glioblastoma patients. Int. J. Radiat. Oncol. 2018, 102, e315. [Google Scholar] [CrossRef]
  313. Vieira, B.M.; de São José, V.S.; Niemeyer Filho, P.S.; Moura-Neto, V. Eosinophils induces glioblastoma cell suppression and apoptosis—Roles of GM-CSF and cysteinyl leukotrienes. Int. Immunopharmacol. 2023, 123, 110729. [Google Scholar] [CrossRef]
  314. Huang, Z.; Wu, L.; Hou, Z.; Zhang, P.; Li, G.; Xie, J. Eosinophils and other peripheral blood biomarkers in glioma grading: A preliminary study. BMC Neurol. 2019, 19, 313. [Google Scholar] [CrossRef] [PubMed]
  315. Madhugiri, V.S.; Venkatesan, S.; Dutt, A.; Moiyadi, A.V.; Shetty, P.; Gupta, T.; Epari, S.; Jalali, R.; Sasidharan, G.M.; Kumar, V.R.; et al. An Analysis of Eosinophil- and Basophil-Based Indices in Patients with Glioblastoma and their Correlation with Survival. World Neurosurg. 2023, 170, e292–e300. [Google Scholar] [CrossRef]
  316. Vas, C.; Jain, A.; Trivedi, M.; Jha, M.K.; Mathew, S.J. Pharmacotherapy for Treatment Resistant Depression: Antidepressants and Atypical Antipsychotics. Psychiatr. Clin. N. Am. 2023, 46, 261–275. [Google Scholar] [CrossRef] [PubMed]
  317. Jha, M.K.; Mathew, S.J. Pharmacotherapies for Treatment-Resistant Depression: How Antipsychotics Fit in the Rapidly Evolving Therapeutic Landscape. Am. J. Psychiatry 2023, 180, 190–199. [Google Scholar] [CrossRef]
  318. van der Meer, P.B.; Dirven, L.; Hertler, C.; Boele, F.W.; Batalla, A.; Walbert, T.; Rooney, A.G.; Koekkoek, J.A.F. Depression and anxiety in glioma patients. Neurooncol. Pract. 2023, 10, 335–343. [Google Scholar] [CrossRef]
  319. Dong, J.; Chen, Q.; Weng, S.; Liu, L.; Wang, J.; Fang, S.; Fan, X.; Jiang, T. The effect of depression and anxiety on survival in patients with glioma: A systematic review and meta-analysis. J. Neurooncol. 2024, 170, 265–275. [Google Scholar] [CrossRef]
  320. Dufner, V.; Kessler, A.F.; Just, L.; Hau, P.; Bumes, E.; Pels, H.J.; Grauer, O.M.; Wiese, B.; Löhr, M.; Jordan, K.; et al. The Emesis Trial: Depressive Glioma Patients Are More Affected by Chemotherapy-Induced Nausea and Vomiting. Front. Neurol. 2022, 13, 773265. [Google Scholar] [CrossRef]
  321. Vecht, C.J.; Kerkhof, M.; Duran-Pena, A. Seizure prognosis in brain tumors: New insights and evidence-based management. Oncologist 2014, 19, 751–759. [Google Scholar] [CrossRef] [PubMed]
  322. de Bruin, M.E.; van der Meer, P.B.; Dirven, L.; Taphoorn, M.J.B.; Koekkoek, J.A.F. Efficacy of antiepileptic drugs in glioma patients with epilepsy: A systematic review. Neurooncol. Pract. 2021, 8, 501–517. [Google Scholar] [CrossRef]
  323. Esparza, R.; Azad, T.D.; Feroze, A.H.; Mitra, S.S.; Cheshier, S.H. Glioblastoma stem cells and stem cell-targeting immunotherapies. J. Neurooncol. 2015, 123, 449–457. [Google Scholar] [CrossRef] [PubMed]
  324. Christensen, K.; Schrøder, H.D.; Kristensen, B.W. CD133+ niches and single cells in glioblastoma have different phenotypes. J. Neurooncol. 2011, 104, 129–143. [Google Scholar] [CrossRef] [PubMed]
  325. Pace, A.; Lombardi, G.; Villani, V.; Benincasa, D.; Abbruzzese, C.; Cestonaro, I.; Corrà, M.; Padovan, M.; Cerretti, G.; Caccese, M.; et al. Efficacy and safety of chlorpromazine as an adjuvant therapy for glioblastoma in patients with unmethylated MGMT gene promoter: RACTAC, a phase II multicenter trial. Front. Oncol. 2023, 13, 1320710. [Google Scholar] [CrossRef]
  326. McCarthy, C.I.; Mustafá, E.R.; Cornejo, M.P.; Yaneff, A.; Rodríguez, S.S.; Perello, M.; Raingo, J. Chlorpromazine, an Inverse Agonist of D1R-Like, Differentially Targets Voltage-Gated Calcium Channel (CaV) Subtypes in mPFC Neurons. Mol. Neurobiol. 2023, 60, 2644–2660. [Google Scholar] [CrossRef]
