Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,371)

Search Parameters:
Keywords = repairs and maintenance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2015 KiB  
Article
From Development to Regeneration: Insights into Flight Muscle Adaptations from Bat Muscle Cell Lines
by Fengyan Deng, Valentina Peña, Pedro Morales-Sosa, Andrea Bernal-Rivera, Bowen Yang, Shengping Huang, Sonia Ghosh, Maria Katt, Luciana Andrea Castellano, Lucinda Maddera, Zulin Yu, Nicolas Rohner, Chongbei Zhao and Jasmin Camacho
Cells 2025, 14(15), 1190; https://doi.org/10.3390/cells14151190 (registering DOI) - 1 Aug 2025
Abstract
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular [...] Read more.
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular and molecular mechanisms underlying bat muscle physiology remain largely unknown. To enable mechanistic investigation of these traits, we established the first myoblast cell lines from the pectoralis muscle of Pteronotus mesoamericanus, a highly maneuverable aerial insectivore. Using both spontaneous immortalization and exogenous hTERT/CDK4 gene overexpression, we generated two stable cell lines that retain proliferative capacity and differentiate into contractile myotubes. These cells exhibit frequent spontaneous contractions, suggesting robust functional integrity at the neuromuscular junction. In parallel, we performed transcriptomic and metabolic profiling of native pectoralis tissue in the closely related Pteronotus parnellii to define molecular programs supporting muscle specialization. Gene expression analyses revealed enriched pathways for muscle metabolism, development, and regeneration, highlighting supporting roles in tissue maintenance and repair. Consistent with this profile, the flight muscle is triglyceride-rich, which serves as an important fuel source for energetically demanding processes, including muscle contraction and cellular recovery. Integration of transcriptomic and metabolic data identified three key metabolic modules—glucose utilization, lipid handling, and nutrient signaling—that likely coordinate ATP production and support metabolic flexibility. Together, these complementary tools and datasets provide the first in vitro platform for investigating bat muscle research, enabling direct exploration of muscle regeneration, metabolic resilience, and evolutionary physiology. Full article
23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 (registering DOI) - 1 Aug 2025
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 4809 KiB  
Article
Design of a Bidirectional Veneer Defect Repair Method Based on Parametric Modeling and Multi-Objective Optimization
by Xingchen Ding, Jiuqing Liu, Xin Sun, Hao Chang, Jie Yan, Chengwen Sun and Chunmei Yang
Technologies 2025, 13(8), 324; https://doi.org/10.3390/technologies13080324 (registering DOI) - 31 Jul 2025
Viewed by 82
Abstract
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. [...] Read more.
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. Based on the working principle, a geometric relationship model was established, which combines the structural parameters of the mold, punch, and gear system. Simultaneously, it solves the problem of motion attitude analysis of conjugate tooth profiles under non-standard meshing conditions, aiming to establish a constraint relationship between stamping motion and structural design parameters. On this basis, a constrained optimization model was developed by integrating multi-objective optimization theory to maximize maintenance efficiency. The NSGA-III algorithm is used to solve the model and obtain the Pareto front solution set. Subsequently, three optimal parameter configurations were selected for simulation analysis and experimental platform construction. The simulation and experimental results indicate that the veneer repair time ranges from 0.6 to 1.8 seconds, depending on the stamping speed. A reduction of 28 mm in die height decreases the repair time by approximately 0.1 seconds, resulting in an efficiency improvement of about 14%. The experimental results confirm the effectiveness of the proposed method in repairing veneer defects. Vibration measurements further verify the system’s stable operation under parametric modeling and optimization design. The main vibration response occurs during the meshing and disengagement phases between the gear and rack. Full article
Show Figures

Figure 1

18 pages, 4624 KiB  
Article
Andrographis paniculata Extract Supports Skin Homeostasis by Enhancing Epidermal Stem Cell Function and Reinforcing Their Extracellular Niche
by Roberta Lotti, Laetitia Cattuzzato, Xuefeng Huang, David Garandeau, Elisabetta Palazzo, Marika Quadri, Cécile Delluc, Eddy Magdeleine, Xiaojing Li, Mathilde Frechet and Alessandra Marconi
Cells 2025, 14(15), 1176; https://doi.org/10.3390/cells14151176 - 30 Jul 2025
Viewed by 226
Abstract
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human [...] Read more.
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human skin. Using human skin explants and cell culture models, we demonstrated that APE treatment enhances DEJ composition by increasing Collagen IV and Laminin production while decreasing MMP-9 expression, without altering epidermal structure or differentiation. In the same model, APE preserved stemness potential by upregulating markers related to niche components (collagen XVII and β1-integrin), proliferation (Ki-67 and KRT15), and stem cell capacity (Survivin and LRIG1). In vitro studies revealed that APE selectively stimulated KSC proliferation without affecting transit amplifying cells and promoted Collagen IV and Laminin secretion, particularly in KSCs. Furthermore, in a co-culture model simulating a compromised DEJ (UVB-induced), APE increased Laminin production in KSCs, suggesting a protective effect against photo-damage. These findings indicate that APE enhances DEJ composition and preserves stem cell potential, highlighting its promise as a candidate for skin anti-aging strategies targeting stem cell maintenance and extracellular matrix stability to promote skin regeneration and repair. Full article
Show Figures

Graphical abstract

40 pages, 910 KiB  
Review
Impact of Indoor Air Quality, Including Thermal Conditions, in Educational Buildings on Health, Wellbeing, and Performance: A Scoping Review
by Duncan Grassie, Kaja Milczewska, Stijn Renneboog, Francesco Scuderi and Sani Dimitroulopoulou
Environments 2025, 12(8), 261; https://doi.org/10.3390/environments12080261 - 30 Jul 2025
Viewed by 271
Abstract
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences [...] Read more.
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences of poor—and benefits of good—IAQ and thermal conditions are evaluated, focusing on source control, ventilation and air purification interventions. Economic impacts of interventions in educational buildings have been evaluated to enable the assessment of tangible building-related costs and savings, alongside less easily quantifiable improvements in educational attainment and reduced healthcare. Key recommendations are provided to assist decision makers in pathways to provide clean air, at an optimal temperature for students’ learning and health outcomes. Although the role of educational buildings can be challenging to isolate from other socio-economic confounders, secondary short- and long-term impacts on attainment and absenteeism have been demonstrated from the health effects associated with various pollutants. Sometimes overlooked, source control and repairing existing damage can be important cost-effective methods in minimising generation and preventing ingress of pollutants. Existing ventilation standards are often not met, even when mechanical and hybrid ventilation systems are already in place, but can often be achieved with a fraction of a typical school budget through operational and maintenance improvements, and small-scale air-cleaning and ventilation technologies, where necessary. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

4 pages, 269 KiB  
Editorial
Beyond a Simple Switch: Decoding the Multifactorial Phenotypic Plasticity of Vascular Smooth Muscle Cells
by Francisca Muñoz, Claire M. Holden and Alejandra San Martin
Cells 2025, 14(15), 1171; https://doi.org/10.3390/cells14151171 - 30 Jul 2025
Viewed by 141
Abstract
Vascular smooth muscle cells (VSMCs) are central to the maintenance of vascular homeostasis and the progression of cardiovascular diseases (CVDs), owing to their remarkable phenotypic plasticity. This editorial introduces a Special Issue of Cells that compiles recent advances in our understanding of the [...] Read more.
Vascular smooth muscle cells (VSMCs) are central to the maintenance of vascular homeostasis and the progression of cardiovascular diseases (CVDs), owing to their remarkable phenotypic plasticity. This editorial introduces a Special Issue of Cells that compiles recent advances in our understanding of the molecular, epigenetic, metabolic, and mechanical mechanisms that govern VSMC behavior. Highlighted contributions explore the roles of RNA modifications, chromatin remodeling, lipid metabolism, and mechanotransduction in VSMC phenotypic switching, revealing new therapeutic targets and diagnostic opportunities. Together, these studies emphasize the multifactorial regulation of VSMC plasticity and its dual role in vascular repair and disease pathogenesis. Full article
(This article belongs to the Special Issue Role of Vascular Smooth Muscle Cells in Cardiovascular Disease)
Show Figures

Figure 1

14 pages, 1957 KiB  
Article
Reliability and Availability Analysis of a Two-Unit Cold Standby System with Imperfect Switching
by Nariman M. Ragheb, Emad Solouma, Abdullah A. Alahmari and Sayed Saber
Axioms 2025, 14(8), 589; https://doi.org/10.3390/axioms14080589 - 29 Jul 2025
Viewed by 172
Abstract
This paper presents a stochastic analysis of a two-unit cold standby system incorporating imperfect switching mechanisms. Each unit operates in one of three states: normal, partial failure, or total failure. Employing Markov processes, the study evaluates system reliability by examining the mean time [...] Read more.
This paper presents a stochastic analysis of a two-unit cold standby system incorporating imperfect switching mechanisms. Each unit operates in one of three states: normal, partial failure, or total failure. Employing Markov processes, the study evaluates system reliability by examining the mean time to failure (MTTF) and steady-state availability metrics. Failure and repair times are assumed to follow exponential distributions, while the switching mechanism is modeled as either perfect or imperfect. The results highlight the significant influence of switching reliability on both MTTF and system availability. This analysis is crucial for optimizing the performance of complex systems, such as thermal power plants, where continuous and reliable operation is imperative. The study also aligns with recent research trends emphasizing the integration of preventive maintenance and advanced reliability modeling approaches to enhance overall system resilience. Full article
Show Figures

Figure 1

26 pages, 4789 KiB  
Article
Analytical Modelling of Arc Flash Consequences in High-Power Systems with Energy Storage for Electric Vehicle Charging
by Juan R. Cabello, David Bullejos and Alvaro Rodríguez-Prieto
World Electr. Veh. J. 2025, 16(8), 425; https://doi.org/10.3390/wevj16080425 - 29 Jul 2025
Viewed by 199
Abstract
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with [...] Read more.
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with exponential growth expected over the next few years. In this article, the various charging modes for EVs are explored, and the risks associated with charging technologies are analysed, particularly for charging systems in high-power DC with Lithium battery energy storage, given their long market deployment and characteristic behaviour. In particular, the Arc Flash (AF) risk present in high-power DC chargers will be studied, involving numerous simulations of the charging process. Subsequently, the Incident Energy (IE) analysis is carried out at different specific points of a commercial high-power ‘Mode 4’ charger. For this purpose, different analysis methods of recognised prestige, such as Doan, Paukert, or Stokes and Oppenlander, are applied, using the latest version of the ETAP® simulation tool version 22.5.0. This study focuses on quantifying the potential severity (consequences) of an AF event, assuming its occurrence, rather than performing a probabilistic risk assessment according to standard methodologies. The primary objective of this research is to comprehensively quantify the potential consequences for workers involved in the operation, maintenance, repair, and execution of tasks related to EV charging systems. This analysis makes it possible to provide safe working conditions and to choose the appropriate and necessary personal protective equipment (PPE) for each type of operation. It is essential to develop this novel process to quantify the consequences of AF and to protect the end users of EV charging systems. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

18 pages, 1337 KiB  
Article
Dysregulated Alternative Splicing in Breast Cancer Subtypes of RIF1 and Other Transcripts
by Emma Parker, Laura Akintche, Alexandra Pyatnitskaya, Shin-ichiro Hiraga and Anne D. Donaldson
Int. J. Mol. Sci. 2025, 26(15), 7308; https://doi.org/10.3390/ijms26157308 - 29 Jul 2025
Viewed by 226
Abstract
Genome instability is a hallmark of cancer, often driven by mutations and altered expression of genome maintenance factors involved in DNA replication and repair. Rap1 Interacting Factor 1 (RIF1) plays a crucial role in genome stability and is implicated in cancer pathogenesis. Cells [...] Read more.
Genome instability is a hallmark of cancer, often driven by mutations and altered expression of genome maintenance factors involved in DNA replication and repair. Rap1 Interacting Factor 1 (RIF1) plays a crucial role in genome stability and is implicated in cancer pathogenesis. Cells express two RIF1 splice variants, RIF1-Long and RIF1-Short, which differ in their ability to protect cells from DNA replication stress. Here, we investigate differential expression and splicing of RIF1 in cancer cell lines following replication stress and in patients using matched normal and tumour data from The Cancer Genome Atlas (TCGA). Overall RIF1 expression is altered in several cancer types, with increased transcript levels in colon and lung cancers. RIF1 also exhibits distinct splicing patterns, particularly in specific breast cancer subtypes. In Luminal A (LumA), Luminal B (LumB), and HER2-enriched breast cancers (HER2E), RIF1 Exon 31 tends to be excluded, favouring RIF1-Short expression and correlating with poorer clinical outcomes. These breast cancer subtypes also tend to exclude other short exons, suggesting length-dependent splicing dysregulation. Basal breast cancer also shows exon exclusion, but unlike other subtypes, it shows no short-exon bias. Surprisingly, however, in basal breast cancer, RIF1 Exon 31 is not consistently excluded, which may impact prognosis since RIF1-Long protects against replication stress. Full article
(This article belongs to the Special Issue New Advances in Cancer Genomics)
Show Figures

Figure 1

22 pages, 4935 KiB  
Article
Material Optimization and Curing Characterization of Cold-Mix Epoxy Asphalt: Towards Asphalt Overlays for Airport Runways
by Chong Zhan, Ruochong Yang, Bingshen Chen, Yulou Fan, Yixuan Liu, Tao Hu and Jun Yang
Polymers 2025, 17(15), 2038; https://doi.org/10.3390/polym17152038 - 26 Jul 2025
Viewed by 283
Abstract
Currently, numerous conventional airport runways suffer from cracking distresses and cannot meet their structural and functional requirements. To address the urgent demand for rapid and durable maintenance of airport runways, this study investigates the material optimization and curing behavior of cold-mix epoxy asphalt [...] Read more.
Currently, numerous conventional airport runways suffer from cracking distresses and cannot meet their structural and functional requirements. To address the urgent demand for rapid and durable maintenance of airport runways, this study investigates the material optimization and curing behavior of cold-mix epoxy asphalt (CEA) for non-disruptive overlays. Eight commercial CEAs were examined through tensile and overlay tests to evaluate their strength, toughness, and reflective cracking resistance. Two high-performing formulations (CEA 1 and CEA 8) were selected for further curing characterization using differential scanning calorimetry (DSC) tests, and the non-isothermal curing kinetics were analyzed with different contents of Component C. The results reveal that CEA 1 and CEA 8 were selected as promising formulations with superior toughness and reflective cracking resistance across a wide temperature range. DSC-based curing kinetic analysis shows that the curing reactions follow an autocatalytic mechanism, and activation energy decreases with conversion, confirming a self-accelerating process of CEA. The addition of Component C effectively modified the curing behavior, and CEA 8 with 30% Component C reduced curing time by 60%, enabling traffic reopening within half a day. The curing times were accurately predicted for each type of CEA using curing kinetic models based on autocatalytic and iso-conversional approaches. These findings will provide theoretical and practical guidance for high-performance airport runway overlays, supporting rapid repair, extended service life, and environmental sustainability. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 1951 KiB  
Article
System for the Acquisition and Analysis of Maintenance Data of Railway Traffic Control Devices
by Mieczysław Kornaszewski, Waldemar Nowakowski and Roman Pniewski
Appl. Sci. 2025, 15(15), 8305; https://doi.org/10.3390/app15158305 - 25 Jul 2025
Viewed by 159
Abstract
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, [...] Read more.
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, parameter measurements, and analysis of the working environment, followed by comparing the obtained information with the required parameters or permissible conditions. This activity also enables the formulation of a technical diagnosis regarding the current ability of the devices to perform its intended functions, taking into account the impact of its technical condition on railway traffic safety. This is especially important in the case of railway traffic control devices, as these devices are largely responsible for ensuring railway traffic safety. The collection of data on the condition of railway traffic control devices in the form of Big Data sets and diagnostic inference is an effective factor in making operational decisions for such devices. It enables the acquisition of complete information about the actual course of the exploitation process and allows for obtaining reliable information necessary to manage this process, particularly in the areas of diagnostics forecasting of devices conditions, renewal, and organization of maintenance and repair facilities. To support this, a service data acquisition and analysis system for railway traffic control devices (SADEK) was developed. This system can serve as a software platform for maintenance needs in the railway sector. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

17 pages, 3835 KiB  
Article
Effective Parameters on the Wear Behavior of High-Pressure Grinding Rolls and the Development of the Process for Iron Ore
by Ali Tahaei, Ehsan Fadaei, Farzin Ghadami and Argelia Fabiola Miranda Perez
Mining 2025, 5(3), 47; https://doi.org/10.3390/mining5030047 - 25 Jul 2025
Viewed by 187
Abstract
The use of high-pressure grinding rolls (HPGRs) is increasing in the ore industries as advanced technology is available for this type of comminuting. There are important parameters in these devices, which have many effects on productivity. One of the main reasons for damage [...] Read more.
The use of high-pressure grinding rolls (HPGRs) is increasing in the ore industries as advanced technology is available for this type of comminuting. There are important parameters in these devices, which have many effects on productivity. One of the main reasons for damage on the rolls and, therefore, decreases in the machine’s productivity and efficiency is surface wear. This phenomenon must be carefully understood so that it can be controlled as much as possible through the readjustment and optimization of the effective parameters. In this research, the wear mechanism of HPGRs in a production line for iron ore concentrate was investigated. The results showed that there was greater wear at the center of the rolls and that changes to the chemical and physical properties of the incoming iron compared to the design condition reduced the rolls’ lives. The results showed a failure to perform appropriate mechanical adjustment and improper repair and maintenance. Full article
Show Figures

Figure 1

24 pages, 2301 KiB  
Review
Nicotinamide and Pyridoxine in Muscle Aging: Nutritional Regulation of Redox, Inflammation, and Regeneration
by Agnieszka Nowacka, Maciej Śniegocki, Martyna Śniegocka and Ewa A. Ziółkowska
Antioxidants 2025, 14(8), 911; https://doi.org/10.3390/antiox14080911 - 25 Jul 2025
Viewed by 625
Abstract
Sarcopenia, the progressive loss of muscle mass, strength, and regenerative capacity with age, is driven by interconnected processes such as oxidative stress, chronic inflammation, mitochondrial dysfunction, and reduced activity of muscle stem cells. As the population ages, nutritional strategies that target these mechanisms [...] Read more.
Sarcopenia, the progressive loss of muscle mass, strength, and regenerative capacity with age, is driven by interconnected processes such as oxidative stress, chronic inflammation, mitochondrial dysfunction, and reduced activity of muscle stem cells. As the population ages, nutritional strategies that target these mechanisms are becoming increasingly important. This review focuses on nicotinamide (vitamin B3) and pyridoxine (vitamin B6), two essential micronutrients found in functional foods, which play complementary roles in redox regulation, immune balance, and muscle repair. Nicotinamide supports nicotinamide adenine dinucleotide (NAD+) metabolism, boosts mitochondrial function, and activates sirtuin pathways involved in autophagy and stem cell maintenance. Pyridoxine, via its active form pyridoxal 5′-phosphate (PLP), is key to amino acid metabolism, antioxidant defense, and the regulation of inflammatory cytokines. We summarize how these vitamins influence major molecular pathways such as Sirtuin1 (SIRT1), protein kinase B (AKT)/mechanistic target of rapamycin (mTOR), Nuclear factor-κB (NF-κB), and Nrf2, contributing to improved myogenic differentiation and protection of the aging muscle environment. We also highlight emerging preclinical and clinical data, including studies suggesting possible synergy between B3 and B6. Finally, we discuss how biomarkers such as PLP, nicotinamide mononucleotide (NMN), and C-reactive protein (CRP) may support the development of personalized nutrition strategies using these vitamins. Safe, accessible, and mechanistically grounded, nicotinamide and pyridoxine offer promising tools for sarcopenia prevention and healthy aging. Full article
(This article belongs to the Topic Functional Food and Anti-Inflammatory Function)
Show Figures

Figure 1

32 pages, 2854 KiB  
Review
Yin Yang 1 (YY1) as a Central Node in Drug Resistance Pathways: Potential for Combination Strategies in Cancer Therapy
by Zhiyan Li, Xiang Jia, Ian Timothy Sembiring Meliala, Yanjun Li and Vivi Kasim
Biomolecules 2025, 15(8), 1069; https://doi.org/10.3390/biom15081069 - 24 Jul 2025
Viewed by 431
Abstract
Tumor drug resistance, a major cause of treatment failure, involves complex multi-gene networks, remodeling of signaling pathways, and interactions with the tumor microenvironment. Yin Yang 1 (YY1) is a critical oncogene overexpressed in many tumors and mediates multiple tumor-related processes, such as cell [...] Read more.
Tumor drug resistance, a major cause of treatment failure, involves complex multi-gene networks, remodeling of signaling pathways, and interactions with the tumor microenvironment. Yin Yang 1 (YY1) is a critical oncogene overexpressed in many tumors and mediates multiple tumor-related processes, such as cell proliferation, metabolic reprogramming, immune evasion, and drug resistance. Notably, YY1 drives resistance through multiple mechanisms, such as upregulation of drug efflux, maintenance of cancer stemness, enhancement of DNA repair capacity, modulation of the tumor microenvironment, and epithelial–mesenchymal transition, thereby positioning it as a pivotal regulator of drug resistance. This review examines the pivotal role of YY1 in resistance, elucidating its molecular mechanisms and clinical relevance. We demonstrate that YY1 inhibition could effectively reverse drug resistance and restore therapeutic sensitivity across various treatment modalities. Importantly, we highlight the promising potential of YY1-targeted strategies, particularly combined with anti-tumor agents, to overcome resistance barriers. Furthermore, we discuss critical translational considerations for advancing these combinatorial approaches into clinical practice. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

27 pages, 6279 KiB  
Article
Investigation of the Performance and Fuel Oil Corrosion Resistance of Semi-Flexible Pavement with the Incorporation of Recycled Glass Waste
by Ayman Hassan AL-Qudah, Suhana Koting, Mohd Rasdan Ibrahim and Muna M. Alibrahim
Materials 2025, 18(15), 3442; https://doi.org/10.3390/ma18153442 - 22 Jul 2025
Viewed by 282
Abstract
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant [...] Read more.
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant maintenance costs. Incorporating glass waste (GW) into the construction of SFPs offers an eco-friendly solution, helping to reduce repair costs and environmental impact by conserving natural resources and minimizing landfill waste. The main objective of this research is to investigate the mechanical performance and fuel oil resistance of SFP composites containing different levels of glass aggregate (GlaSFlex composites). Fine glass aggregate (FGA) was replaced with fine virgin aggregate at levels of 0%, 20%, 40%, 60%, 80%, and 100% by mass. The results indicated the feasibility of utilizing FGA as a total replacement (100%) for fine aggregate in the OGA structural layer of SFPs. At 100% FGA, the composite exhibited excellent mechanical performance and durability, including a compressive strength of 8.93 MPa, a Marshall stability exceeding 38 kN, and a stiffness modulus of 19,091 MPa. Furthermore, the composite demonstrated minimal permanent deformation (0.04 mm), a high residual stability of 94.7%, a residual compressive strength of 83.3%, and strong resistance to fuel spillage with a mass loss rate of less than 1%, indicating excellent durability. Full article
(This article belongs to the Special Issue Advanced Materials for Pavement and Road Infrastructure)
Show Figures

Graphical abstract

Back to TopTop