Figure 1. Basic outline of a metabolic branchpoint leading to either the kynurenine pathway or the serotonin–melatonin pathway. Many intermediates, mediating enzymes, and offshoots have been omitted from this schematic. IDO, indoleamine dioxygenase; TDO, tryptophan dioxygenase; PARP, poly ADP-ribose polymer. PARPs catalyze the reaction of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to targets; QPRT, quinolinic acid phosphoribosyltransferase.
Figure 1. Basic outline of a metabolic branchpoint leading to either the kynurenine pathway or the serotonin–melatonin pathway. Many intermediates, mediating enzymes, and offshoots have been omitted from this schematic. IDO, indoleamine dioxygenase; TDO, tryptophan dioxygenase; PARP, poly ADP-ribose polymer. PARPs catalyze the reaction of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to targets; QPRT, quinolinic acid phosphoribosyltransferase.
Ijms 26 06158 g001
Figure 2. Basic outline of the action of cAMP and roflumilast. The phytochemical forskolin, or agonism at dopaminergic D1 or D5 receptors increase the activity of adenylate cyclase. D2 dopaminergic receptor agonism decreases adenylate cyclase activity. Apremilast, rolipram, and roflumilast inhibit the conversion of cAMP to AMP mediated by phosphodiesterase 4 (PDE4), represented by the black up-pointing arrow.
Figure 2. Basic outline of the action of cAMP and roflumilast. The phytochemical forskolin, or agonism at dopaminergic D1 or D5 receptors increase the activity of adenylate cyclase. D2 dopaminergic receptor agonism decreases adenylate cyclase activity. Apremilast, rolipram, and roflumilast inhibit the conversion of cAMP to AMP mediated by phosphodiesterase 4 (PDE4), represented by the black up-pointing arrow.
Ijms 26 06158 g002
Figure 3. Schematic diagram of the feedback loop operating in GB, as reported by Yan Wang et al. [203]. Several intermediate steps, offshoots, and cofactors are omitted from the diagram.
Figure 3. Schematic diagram of the feedback loop operating in GB, as reported by Yan Wang et al. [203]. Several intermediate steps, offshoots, and cofactors are omitted from the diagram.
Ijms 26 06158 g003
Table 3. Basic pharmacological parameters of AVRO drugs. All the values are approximate and the values vary widely from patient to patient. Listed doses are target doses. Most people will require dose reduction for one or more AVRO drugs.
Table 3. Basic pharmacological parameters of AVRO drugs. All the values are approximate and the values vary widely from patient to patient. Listed doses are target doses. Most people will require dose reduction for one or more AVRO drugs.
DrugDoseT1/2CYP InhibitionCYP Metabolism
aprepitant80 mg/d~12 h3A43A4
vortioxetine20 mg/d2–3 days2D63A4, 2C19, 2D6
olanzapine5 mg h/s.~1 to 2 d2D61A2
roflumilast250–500 μg/d~1 d----3A4, 1A2
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Kast, R.E.; Marques Vieira, B.; Barros da Silva, E., Jr. A New Adjuvant Treatment for Glioblastoma Using Aprepitant, Vortioxetine, Roflumilast and Olanzapine: The AVRO Regimen. Int. J. Mol. Sci. 2025, 26, 6158. https://doi.org/10.3390/ijms26136158

AMA Style

Kast RE, Marques Vieira B, Barros da Silva E Jr. A New Adjuvant Treatment for Glioblastoma Using Aprepitant, Vortioxetine, Roflumilast and Olanzapine: The AVRO Regimen. International Journal of Molecular Sciences. 2025; 26(13):6158. https://doi.org/10.3390/ijms26136158

Chicago/Turabian Style

Kast, Richard E., Bruno Marques Vieira, and Erasmo Barros da Silva, Jr. 2025. "A New Adjuvant Treatment for Glioblastoma Using Aprepitant, Vortioxetine, Roflumilast and Olanzapine: The AVRO Regimen" International Journal of Molecular Sciences 26, no. 13: 6158. https://doi.org/10.3390/ijms26136158

APA Style

Kast, R. E., Marques Vieira, B., & Barros da Silva, E., Jr. (2025). A New Adjuvant Treatment for Glioblastoma Using Aprepitant, Vortioxetine, Roflumilast and Olanzapine: The AVRO Regimen. International Journal of Molecular Sciences, 26(13), 6158. https://doi.org/10.3390/ijms26136158

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop