Yin Yang 1 (YY1) as a Central Node in Drug Resistance Pathways: Potential for Combination Strategies in Cancer Therapy
Abstract
1. Introduction
2. The Function of YY1 in Tumor Drug Resistance Mechanisms
2.1. YY1 Enhances Drug Resistance Through Upregulation of Drug Efflux
2.2. YY1 as a Critical Regulator of Cell Death Pathways in Cancer Drug Resistance
2.3. YY1 Drives Drug Resistance by Regulating Cancer Stemness
Molecular Pathway | Target Gene or Pathway | Regulation | Resistance Type | Refs |
---|---|---|---|---|
YY1/CD133 | STAT3 and integrin-α6 | Increases the CSC markers | Resistance to cisplatin and temozolomide | [78] |
YY1/DLEU1 | SOX2, OCT4, NANOG, KLF4 | Actives DLEU1 | Resistance to cisplatin and gemcitabine | [71] |
MiR-146a-5p/YY1/SVEP1 | SVEP1 | MiR-146a-5p enhances the recruitment of YY1 and upregulates SVEP1 | Resistance to the combination therapy of gemcitabine and cisplatin | [72] |
MiR-7-5p/YY1 | YY1’ 3′UTR | Downregulates YY1 by binding to 3′UTR of YY1 | Resistance to temozolomide | [79] |
CD24/YY1 | YY1 | CD24 upregulates YY1 and promotes mesenchymal– epithelial transition | Resistance to platinum drugs | [73] |
YY1-miR-130a/301a-CDK19 | YY1-miR-130a/301a-CDK19 | CD24 promotes abnormal activation of the YY1-miR-130a/301a-CDK19 regulatory axis | Resistance to platinum drugs | [75] |
YY1 with SOX2, OCT4, BMI1 | NF-κB/PI3K/AKT | Strengthens the maintenance of CSCs | Resistant to cisplatin | [76] |
YY1–CDK9 complexes | NF-κB | The complex downregulates the immune response of tumor cells | Resistant to immunotherapy | [77] |
2.4. YY1-Mediated DNA Repair Pathways in Drug Resistance
2.5. YY1 Orchestrates TME Remodeling to Drive Drug Resistance
2.5.1. YY1-Driven Metabolic Remodeling of the TME Promotes Drug Resistance
2.5.2. YY1-Mediated Immunomodulation in TME Remodeling Contributes to Drug Resistance
2.6. Role of YY1 in EMT-Mediated Tumor Drug Resistance
3. Targeting YY1 to Overcome Therapeutic Resistance in Cancer Treatment
3.1. Clinical Implications of Targeting YY1 in Overcoming Drug Resistance
3.2. Combination Therapy Strategies Targeting YY1
3.2.1. Combination with Chemotherapy Drugs
3.2.2. Targeted Therapy Combination
3.2.3. Immunotherapy Combination
YY1 Inhibitor | Combination Drug/Therapy | Mechanism | Outcome | Cancer | Current Status | Refs |
---|---|---|---|---|---|---|
Galiximab | Fludarabine | Inhibit survival/anti-apoptotic NF-κB pathway SNAIL/YY1 | Inhibit tumor growth | DHBL | Preclinical research | [174] |
Galiximab | Cisplatin | Inhibit NF-κB /SNAIL/YY1/BCL-XL circuit | Induce apoptosis | NHL | Preclinical research | [164] |
MiR-302b | Cisplatin | Downregulate E2Fs and YY1 and then inhibit ITGA6 | Affect DNA Repair and stemness and increase sensitivity to cisplatin | TNBC | Preclinical research | [175] |
Lercanidipine, Amlodipine | Doxorubicin | Inhibit the YY1/ ERK/ TGF-β pathway | Inhibit the potential of cellular proliferation and spheroid formation | GC | Preclinical research | [163] |
siYY1 | 5-FU | Inhibit YY1 and decrease NLRC5 expression | Increase tumor cell sensitivity to 5-FU-induced apoptosis | GC | Preclinical research | [165] |
CRISPR/Cas9 | Temozolomide | Knock out YY1 and decrease the expression of TP73-AS1 | Decrease tumor aggressiveness and drug resistance | GBM | Preclinical research | [166] |
l-NAME, DETA NONOate | Photodynamic therapy | Inhibit the NF-κB/ SNAIL/YY1/RKIP loop | Inhibit cell growth and EMT | PCa | Preclinical research | [176,177] |
CA3 | Osimertinib | Inhibit YAP1 and YY1 expression, activate the EGFR/MAPK axis | Induce autophagy | NSCLC | Preclinical research | [178] |
siYY1 | Oxaliplatin | Inhibit the YY1/GLUT3 axis | Inhibit glucose metabolism and cell proliferation, sensitize tumor cells to treatment | CRC | Preclinical research | [179] |
MiR-103a | Radiotherapy | Inhibit NF-κB and YY1 expression | Decrease DNA damage repair and radioresistance | UBC | Preclinical research | [180] |
DETA NONOate | Cisplatin | Inhibit YY1, BCL-XL | Sensitize the resistant tumor cells to apoptosis | PCa | Preclinical research | [159] |
DETA NONOate | TRAIL | Inhibit YY1 and increase DR5 expression | Enhance sensitivity to TRAIL apoptosis | PCa | Preclinical research | [52] |
DETA NONOate | Rituximab | Inhibit YY1 and upregulate FAS expression | Increase apoptosis | B-NHL | Preclinical research | [167] |
MiR-7-5p | Temozolomide | Target the 3′-UTR of YY1 and decrease YY1 expression | Suppress cancer stemness and increase sensitivity to drugs | GBM | Preclinical research | [79] |
Obatoclax | TRAIL | Inhibit YY1, upregulate DR5, and decrease MCL-1 expression | Reverse resistance to TRAIL-induced apoptosis | B-NHL | Preclinical research | [53] |
Rituximab | TRAIL | Suppress YY1 expression and impair its DNA-binding activity | Sensitive to TRAIL-induced apoptosis | B-NHL | Preclinical research | [168] |
Rituximab | Artesunate | Downregulate YY1 and activate the FAS/CD95 pathway | Increase apoptosis and sensitize to therapy | NHL | Preclinical research | [169] |
Ursolic acid | Sorafenib | Reduce YY1 and disrupt the ING5-mediated PI3K/AKT signaling pathway | Inhibit tumorigenesis and reverse sorafenib resistance | HCC | Preclinical research | [117] |
T7-siYY1-Exo | Temozolomide, irradiation | Decrease YY1 expression | Enhance chemoradiotherapy sensitivity and improve survival | GBM | Preclinical research | [42] |
siYY1 | Chemo radiotherapy | Downregulate YY1 and PLK1 | Increase cell death | ESCC | Preclinical research | [115] |
MiR-411-3p | Methotrexate | Inhibit YY1 expression | Motivate MTX’s cellular uptake and cytotoxic | ALL | Preclinical research | [181] |
MiR-7 | Cisplatin | Downregulate YY1 and KLF4 | Inhibit proliferation and cell viability, decrease resistance | NHL | Preclinical research | [182] |
MiR-7 | CH11 | Inhibit YY1 expression and increase FAS activity | Increase apoptosis | CRC | Preclinical research | [55] |
MiR-186 | Cisplatin | Degrade YY1 protein | Inhibit the formation of the tumor-initiating cell phenotype, reverse cisplatin resistance | GBM | Preclinical research | [78] |
AMD3100 | Cytarabine | Increase let-7a and inhibit YY1 | Extend survival | AML | Phase I/II clinical trial stage | [46] |
GKT137831 | Gefitinib | Inhibit NOX4 expression and downregulate YY1 | Increase cellular apoptosis | NSCLC | Preclinical research | [173] |
Photodynamic | DR2 | Inhibit the NF-κB/SNAIl/YY1/RKIP loop | Induce cell death | PCa | Preclinical research | [183] |
Isorhamnetin | Anti-PD-L1 antibody | Target USP7 and promote YY1 ubiquitin-dependent degradation | Improve the tumor immune microenvironment and inhibit progression | HCC | Preclinical research | [69] |
Vitamin D | Anti-PD-1 drug | Promote VDR interaction with YY1 and activate the transcription of VDBP | Improve anti-tumor efficacy | HCC | Preclinical research | [184] |
Kenpaullone | Doxorubicin | Inhibit YY1, downregulate BCL-2 | Increase apoptosis | NHL | Preclinical research | [185] |
4. Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
YY1 | Yin Yang 1 |
MDR | mediating cancer multidrug resistance |
CAFs | cancer-associated fibroblasts |
SVEP1 | pentraxin domain containing 1 |
TKIs | tyrosine kinase inhibitors |
HDAC2 | histone deacetylase 2 |
FEN1 | flap endonuclease 1 |
LEN | lenalidomide |
TME | tumor microenvironment |
VEGF | vascular endothelial growth factor |
PLK1 | polo like kinase 1 |
HK2 | hexokinase 2 |
ING5 | inhibitor of growth 5 |
ACLY | ATP-citrate lyase |
LDs | lipid droplets |
FAM60A | family with sequence similarity 60 member A |
GPX4 | glutathione peroxidase 4 |
IL-32 | interleukin 32 |
MRP2 | multidrug resistance-associated protein 2 |
TRIM34 | tripartite motif-containing protein 34 |
NO | nitric oxide |
CRHR2 | corticotropin-releasing-hormone-receptor-2 |
NTRK1 | neurotrophic tropomyosin receptor kinase 1 |
IFFO1 | intermediate filament family orphan 1 |
CHRAC1 | chromatin accessibility complex subunit 1 |
DIOB | diosbulbin B |
PARPi | polymerase inhibitors |
ITGA6 | integrin subunit alpha 6 |
IR | irradiation |
PP2A | protein phosphatase 2A |
SMAD | small mother against decapentaplegic |
CTLA-4 | cytotoxic T-lymphocyte antigen 4 |
USP7 | ubiquitin-specific protease 7 |
VDR | vitamin D receptor |
NHL | non-Hodgkin’s lymphoma |
GBM | glioblastoma |
BC | breast cancer |
DHBL | disseminated human B-lymphoma |
BH | bendamustine hydrochloride |
ABCB | ATP-binding cassette subfamily B |
TRKA | tropomyosin receptor kinase A |
NOX4 | NADPH oxidase 4 |
HR | homologous recombination |
BER | base excision repair |
G4s | guanine quadruplexes |
SHLD1 | shieldin component |
AKR1C3 | aldo-keto reductase family 1 member C3 |
BET | bromodomain and extraterminal |
HIFs | hypoxia-inducible factor |
GTPase | guanosine triphosphatase |
PPP | pentose phosphate pathway |
PDK1 | pyruvate dehydrogenase kinase 1 |
ACC1 | acetyl-CoA carboxylase 1 |
SRF | serum response factor |
GALC | galactocerebrosidase |
ACSL | acyl-CoA synthetase long chain family |
IFN-γ | interferon-gamma |
FXR | farnesoid X receptor |
FOXP3 | forkhead box protein P3 |
SIRT1 | silent information regulator 1 |
FASL | fas ligand |
UCN2 | urocortin-2 |
KDM5C | lysine demethylase 5C |
HDAC5 | histone deacetylase 5 |
EGFR | epidermal growth factor receptor |
CSCs | cancer stem cells |
mCAFs | matrix-type cancer-associated fibroblasts |
RKIP | raf kinase inhibitor protein |
ISO | isorhamnetin |
VDBP | vitamin D binding protein |
MTX | methotrexate |
PTEN | phosphatase and tensin homolog |
BRCA1 | breast-cancer susceptibility gene 1 |
VHL | von Hippel–Lindau |
EZH2 | enhancer of zeste homolog 2 |
MAPK | mitogen-activated protein kinases |
UA | ursolic acid |
References
- Shi, Y.; Seto, E.; Chang, L.S.; Shenk, T. Transcriptional repression by YY1, a human GLI-Krüppel-related protein, and relief of repression by adenovirus E1A protein. Cell 1991, 67, 377–388. [Google Scholar] [CrossRef]
- Gordon, S.; Akopyan, G.; Garban, H.; Bonavida, B. Transcription factor YY1: Structure, function, and therapeutic implications in cancer biology. Oncogene 2006, 25, 1125–1142. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Lossie, A.C.; Camper, S.A.; Gumucio, D.L. Chromosomal localization of the transcription factor YY1 in the mouse and human. Mamm. Genome 1994, 5, 234–236. [Google Scholar] [CrossRef]
- Schug, J.; Schuller, W.P.; Kappen, C.; Salbaum, J.M.; Bucan, M.; Stoeckert, C.J., Jr. Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol. 2005, 6, R33. [Google Scholar] [CrossRef]
- Khachigian, L.M. The Yin and Yang of YY1 in tumor growth and suppression. Int. J. Cancer 2018, 143, 460–465. [Google Scholar] [CrossRef]
- Wu, S.; Kasim, V.; Kano, M.R.; Tanaka, S.; Ohba, S.; Miura, Y.; Miyata, K.; Liu, X.; Matsuhashi, A.; Chung, U.I.; et al. Transcription factor YY1 contributes to tumor growth by stabilizing hypoxia factor HIF-1α in a p53-independent manner. Cancer Res. 2013, 73, 1787–1799. [Google Scholar] [CrossRef]
- Zhuang, J.; Shen, L.; Li, M.; Sun, J.; Hao, J.; Li, J.; Zhu, Z.; Ge, S.; Zhang, D.; Guo, H.; et al. Cancer-Associated Fibroblast-Derived miR-146a-5p Generates a Niche That Promotes Bladder Cancer Stemness and Chemoresistance. Cancer Res. 2023, 83, 1611–1627. [Google Scholar] [CrossRef]
- Thomas, M.J.; Seto, E. Unlocking the mechanisms of transcription factor YY1: Are chromatin modifying enzymes the key? Gene 1999, 236, 197–208. [Google Scholar] [CrossRef]
- Shi, Y.; Lee, J.S.; Galvin, K.M. Everything you have ever wanted to know about Yin Yang 1. Biochim. Biophys. Acta 1997, 1332, F49–F66. [Google Scholar] [CrossRef]
- Wilkinson, F.H.; Park, K.; Atchison, M.L. Polycomb recruitment to DNA in vivo by the YY1 REPO domain. Proc. Natl. Acad. Sci. USA 2006, 103, 19296–19301. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.; Kong, G.; Lee, D.H.; Kim, M.; Tran, Q.; Cho, H.; Kim, C.; Park, S.; Kim, S.H.; et al. Yin Yang 1 is required for PHD finger protein 20-mediated myogenic differentiation in vitro and in vivo. Cell Death Differ. 2020, 27, 3321–3336. [Google Scholar] [CrossRef]
- Bao, Y.; Teng, S.; Zhai, H.; Zhang, Y.; Xu, Y.; Li, C.; Chen, Z.; Ren, F.; Wang, Y. SE-lncRNAs in Cancer: Classification, Subcellular Localisation, Function and Corresponding TFs. J. Cell. Mol. Med. 2024, 28, e70296. [Google Scholar] [CrossRef]
- Wang, H.; He, K.; Huo, R.; Li, W.; Zhang, S.; Jiang, L.J.; Wu, H.; Yu, M.; Jiang, S.H.; Xue, J. MAGEA6 Engages a YY1-Dependent Transcription to Dictate Perineural Invasion in Colorectal Cancer. Adv. Sci. 2025, 12, e2501119. [Google Scholar] [CrossRef]
- Shimizu, T.; Shindo, T.; Ogawa, H.; Teranaka, K.; Watanabe, A.; Takaori-Kondo, A. Upregulation of YY1/EZH2 and MLH1 as Therapeutic Targets for Adult T-Cell Leukemia/Lymphoma. Cancer Sci. 2025, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Meliala, I.T.S.; Hosea, R.; Kasim, V.; Wu, S. The biological implications of Yin Yang 1 in the hallmarks of cancer. Theranostics 2020, 10, 4183–4200. [Google Scholar] [CrossRef] [PubMed]
- Hays, E.; Bonavida, B. YY1 regulates cancer cell immune resistance by modulating PD-L1 expression. Drug Resist. Updat. 2019, 43, 10–28. [Google Scholar] [CrossRef]
- Li, M.; Wei, J.; Xue, C.; Zhou, X.; Chen, S.; Zheng, L.; Duan, Y.; Deng, H.; Xiong, W.; Tang, F.; et al. Dissecting the roles and clinical potential of YY1 in the tumor microenvironment. Front. Oncol. 2023, 13, 1122110. [Google Scholar] [CrossRef]
- Wang, X.L.; Li, J.; Cao, Y.H. Crosstalk between YY1 and lncRNAs in cancer: A review. Medicine 2022, 101, e31990. [Google Scholar] [CrossRef]
- Lin, J.; He, Y.; Wang, B.; Xun, Z.; Chen, S.; Zeng, Z.; Ou, Q. Blocking of YY1 reduce neutrophil infiltration by inhibiting IL-8 production via the PI3K-Akt-mTOR signaling pathway in rheumatoid arthritis. Clin. Exp. Immunol. 2019, 195, 226–236. [Google Scholar] [CrossRef]
- Zhou, X.; Xian, W.; Zhang, J.; Zhu, Y.; Shao, X.; Han, Y.; Qi, Y.; Ding, X.; Wang, X. YY1 binds to the E3’ enhancer and inhibits the expression of the immunoglobulin κ gene via epigenetic modifications. Immunology 2018, 155, 491–498. [Google Scholar] [CrossRef]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef]
- Crucitta, S.; Cucchiara, F.; Mathijssen, R.; Mateo, J.; Jager, A.; Joosse, A.; Passaro, A.; Attili, I.; Petrini, I.; van Schaik, R.; et al. Treatment-driven tumour heterogeneity and drug resistance: Lessons from solid tumours. Cancer Treat. Rev. 2022, 104, 102340. [Google Scholar] [CrossRef] [PubMed]
- Aldea, M.; Andre, F.; Marabelle, A.; Dogan, S.; Barlesi, F.; Soria, J.C. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discov. 2021, 11, 874–899. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Brahmer, J.; Antonia, S.; Mok, T.; Peters, S. Managing Resistance to Immune Checkpoint Inhibitors in Lung Cancer: Treatment and Novel Strategies. J. Clin. Oncol. 2022, 40, 598–610. [Google Scholar] [CrossRef]
- Vaidya, F.U.; Sufiyan Chhipa, A.; Mishra, V.; Gupta, V.K.; Rawat, S.G.; Kumar, A.; Pathak, C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep. 2022, 5, e1291. [Google Scholar] [CrossRef]
- Rizkallah, R.; Hurt, M.M. The Multilayered Regulation of the Oncogenic Protein YY1. Crit. Rev. Oncog. 2017, 22, 109–129. [Google Scholar] [CrossRef]
- Fu, X.; Ji, F.; He, Q.; Qiu, X. A Systematic Pan-Cancer Analysis of YY1 Aberrations and their Relationship with Clinical Outcome, Tumor Microenvironment, and Therapeutic Targets. J. Immunol. Res. 2022, 2022, 5826741. [Google Scholar] [CrossRef]
- Zhang, Q.; Stovall, D.B.; Inoue, K.; Sui, G. The oncogenic role of Yin Yang 1. Crit. Rev. Oncog. 2011, 16, 163–197. [Google Scholar] [CrossRef]
- Hosea, R.; Hillary, S.; Wu, S.; Kasim, V. Targeting Transcription Factor YY1 for Cancer Treatment: Current Strategies and Future Directions. Cancers 2023, 15, 3506. [Google Scholar] [CrossRef]
- Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 2002, 53, 615–627. [Google Scholar] [CrossRef]
- Duan, C.; Yu, M.; Xu, J.; Li, B.Y.; Zhao, Y.; Kankala, R.K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother. 2023, 162, 114643. [Google Scholar] [CrossRef]
- Elmeliegy, M.; Vourvahis, M.; Guo, C.; Wang, D.D. Effect of P-glycoprotein (P-gp) Inducers on Exposure of P-gp Substrates: Review of Clinical Drug-Drug Interaction Studies. Clin. Pharmacokinet. 2020, 59, 699–714. [Google Scholar] [CrossRef]
- Takimoto-Shimomura, T.; Nagoshi, H.; Maegawa, S.; Fujibayashi, Y.; Tsukamoto, T.; Matsumura-Kimoto, Y.; Mizuno, Y.; Chinen, Y.; Mizutani, S.; Shimura, Y.; et al. Establishment and Characteristics of a Novel Mantle Cell Lymphoma-derived Cell Line and a Bendamustine-resistant Subline. Cancer Genom. Proteom. 2018, 15, 213–223. [Google Scholar] [CrossRef]
- Grubach, L.; Juhl-Christensen, C.; Rethmeier, A.; Olesen, L.H.; Aggerholm, A.; Hokland, P.; Ostergaard, M. Gene expression profiling of Polycomb, Hox and Meis genes in patients with acute myeloid leukaemia. Eur. J. Haematol. 2008, 81, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, X.; Wei, M.; Li, Z.; Li, Y.; Zhao, H.; Miyagishi, M.; Kasim, V.; Wu, S. YY2/PHGDH axis suppresses tumorigenesis by inhibiting tumor cell de novo serine biosynthesis. Biomed. Pharmacother. 2023, 165, 115006. [Google Scholar] [CrossRef] [PubMed]
- Antonio-Andrés, G.; Rangel-Santiago, J.; Tirado-Rodríguez, B.; Martinez-Ruiz, G.U.; Klunder-Klunder, M.; Vega, M.I.; Lopez-Martinez, B.; Jiménez-Hernández, E.; Torres Nava, J.; Medina-Sanson, A.; et al. Role of Yin Yang-1 (YY1) in the transcription regulation of the multi-drug resistance (MDR1) gene. Leuk. Lymphoma 2018, 59, 2628–2638. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, Q.; Dai, X.; Chen, X.; Zhang, C.; Bai, R.; Chen, Y.; Zhang, K.; Duan, X.; Qiao, Y.; et al. PGC-1α promotes colorectal carcinoma metastasis through regulating ABCA1 transcription. Oncogene 2023, 42, 2456–2470. [Google Scholar] [CrossRef]
- Qu, L.; Ding, J.; Chen, C.; Wu, Z.J.; Liu, B.; Gao, Y.; Chen, W.; Liu, F.; Sun, W.; Li, X.F.; et al. Exosome-Transmitted lncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA. Cancer Cell 2016, 29, 653–668. [Google Scholar] [CrossRef]
- Boelens, M.C.; Wu, T.J.; Nabet, B.Y.; Xu, B.; Qiu, Y.; Yoon, T.; Azzam, D.J.; Twyman-Saint Victor, C.; Wiemann, B.Z.; Ishwaran, H.; et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 2014, 159, 499–513. [Google Scholar] [CrossRef]
- Guan, H.; Tao, H.; Luo, J.; Wan, L.; Hu, H.; Chen, L.; Wen, Z.; Tao, Y.; Chen, S.; Gu, M. Upregulation of YY1 in M2 macrophages promotes secretion of exosomes containing hsa-circ-0000326 via super-enhancers to facilitate prostate cancer progression. Mol. Cell Biochem. 2025, 480, 3873–3888. [Google Scholar] [CrossRef]
- Navasardyan, I.; Zaravinos, A.; Bonavida, B. Therapeutic Implications of Targeting YY1 in Glioblastoma. Cancers 2024, 16, 2074. [Google Scholar] [CrossRef]
- Liu, X.; Cao, Z.; Liu, N.; Gao, G.; Du, M.; Wang, Y.; Cheng, B.; Zhu, M.; Jia, B.; Pan, L.; et al. Kill two birds with one stone: Engineered exosome-mediated delivery of cholesterol modified YY1-siRNA enhances chemoradiotherapy sensitivity of glioblastoma. Front. Pharmacol. 2022, 13, 975291. [Google Scholar] [CrossRef]
- Jung, M.; Bui, I.; Bonavida, B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers 2023, 15, 4267. [Google Scholar] [CrossRef]
- Potluri, V.; Noothi, S.K.; Vallabhapurapu, S.D.; Yoon, S.O.; Driscoll, J.J.; Lawrie, C.H.; Vallabhapurapu, S. Transcriptional repression of Bim by a novel YY1-RelA complex is essential for the survival and growth of Multiple Myeloma. PLoS ONE 2013, 8, e66121. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Yepez, S.; Liu, H.; Baritaki, S.; Del Lourdes Cebrera-Muñoz, M.; Rivera-Pazos, C.; Maldonado-Valenzuela, A.; Valencia-Hipolito, A.; Vega, M.I.; Chen, H.; Berenson, J.R.; et al. Overexpression of Yin Yang 1 in bone marrow-derived human multiple myeloma and its clinical significance. Int. J. Oncol. 2014, 45, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jacamo, R.; Konopleva, M.; Garzon, R.; Croce, C.; Andreeff, M. CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. J. Clin. Investig. 2013, 123, 2395–2407. [Google Scholar] [CrossRef]
- Bonavida, B. RKIP-mediated chemo-immunosensitization of resistant cancer cells via disruption of the NF-κB/Snail/YY1/RKIP resistance-driver loop. Crit. Rev. Oncog. 2014, 19, 431–445. [Google Scholar] [CrossRef]
- Ho, M.; Bonavida, B. Cross-Talks between Raf Kinase Inhibitor Protein and Programmed Cell Death Ligand 1 Expressions in Cancer: Role in Immune Evasion and Therapeutic Implications. Cells 2024, 13, 864. [Google Scholar] [CrossRef]
- Shvartsur, A.; Givechian, K.B.; Garban, H.; Bonavida, B. Overexpression of RKIP and its cross-talk with several regulatory gene products in multiple myeloma. J. Exp. Clin. Cancer Res. 2017, 36, 62. [Google Scholar] [CrossRef]
- Shao, Z.; Yang, W.; Meng, X.; Li, M.; Hou, P.; Li, Z.; Chu, S.; Zheng, J.; Bai, J. The role of transcription factor Yin Yang-1 in colorectal cancer. Cancer Med. 2023, 12, 11177–11190. [Google Scholar] [CrossRef]
- Martínez-Paniagua, M.A.; Baritaki, S.; Huerta-Yepez, S.; Ortiz-Navarrete, V.F.; González-Bonilla, C.; Bonavida, B.; Vega, M.I. Mcl-1 and YY1 inhibition and induction of DR5 by the BH3-mimetic Obatoclax (GX15-070) contribute in the sensitization of B-NHL cells to TRAIL apoptosis. Cell Cycle 2011, 10, 2792–2805. [Google Scholar] [CrossRef]
- Huerta-Yepez, S.; Vega, M.; Escoto-Chavez, S.E.; Murdock, B.; Sakai, T.; Baritaki, S.; Bonavida, B. Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1. Nitric Oxide 2009, 20, 39–52. [Google Scholar] [CrossRef]
- Lee, J.Y.; Huerta-Yepez, S.; Vega, M.; Baritaki, S.; Spandidos, D.A.; Bonavida, B. The NO TRAIL to YES TRAIL in cancer therapy (review). Int. J. Oncol. 2007, 31, 685–691. [Google Scholar] [CrossRef]
- Nengroo, M.A.; Maheshwari, S.; Singh, A.; Verma, A.; Arya, R.K.; Chaturvedi, P.; Saini, K.K.; Singh, A.K.; Sinha, A.; Meena, S.; et al. CXCR4 intracellular protein promotes drug resistance and tumorigenic potential by inversely regulating the expression of Death Receptor 5. Cell Death Dis. 2021, 12, 464. [Google Scholar] [CrossRef]
- Pothoulakis, C.; Torre-Rojas, M.; Duran-Padilla, M.A.; Gevorkian, J.; Zoras, O.; Chrysos, E.; Chalkiadakis, G.; Baritaki, S. CRHR2/Ucn2 signaling is a novel regulator of miR-7/YY1/Fas circuitry contributing to reversal of colorectal cancer cell resistance to Fas-mediated apoptosis. Int. J. Cancer 2018, 142, 334–346. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, L.; Zhu, Y.; Xu, R.; Deng, Z.; Liu, X.; Ding, Y.; Wang, C.; Shi, Y.; Bei, L.; et al. KDM6A promotes imatinib resistance through YY1-mediated transcriptional upregulation of TRKA independently of its demethylase activity in chronic myelogenous leukemia. Theranostics 2021, 11, 2691–2705. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, P.; Qiang, Y.; Fan, J.; Xing, Y.; Zhang, Y.; Yang, F.; Li, F.; Xiong, J. Targeting the transcription factor YY1 is synthetic lethal with loss of the histone demethylase KDM5C. EMBO Rep. 2024, 25, 5408–5428. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Lin, Y.H.; Chi, H.C.; Huang, P.S.; Liao, C.J.; Liou, Y.S.; Lin, C.C.; Yu, C.J.; Yeh, C.T.; Huang, Y.H.; et al. CRNDE acts as an epigenetic modulator of the p300/YY1 complex to promote HCC progression and therapeutic resistance. Clin. Epigenetics 2022, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, X.; Zhu, L.; Yang, Y.; Yin, X. YY1-Induced lncRNA PART1 Enhanced Resistance of Ovarian Cancer Cells to Cisplatin by Regulating miR-512-3p/CHRAC1 Axis. DNA Cell Biol. 2021, 40, 821–832. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, S.; Shen, J.; Guo, L.; Sun, Y.; Zhu, Y.; Ma, Z.; Zhang, X.; Hu, Y.; Xiao, W.; et al. The MiR-135b-BMAL1-YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance. Cell Death Dis. 2018, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Zhou, S.; Zhang, R.; Chen, Y.; Huang, W.; Yu, K.; Yang, N.; Qian, X.; Tie, X.; Xu, J.; et al. CRISPR/Cas9 screen reveals that targeting TRIM34 enhances ferroptosis sensitivity and augments immunotherapy efficacy in hepatocellular carcinoma. Cancer Lett. 2024, 593, 216935. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.M.; Zhang, F.; Qin, X.M.; Nong, X.; Shi, X.; Zhou, X.M.; Qin, Y.M. Oxymatrine Inhibits Liver Cancer Progression by Regulating SIRT1/YY1/GPX4 Axis-Mediated Ferroptosis. Chem. Res. Toxicol. 2025, 38, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Li, Z.; Wei, M.; Zhao, H.; Miyagishi, M.; Wu, S.; Kasim, V. Homeostasis Imbalance of YY2 and YY1 Promotes Tumor Growth by Manipulating Ferroptosis. Adv. Sci. 2022, 9, e2104836. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.H.; Wen, K.L.; Guo, Y.; Liao, Y.N.; Li, M.Y.; Li, Z.Q.; Li, S.X.; Nie, H.Z. Nutrient deficiency-induced downregulation of SNX1 inhibits ferroptosis through PPARs-ACSL1/4 axis in colorectal cancer. Apoptosis 2025, 30, 1391–1409. [Google Scholar] [CrossRef]
- Ramos, A.; Sadeghi, S.; Tabatabaeian, H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int. J. Mol. Sci. 2021, 22, 9451. [Google Scholar] [CrossRef]
- Malik, S.; Sikander, M.; Wahid, M.; Dhasmana, A.; Sarwat, M.; Khan, S.; Cobos, E.; Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Deciphering cellular and molecular mechanism of MUC13 mucin involved in cancer cell plasticity and drug resistance. Cancer Metastasis Rev. 2024, 43, 981–999. [Google Scholar] [CrossRef]
- Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother. 2021, 137, 111285. [Google Scholar] [CrossRef]
- Du, B.; Shim, J.S. Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules 2016, 21, 965. [Google Scholar] [CrossRef]
- Liu, H.; Han, J.; Lv, Y.; Zhao, Z.; Zheng, S.; Sun, Y.; Sun, T. Isorhamnetin and anti-PD-L1 antibody dual-functional mesoporous silica nanoparticles improve tumor immune microenvironment and inhibit YY1-mediated tumor progression. J. Nanobiotechnol. 2023, 21, 208. [Google Scholar] [CrossRef]
- Lathia, J.D.; Mack, S.C.; Mulkearns-Hubert, E.E.; Valentim, C.L.; Rich, J.N. Cancer stem cells in glioblastoma. Genes. Dev. 2015, 29, 1203–1217. [Google Scholar] [CrossRef]
- Li, J.; Jiang, X.; Xu, Y.; Kang, P.; Huang, P.; Meng, N.; Wang, H.; Zheng, W.; Wang, H.; Wang, Z.; et al. YY1-induced DLEU1/miR-149-5p Promotes Malignant Biological Behavior of Cholangiocarcinoma through Upregulating YAP1/TEAD2/SOX2. Int. J. Biol. Sci. 2022, 18, 4301–4315. [Google Scholar] [CrossRef] [PubMed]
- Saw, P.E.; Liu, Q.; Wong, P.P.; Song, E. Cancer stem cell mimicry for immune evasion and therapeutic resistance. Cell Stem Cell 2024, 31, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Ajani, J.A.; Song, S. Drug resistance and Cancer stem cells. Cell Commun. Signal. 2021, 19, 19. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.E.; Jang, Y.; Yun, B.S.; Kang, S.; Kim, Y.H.; Kim, B.G.; Cho, N.H. MET overexpression in ovarian cancer via CD24-induced downregulation of miR-181a: A signalling for cellular quiescence-like state and chemoresistance in ovarian CSCs. Cell Prolif. 2024, 57, e13582. [Google Scholar] [CrossRef]
- Jang, Y.; Kang, S.; Han, H.H.; Kim, B.G.; Cho, N.H. CD24 induced cellular quiescence-like state and chemoresistance in ovarian cancer cells via miR-130a/301a-dependent CDK19 downregulation. Cell Death Discov. 2024, 10, 81. [Google Scholar] [CrossRef]
- Kaufhold, S.; Garbán, H.; Bonavida, B. Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. J. Exp. Clin. Cancer Res. 2016, 35, 84. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhao, L.; Shen, J.Z.; Liang, Z.; Wu, Q.; Yang, K.; Min, L.; Gimple, R.C.; Yang, Q.; Bhargava, S.; et al. Transcription Elongation Machinery Is a Druggable Dependency and Potentiates Immunotherapy in Glioblastoma Stem Cells. Cancer Discov. 2022, 12, 502–521. [Google Scholar] [CrossRef]
- Li, J.; Song, J.; Guo, F. miR-186 reverses cisplatin resistance and inhibits the formation of the glioblastoma-initiating cell phenotype by degrading Yin Yang 1 in glioblastoma. Int. J. Mol. Med. 2019, 43, 517–524. [Google Scholar] [CrossRef]
- Jia, B.; Liu, W.; Gu, J.; Wang, J.; Lv, W.; Zhang, W.; Hao, Q.; Pang, Z.; Mu, N.; Zhang, W.; et al. MiR-7-5p suppresses stemness and enhances temozolomide sensitivity of drug-resistant glioblastoma cells by targeting Yin Yang 1. Exp. Cell Res. 2019, 375, 73–81. [Google Scholar] [CrossRef]
- Chang, J.; Zhao, X.; Wang, Y.; Liu, T.; Zhong, C.; Lao, Y.; Zhang, S.; Liao, H.; Bai, F.; Lin, D.; et al. Genomic alterations driving precancerous to cancerous lesions in esophageal cancer development. Cancer Cell 2023, 41, 2038–2050.e2035. [Google Scholar] [CrossRef]
- Tiek, D.; Cheng, S.Y. DNA damage and metabolic mechanisms of cancer drug resistance. Cancer Drug Resist. 2022, 5, 368–379. [Google Scholar] [CrossRef]
- Cordes, J.; Zhao, S.; Engel, C.M.; Stingele, J. Cellular responses to RNA damage. Cell 2025, 188, 885–900. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, C.; Fu, C.; Hu, J.; Li, T.; Li, L. YY1 is involved in homologous recombination inhibition at guanine quadruplex sites in human cells. Nucleic Acids Res. 2024, 52, 7401–7413. [Google Scholar] [CrossRef]
- Zhao, L.; Li, R.; Qiu, J.Z.; Yu, J.B.; Cao, Y.; Yuan, R.T. YY1-mediated PTEN dephosphorylation antagonizes IR-induced DNA repair contributing to tongue squamous cell carcinoma radiosensitization. Mol. Cell. Probes 2020, 53, 101577. [Google Scholar] [CrossRef]
- Shinoda, K.; Zong, D.; Callen, E.; Wu, W.; Dumitrache, L.C.; Belinky, F.; Chari, R.; Wong, N.; Ishikawa, M.; Stanlie, A.; et al. The dystonia gene THAP1 controls DNA double-strand break repair choice. Mol. Cell 2021, 81, 2611–2624.e2610. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Zhang, G.; Han, F.; Fu, S.; Cao, Y.; Zhang, F.; Zhang, Q.; Meslamani, J.; Xu, Y.; Ji, D.; et al. Spatially constrained tandem bromodomain inhibition bolsters sustained repression of BRD4 transcriptional activity for TNBC cell growth. Proc. Natl. Acad. Sci. USA 2018, 115, 7949–7954. [Google Scholar] [CrossRef] [PubMed]
- Sarnik, J.; Popławski, T.; Tokarz, P. BET Proteins as Attractive Targets for Cancer Therapeutics. Int. J. Mol. Sci. 2021, 22, 11102. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Zhou, X.; Zhang, X.; Qiu, F.; Zhang, S.; Chen, Y.; Yang, J.; Wang, J.; Tan, W. BRD4-binding enhancer promotes CRC progression by interacting with YY1 to activate the Wnt pathway through upregulation of TCF7L2. Biochem. Pharmacol. 2023, 218, 115877. [Google Scholar] [CrossRef]
- Xu, C.; Tsai, Y.H.; Galbo, P.M.; Gong, W.; Storey, A.J.; Xu, Y.; Byrum, S.D.; Xu, L.; Whang, Y.E.; Parker, J.S.; et al. Cistrome analysis of YY1 uncovers a regulatory axis of YY1:BRD2/4-PFKP during tumorigenesis of advanced prostate cancer. Nucleic Acids Res. 2021, 49, 4971–4988. [Google Scholar] [CrossRef]
- Yang, C.; Qu, J.; Cheng, Y.; Tian, M.; Wang, Z.; Wang, X.; Li, X.; Zhou, S.; Zhao, B.; Guo, Y.; et al. YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression. J. Transl. Med. 2024, 22, 1153. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Zhou, Q.Q.; Sun, Y.; Yu, T.; Jiang, Y.; Li, H.J. The anti-non-small cell lung cancer effect of Diosbulbin B: Targeting YY1 induced cell cycle arrest and apoptosis. Phytomedicine 2024, 130, 155734. [Google Scholar] [CrossRef]
- Myadelets, D.; Parfenyev, S.; Vasileva, J.; Shuvalov, O.; Petukhov, A.; Fedorova, O.; Barlev, N.; Daks, A. Methyltransferase Set7/9 controls PARP1 expression and regulates cisplatin response of breast cancer cells. Biochem. Biophys. Res. Commun. 2024, 691, 149328. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, L.; Li, Z.; Zhang, T.; Liu, W.; Liu, Z.; Yuan, Y.C.; Su, F.; Xu, L.; Wang, Y.; et al. YY1 suppresses FEN1 over-expression and drug resistance in breast cancer. BMC Cancer 2015, 15, 50. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Liu, R.; Wang, M.; Kumar, A.K.; Pan, F.; He, L.; Hu, Z.; Guo, Z. MicroRNA-140 impedes DNA repair by targeting FEN1 and enhances chemotherapeutic response in breast cancer. Oncogene 2020, 39, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jing, L.; Tan, S.; Zeng, E.M.; Lin, Y.; He, L.; Hu, Z.; Liu, J.; Guo, Z. Inhibition of miR-1193 leads to synthetic lethality in glioblastoma multiforme cells deficient of DNA-PKcs. Cell Death Dis. 2020, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, A.; Wang, Y.; Qi, D.; Peng, C.; Liang, Z.; Guo, J.; Gu, Y. YY1-induced transcription of AKR1C3 activates the Hedgehog signalling pathway to enhance lenalidomide resistance and glycolytic activity in multiple myeloma cells. Clin. Exp. Med. 2025, 25, 99. [Google Scholar] [CrossRef]
- Meng, F.; Qi, T.; Liu, X.; Wang, Y.; Yu, J.; Lu, Z.; Cai, X.; Li, A.; Jung, D.; Duan, J. Enhanced pharmacological activities of AKR1C3-activated prodrug AST-3424 in cancer cells with defective DNA repair. Int. J. Cancer 2025, 156, 417–430. [Google Scholar] [CrossRef]
- Liu, H.; Xu, J.; Yang, Y.; Wang, X.; Wu, E.; Majerciak, V.; Zhang, T.; Steenbergen, R.D.M.; Wang, H.K.; Banerjee, N.S.; et al. Oncogenic HPV promotes the expression of the long noncoding RNA lnc-FANCI-2 through E7 and YY1. Proc. Natl. Acad. Sci. USA 2021, 118, e2014195118. [Google Scholar] [CrossRef]
- Xiao, Y.; Hassani, M.; Moghaddam, M.B.; Fazilat, A.; Ojarudi, M.; Valilo, M. Contribution of tumor microenvironment (TME) to tumor apoptosis, angiogenesis, metastasis, and drug resistance. Med. Oncol. 2025, 42, 108. [Google Scholar] [CrossRef]
- Goenka, A.; Khan, F.; Verma, B.; Sinha, P.; Dmello, C.C.; Jogalekar, M.P.; Gangadaran, P.; Ahn, B.C. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun. 2023, 43, 525–561. [Google Scholar] [CrossRef]
- Solinas, G.; Germano, G.; Mantovani, A.; Allavena, P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J. Leukoc. Biol. 2009, 86, 1065–1073. [Google Scholar] [CrossRef]
- Choi, K.S.; Bae, M.K.; Jeong, J.W.; Moon, H.E.; Kim, K.W. Hypoxia-induced angiogenesis during carcinogenesis. J. Biochem. Mol. Biol. 2003, 36, 120–127. [Google Scholar] [CrossRef]
- Mohamed, O.A.A.; Tesen, H.S.; Hany, M.; Sherif, A.; Abdelwahab, M.M.; Elnaggar, M.H. The role of hypoxia on prostate cancer progression and metastasis. Mol. Biol. Rep. 2023, 50, 3873–3884. [Google Scholar] [CrossRef] [PubMed]
- de Nigris, F.; Rossiello, R.; Schiano, C.; Arra, C.; Williams-Ignarro, S.; Barbieri, A.; Lanza, A.; Balestrieri, A.; Giuliano, M.T.; Ignarro, L.J.; et al. Deletion of Yin Yang 1 protein in osteosarcoma cells on cell invasion and CXCR4/angiogenesis and metastasis. Cancer Res. 2008, 68, 1797–1808. [Google Scholar] [CrossRef] [PubMed]
- Meo, C.; de Nigris, F. Clinical Potential of YY1-Hypoxia Axis for Vascular Normalization and to Improve Immunotherapy. Cancers 2024, 16, 491. [Google Scholar] [CrossRef] [PubMed]
- Gerweck, L.E.; Vijayappa, S.; Kozin, S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol. Cancer Ther. 2006, 5, 1275–1279. [Google Scholar] [CrossRef]
- Kachalaki, S.; Ebrahimi, M.; Mohamed Khosroshahi, L.; Mohammadinejad, S.; Baradaran, B. Cancer chemoresistance; biochemical and molecular aspects: A brief overview. Eur. J. Pharm. Sci. 2016, 89, 20–30. [Google Scholar] [CrossRef]
- Li, X.; Ma, T.K.; Wang, M.; Zhang, X.D.; Liu, T.Y.; Liu, Y.; Huang, Z.H.; Zhu, Y.H.; Zhang, S.; Yin, L.; et al. YY1-induced upregulation of LncRNA-ARAP1-AS2 and ARAP1 promotes diabetic kidney fibrosis via aberrant glycolysis associated with EGFR/PKM2/HIF-1α pathway. Front. Pharmacol. 2023, 14, 1069348. [Google Scholar] [CrossRef]
- Marcucci, F.; Rumio, C. Glycolysis-induced drug resistance in tumors-A response to danger signals? Neoplasia 2021, 23, 234–245. [Google Scholar] [CrossRef]
- de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Bejarano, L.; Jordāo, M.J.C.; Joyce, J.A. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov. 2021, 11, 933–959. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Pei, L.; Xia, H.; Tang, Q.; Bi, F. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol. Cancer 2021, 20, 143. [Google Scholar] [CrossRef] [PubMed]
- Ros, J.; Vaghi, C.; Baraibar, I.; Saoudi González, N.; Rodríguez-Castells, M.; García, A.; Alcaraz, A.; Salva, F.; Tabernero, J.; Elez, E. Targeting KRAS G12C Mutation in Colorectal Cancer, A Review: New Arrows in the Quiver. Int. J. Mol. Sci. 2024, 25, 3304. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Lin, Y.; Wang, C.; Lv, Y.; Chen, W. YY1 as a mediator to enhance the resistance of KRAS mutant colorectal cancer cells to cetuximab. J. Genet. 2025, 104, 3. [Google Scholar] [CrossRef]
- Zhao, M.; Lu, T.; Bi, G.; Hu, Z.; Liang, J.; Bian, Y.; Feng, M.; Zhan, C. PLK1 regulating chemoradiotherapy sensitivity of esophageal squamous cell carcinoma through pentose phosphate pathway/ferroptosis. Biomed. Pharmacother. 2023, 168, 115711. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H.; Huang, Y.; Li, D.; Zheng, Z.; Xie, K.; Cao, C.; Wang, Q.; Zhao, X.; Huang, Z.; et al. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer. Drug Resist. Updat. 2024, 73, 101059. [Google Scholar] [CrossRef]
- Fan, Y.J.; Pan, F.Z.; Cui, Z.G.; Zheng, H.C. The Antitumor and Sorafenib-resistant Reversal Effects of Ursolic Acid on Hepatocellular Carcinoma via Targeting ING5. Int. J. Biol. Sci. 2024, 20, 4190–4208. [Google Scholar] [CrossRef]
- Beier, U.H.; Görögh, T. Implications of galactocerebrosidase and galactosylcerebroside metabolism in cancer cells. Int. J. Cancer 2005, 115, 6–10. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Li, Q.; Huang, P.Q.; Su, T.; Jiang, S.H.; Hu, L.P.; Zhang, X.L.; Sun, Y.; Pan, H.; Yang, X.M.; et al. A low amino acid environment promotes cell macropinocytosis through the YY1-FGD6 axis in Ras-mutant pancreatic ductal adenocarcinoma. Oncogene 2022, 41, 1203–1215. [Google Scholar] [CrossRef]
- Baharom, F.; Ramirez-Valdez, R.A.; Khalilnezhad, A.; Khalilnezhad, S.; Dillon, M.; Hermans, D.; Fussell, S.; Tobin, K.K.S.; Dutertre, C.A.; Lynn, G.M.; et al. Systemic vaccination induces CD8(+) T cells and remodels the tumor microenvironment. Cell 2022, 185, 4317–4332.e4315. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Z.; Ding, Y.; Qin, Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front. Immunol. 2023, 14, 1133308. [Google Scholar] [CrossRef] [PubMed]
- Merenstein, A.; Obeidat, L.; Zaravinos, A.; Bonavida, B. The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications. Cancers 2024, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, N.; Fan, L.; Wu, R.; Cao, L.; Ren, Y.; Lu, C.; Zhang, L.; Cai, Y.; Shi, Y.; et al. Single-cell transcriptomic and spatial analysis reveal the immunosuppressive microenvironment in relapsed/refractory angioimmunoblastic T-cell lymphoma. Blood Cancer J. 2024, 14, 218. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Chen, D.Y.; Tang, K.T.; Chao, Y.H.; Shen, C.H.; Lui, P.W. Inhibitory effects of propofol on Th17 cell differentiation. Immunopharmacol. Immunotoxicol. 2017, 39, 211–218. [Google Scholar] [CrossRef]
- Khalaf, K.; Hana, D.; Chou, J.T.; Singh, C.; Mackiewicz, A.; Kaczmarek, M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front. Immunol. 2021, 12, 656364. [Google Scholar] [CrossRef]
- Baritaki, S.; Zaravinos, A. Cross-Talks between RKIP and YY1 through a Multilevel Bioinformatics Pan-Cancer Analysis. Cancers 2023, 15, 4932. [Google Scholar] [CrossRef]
- Liao, W.; Lin, J.X.; Leonard, W.J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013, 38, 13–25. [Google Scholar] [CrossRef]
- Kwiatkowska, D.; Mazur, E.; Reich, A. YY1 Is a Key Player in Melanoma Immunotherapy/Targeted Treatment Resistance. Front. Oncol. 2022, 12, 856963. [Google Scholar] [CrossRef]
- Huang, C.; Huang, X.; Qiu, X.; Kong, X.; Wu, C.; Jiang, X.; Yao, M.; Wang, M.; Su, L.; Lv, C.; et al. Pericytes Modulate Third-Generation Tyrosine Kinase Inhibitor Sensitivity in EGFR-Mutated Lung Cancer Cells Through IL32-β5-Integrin Paracrine Signaling. Adv. Sci. 2024, 11, e2405130. [Google Scholar] [CrossRef]
- Liu, X.C.; Lian, W.; Zhang, L.J.; Feng, X.C.; Gao, Y.; Li, S.X.; Liu, C.; Cheng, Y.; Yang, L.; Wang, X.J.; et al. Interleukin-18 Down-Regulates Multidrug Resistance-Associated Protein 2 Expression through Farnesoid X Receptor Associated with Nuclear Factor Kappa B and Yin Yang 1 in Human Hepatoma HepG2 Cells. PLoS ONE 2015, 10, e0136215. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Lu, J.; Mao, W.; Zheng, S.; Zhang, M.; Wu, T.; Chen, Y.; Lu, K.; Chu, C.; et al. YY1 enhances HIF-1α stability in tumor-associated macrophages to suppress anti-tumor immunity of prostate cancer in mice. Nat. Commun. 2025, 16, 6261. [Google Scholar] [CrossRef]
- Hwang, S.S.; Jang, S.W.; Kim, M.K.; Kim, L.K.; Kim, B.S.; Kim, H.S.; Kim, K.; Lee, W.; Flavell, R.A.; Lee, G.R. YY1 inhibits differentiation and function of regulatory T cells by blocking Foxp3 expression and activity. Nat. Commun. 2016, 7, 10789. [Google Scholar] [CrossRef]
- Yang, W.; Li, Z.; Qin, R.; Wang, X.; An, H.; Wang, Y.; Zhu, Y.; Liu, Y.; Cai, S.; Chen, S.; et al. Corrigendum: YY1 Promotes Endothelial Cell-Dependent Tumor Angiogenesis in Hepatocellular Carcinoma by Transcriptionally Activating VEGFA. Front. Oncol. 2021, 11, 828861. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Xu, S.; Peng, L.; Li, H.; Zhao, Y.; Hu, Y. The hypoxia-mimetic agent CoCl2 induces chemotherapy resistance in LOVO colorectal cancer cells. Mol. Med. Rep. 2016, 13, 2583–2589. [Google Scholar] [CrossRef] [PubMed]
- Kosasih, F.R.; Bonavida, B. Involvement of Yin Yang 1 (YY1) Expression in T-Cell Subsets Differentiation and Their Functions: Implications in T Cell-Mediated Diseases. Crit. Rev. Immunol. 2019, 39, 491–510. [Google Scholar] [CrossRef]
- Arumugam, T.; Ramachandran, V.; Fournier, K.F.; Wang, H.; Marquis, L.; Abbruzzese, J.L.; Gallick, G.E.; Logsdon, C.D.; McConkey, D.J.; Choi, W. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009, 69, 5820–5828. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, H.; Ren, G. Epithelial-mesenchymal transition and drug resistance in breast cancer (Review). Int. J. Oncol. 2015, 47, 840–848. [Google Scholar] [CrossRef]
- Mitra, A.; Mishra, L.; Li, S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 2015, 6, 10697–10711. [Google Scholar] [CrossRef]
- Shibue, T.; Weinberg, R.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 2017, 14, 611–629. [Google Scholar] [CrossRef]
- Jin, W. Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal Transition. Cells 2020, 9, 217. [Google Scholar] [CrossRef]
- Guan, T.; Li, M.; Song, Y.; Chen, J.; Tang, J.; Zhang, C.; Wen, Y.; Yang, X.; Huang, L.; Zhu, Y.; et al. Phosphorylation of USP29 by CDK1 Governs TWIST1 Stability and Oncogenic Functions. Adv. Sci. 2023, 10, e2205873. [Google Scholar] [CrossRef]
- Hashemi, M.; Arani, H.Z.; Orouei, S.; Fallah, S.; Ghorbani, A.; Khaledabadi, M.; Kakavand, A.; Tavakolpournegari, A.; Saebfar, H.; Heidari, H.; et al. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed. Pharmacother. 2022, 155, 113774. [Google Scholar] [CrossRef]
- Debaugnies, M.; Rodríguez-Acebes, S.; Blondeau, J.; Parent, M.A.; Zocco, M.; Song, Y.; de Maertelaer, V.; Moers, V.; Latil, M.; Dubois, C.; et al. RHOJ controls EMT-associated resistance to chemotherapy. Nature 2023, 616, 168–175. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Chai, K.; Ying, X.; Zhou, B.P. The Role of Snail in EMT and Tumorigenesis. Curr. Cancer Drug Targets 2013, 13, 963–972. [Google Scholar] [CrossRef]
- Bonavida, B.; Baritaki, S. Dual role of NO donors in the reversal of tumor cell resistance and EMT: Downregulation of the NF-κB/Snail/YY1/RKIP circuitry. Nitric Oxide 2011, 24, 1–7. [Google Scholar] [CrossRef]
- Cho, A.A.; Bonavida, B. Targeting the Overexpressed YY1 in Cancer Inhibits EMT and Metastasis. Crit. Rev. Oncog. 2017, 22, 49–61. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, X.; Hua, Y.; Zhao, Q.; Wang, K.; Zhen, L.; Wang, G.; Lü, J.; Luo, A.; Cho, W.C.; et al. YY1 mediates TGF-β1-induced EMT and pro-fibrogenesis in alveolar epithelial cells. Respir. Res. 2019, 20, 249. [Google Scholar] [CrossRef]
- Xuan, W.; Zhou, C.; You, G. LncRNA LINC00668 promotes cell proliferation, migration, invasion ability and EMT process in hepatocellular carcinoma by targeting miR-532-5p/YY1 axis. Biosci. Rep. 2020, 40, BSR20192697. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, N.; Huang, Z.; Baba, T.; Lee, P.S.; Barnett, J.C.; Mori, S.; Chang, J.T.; Kuo, W.L.; Gusberg, A.H.; Whitaker, R.S.; et al. Yin yang 1 modulates taxane response in epithelial ovarian cancer. Mol. Cancer Res. 2009, 7, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qiu, J.G.; Jia, X.Y.; Ke, Y.; Zhang, M.K.; Stieg, D.; Liu, W.J.; Liu, L.Z.; Wang, L.; Jiang, B.H. METTL3-mediated N6-methyladenosine modification and HDAC5/YY1 promote IFFO1 downregulation in tumor development and chemo-resistance. Cancer Lett. 2023, 553, 215971. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Bang, S.; Jee, S.; Park, S.; Kim, Y.; Park, H.; Jang, K.; Paik, S.S. Loss of YY1 expression predicts unfavorable prognosis in stage III colorectal cancer. Indian J. Pathol. Microbiol. 2021, 64, S78–S84. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Li, Z.; Zhao, C.; Yin, X.; Feng, L.; Wang, Z.; Liu, C.; Li, B. YY1 modulates the radiosensitivity of esophageal squamous cell carcinoma through KIF3B-mediated Hippo signaling pathway. Cell Death Dis. 2023, 14, 806. [Google Scholar] [CrossRef] [PubMed]
- Dillen, A.; Bui, I.; Jung, M.; Agioti, S.; Zaravinos, A.; Bonavida, B. Regulation of PD-L1 Expression by YY1 in Cancer: Therapeutic Efficacy of Targeting YY1. Cancers 2024, 16, 1237. [Google Scholar] [CrossRef]
- Wei, G.; Wang, Y.; Yang, G.; Wang, Y.; Ju, R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 2021, 11, 6370–6392. [Google Scholar] [CrossRef]
- Qin, S.Y.; Cheng, Y.J.; Lei, Q.; Zhang, A.Q.; Zhang, X.Z. Combinational strategy for high-performance cancer chemotherapy. Biomaterials 2018, 171, 178–197. [Google Scholar] [CrossRef] [PubMed]
- Kemp, J.A.; Shim, M.S.; Heo, C.Y.; Kwon, Y.J. “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev. 2016, 98, 3–18. [Google Scholar] [CrossRef]
- Lee, M.H.; Lahusen, T.; Wang, R.H.; Xiao, C.; Xu, X.; Hwang, Y.S.; He, W.W.; Shi, Y.; Deng, C.X. Yin Yang 1 positively regulates BRCA1 and inhibits mammary cancer formation. Oncogene 2012, 31, 116–127. [Google Scholar] [CrossRef]
- Hongo, F.; Garban, H.; Huerta-Yepez, S.; Vega, M.; Jazirehi, A.R.; Mizutani, Y.; Miki, T.; Bonavida, B. Inhibition of the transcription factor Yin Yang 1 activity by S-nitrosation. Biochem. Biophys. Res. Commun. 2005, 336, 692–701. [Google Scholar] [CrossRef]
- Huerta-Yepez, S.; Baritaki, S.; Baay-Guzman, G.; Hernandez-Luna, M.A.; Hernandez-Cueto, A.; Vega, M.I.; Bonavida, B. Contribution of either YY1 or BclXL-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. Nitric Oxide 2013, 29, 17–24. [Google Scholar] [CrossRef]
- Mirzaei, S.; Gholami, M.H.; Hashemi, F.; Zabolian, A.; Farahani, M.V.; Hushmandi, K.; Zarrabi, A.; Goldman, A.; Ashrafizadeh, M.; Orive, G. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov. Today 2022, 27, 436–455. [Google Scholar] [CrossRef]
- Wang, G.; Xie, G.; Han, L.; Wang, D.; Du, F.; Kong, X.; Su, G. Involvement of hypoxia-inducible factor-1 alpha in the upregulation of P-glycoprotein in refractory epilepsy. Neuroreport 2019, 30, 1191–1196. [Google Scholar] [CrossRef]
- Wartenberg, M.; Ling, F.C.; Müschen, M.; Klein, F.; Acker, H.; Gassmann, M.; Petrat, K.; Pütz, V.; Hescheler, J.; Sauer, H. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J. 2003, 17, 503–505. [Google Scholar] [CrossRef]
- Panneerpandian, P.; Rao, D.B.; Ganesan, K. Calcium channel blockers lercanidipine and amlodipine inhibit YY1/ERK/TGF-β mediated transcription and sensitize the gastric cancer cells to doxorubicin. Toxicol. Vitr. 2021, 74, 105152. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Paniagua, M.A.; Vega, M.I.; Huerta-Yepez, S.; Baritaki, S.; Vega, G.G.; Hariharan, K.; Bonavida, B. Galiximab signals B-NHL cells and inhibits the activities of NF-κB-induced YY1- and snail-resistant factors: Mechanism of sensitization to apoptosis by chemoimmunotherapeutic drugs. Mol. Cancer Ther. 2012, 11, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Xiang, T.; Liu, S.; Xiang, W. Inhibition of NLRC5 attenuates the malignant growth and enhances the sensitivity of gastric cancer cells to 5-FU chemotherapy by blocking the carcinogenic effect of YY1. Exp. Ther. Med. 2022, 24, 601. [Google Scholar] [CrossRef]
- Mazor, G.; Smirnov, D.; Ben David, H.; Khrameeva, E.; Toiber, D.; Rotblat, B. TP73-AS1 is induced by YY1 during TMZ treatment and highly expressed in the aging brain. Aging 2021, 13, 14843–14861. [Google Scholar] [CrossRef]
- Vega, M.I.; Jazirehi, A.R.; Huerta-Yepez, S.; Bonavida, B. Rituximab-induced inhibition of YY1 and Bcl-xL expression in Ramos non-Hodgkin’s lymphoma cell line via inhibition of NF-kappa B activity: Role of YY1 and Bcl-xL in Fas resistance and chemoresistance, respectively. J. Immunol. 2005, 175, 2174–2183. [Google Scholar] [CrossRef]
- Vega, M.I.; Baritaki, S.; Huerta-Yepez, S.; Martinez-Paniagua, M.A.; Bonavida, B. A potential mechanism of rituximab-induced inhibition of tumor growth through its sensitization to tumor necrosis factor-related apoptosis-inducing ligand-expressing host cytotoxic cells. Leuk. Lymphoma 2011, 52, 108–121. [Google Scholar] [CrossRef]
- Sieber, S.; Gdynia, G.; Roth, W.; Bonavida, B.; Efferth, T. Combination treatment of malignant B cells using the anti-CD20 antibody rituximab and the anti-malarial artesunate. Int. J. Oncol. 2009, 35, 149–158. [Google Scholar] [CrossRef]
- Ward, R.A.; Fawell, S.; Floc’h, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and Opportunities in Cancer Drug Resistance. Chem. Rev. 2021, 121, 3297–3351. [Google Scholar] [CrossRef]
- Yap, T.A.; Parkes, E.E.; Peng, W.; Moyers, J.T.; Curran, M.A.; Tawbi, H.A. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov. 2021, 11, 1368–1397. [Google Scholar] [CrossRef]
- Zhao, J.L.; Huang, F.; He, F.; Gao, C.C.; Liang, S.Q.; Ma, P.F.; Dong, G.Y.; Han, H.; Qin, H.Y. Forced Activation of Notch in Macrophages Represses Tumor Growth by Upregulating miR-125a and Disabling Tumor-Associated Macrophages. Cancer Res. 2016, 76, 1403–1415. [Google Scholar] [CrossRef]
- Liu, W.J.; Wang, L.; Zhou, F.M.; Liu, S.W.; Wang, W.; Zhao, E.J.; Yao, Q.J.; Li, W.; Zhao, Y.Q.; Shi, Z.; et al. Elevated NOX4 promotes tumorigenesis and acquired EGFR-TKIs resistance via enhancing IL-8/PD-L1 signaling in NSCLC. Drug Resist. Updat. 2023, 70, 100987. [Google Scholar] [CrossRef]
- Hariharan, K.; Chu, P.; Murphy, T.; Clanton, D.; Berquist, L.; Molina, A.; Ho, S.N.; Vega, M.I.; Bonavida, B. Galiximab (anti-CD80)-induced growth inhibition and prolongation of survival in vivo of B-NHL tumor xenografts and potentiation by the combination with fludarabine. Int. J. Oncol. 2013, 43, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, A.; Romero-Cordoba, S.; Plantamura, I.; Cosentino, G.; Hidalgo-Miranda, A.; Tagliabue, E.; Iorio, M.V. MiR-302b as a Combinatorial Therapeutic Approach to Improve Cisplatin Chemotherapy Efficacy in Human Triple-Negative Breast Cancer. Cancers 2020, 12, 2261. [Google Scholar] [CrossRef] [PubMed]
- Rapozzi, V.; Della Pietra, E.; Bonavida, B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol. 2015, 6, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Rapozzi, V.; Pietra, E.D.; Bonavida, B.; Xodo, L.E. The Role Of Nitric Oxide After Repeated Low Dose Photodynamic Treatments In Prostate Carcinoma Cells. Redox Biol. 2015, 5, 422–423. [Google Scholar] [CrossRef]
- Ning, Y.; Zheng, H.; Yang, Y.; Zang, H.; Wang, W.; Zhan, Y.; Wang, H.; Luo, J.; Wen, Q.; Peng, J.; et al. YAP1 synergize with YY1 transcriptional co-repress DUSP1 to induce osimertinib resistant by activating the EGFR/MAPK pathway and abrogating autophagy in non-small cell lung cancer. Int. J. Biol. Sci. 2023, 19, 2458–2474. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Huang, C.; Li, Y.; Zhao, H.; Kasim, V. Yin Yang 1 promotes the Warburg effect and tumorigenesis via glucose transporter GLUT3. Cancer Sci. 2018, 109, 2423–2434. [Google Scholar] [CrossRef]
- Gu, J.; Mu, N.; Jia, B.; Guo, Q.; Pan, L.; Zhu, M.; Zhang, W.; Zhang, K.; Li, W.; Li, M.; et al. Targeting radiation-tolerant persister cells as a strategy for inhibiting radioresistance and recurrence in glioblastoma. Neuro Oncol. 2022, 24, 1056–1070. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, S.; Yang, Z.; Meng, M.; Dai, Y.; Li, X.; Chen, X. MicroRNA-411-3p motivates methotrexate’s cellular uptake and cytotoxicity via targeting Yin-yang 1 in leukemia cells. Acta Biochim. Pol. 2023, 70, 721–727. [Google Scholar] [CrossRef]
- Morales-Martinez, M.; Vega, G.G.; Neri, N.; Nambo, M.J.; Alvarado, I.; Cuadra, I.; Duran-Padilla, M.A.; Huerta-Yepez, S.; Vega, M.I. MicroRNA-7 Regulates Migration and Chemoresistance in Non-Hodgkin Lymphoma Cells Through Regulation of KLF4 and YY1. Front. Oncol. 2020, 10, 588893. [Google Scholar] [CrossRef]
- Rapozzi, V.; Varchi, G.; Della Pietra, E.; Ferroni, C.; Xodo, L.E. A photodynamic bifunctional conjugate for prostate cancer: An in vitro mechanistic study. Investig. New Drugs 2017, 35, 115–123. [Google Scholar] [CrossRef]
- Qin, L.N.; Zhang, H.; Li, Q.Q.; Wu, T.; Cheng, S.B.; Wang, K.W.; Shi, Y.; Ren, H.R.; Xing, X.W.; Yang, C.; et al. Vitamin D binding protein (VDBP) hijacks twist1 to inhibit vasculogenic mimicry in hepatocellular carcinoma. Theranostics 2024, 14, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Montecillo-Aguado, M.; Morales-Martínez, M.; Huerta-Yepez, S.; Vega, M.I. KLF4 inhibition by Kenpaullone induces cytotoxicity and chemo sensitization in B-NHL cell lines via YY1 independent. Leuk. Lymphoma 2021, 62, 1422–1431. [Google Scholar] [CrossRef] [PubMed]
- Sarvagalla, S.; Kolapalli, S.P.; Vallabhapurapu, S. The Two Sides of YY1 in Cancer: A Friend and a Foe. Front. Oncol. 2019, 9, 1230. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, W.J.; Jia, Y.X.; Yuan, H.; Wu, P.F.; Ge, W.L.; Meng, L.D.; Huang, X.M.; Shen, P.; Yang, T.Y.; et al. Effect of the transcription factor YY1 on the development of pancreatic endocrine and exocrine tumors: A narrative review. Cell Biosci. 2021, 11, 86. [Google Scholar] [CrossRef]
- Hackeng, W.M.; Brosens, L.A.A.; Dreijerink, K.M.A. Aggressive versus indolent insulinomas: New clinicopathological insights. Endocr. Relat. Cancer 2023, 30, e220321. [Google Scholar] [CrossRef]
- Kumari, S.; Ponamgi, S.P.D.; Chelikani, P.; Srilatha, M.; Nagaraju, G.P.; Peela, S. Role of Yin Yang 1 (YY1) on microenvironment, signaling pathways, and epigenetics in lung cancer. Biochim. Biophys. Acta Rev. Cancer 2025, 1880, 189359. [Google Scholar] [CrossRef]
- Son, H.J.; Choi, E.J.; Yoo, N.J.; Lee, S.H. Somatic Mutations and Intratumoral Heterogeneity of Cancer-Related Genes NLK, YY1 and PA2G4 in Gastric and Colorectal Cancers. Pathol. Oncol. Res. 2020, 26, 2813–2815. [Google Scholar] [CrossRef]
- Song, Y.L.; Xu, J.; Zhao, D.C.; Zhang, T.P.; Jin, K.Z.; Zhu, L.M.; Yu, S.; Chen, Y.J. Mutation and Expression of Gene YY1 in Pancreatic Neuroendocrine Tumors and Its Clinical Significance. Endocr. Pract. 2021, 27, 874–880. [Google Scholar] [CrossRef]
- Khan, S.U.; Fatima, K.; Aisha, S.; Malik, F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun. Signal. 2024, 22, 109. [Google Scholar] [CrossRef] [PubMed]
Anti-Cell Death Pathway | Target Gene | Regulation | Outcomes | Refs |
---|---|---|---|---|
NF-κB/SNAIl/YY1 axis | RKIP | Downregulates RKIP | Chemotherapy and immunotherapy | [47] |
BCL-2 family/YY1 | MCL-1 | Upregulates MCL-1, downregulates caspases-3, -7, and -9 | Anti-apoptosis | [50] |
P53/YY1 | DR5 | YY1 and p53 synergistically inhibit DR5 | Chemoresistance and TRAIL-based therapies | [54] |
NF-κB/YY1/MCL-1 axis | DR5, MCL-1 | Upregulates MCL-1 and downregulates DR5 | Resistance to Obatoclax | [51] |
RELA | BIM | The YY1/RELA complex inhibits the expression of BIM | FAS/FASL-mediated cell apoptosis | [44] |
CRHR2/UCN2/miR-7/YY1 pathway | YY1 | Inhibits YY1 and restores FAS/FasL-induced apoptosis | FAS/FASL-mediated cell apoptosis | [55] |
YY1/KDM6A/TRKA | TRKA, NTRK1 | Upregulates TRKA | Resistance to imatinib | [56] |
YY1/KDM5C | YY1 | KDM5C recruits YY1 to regulate the cell cycle | Broad-spectrum resistance | [57] |
CRNDE/YY1/EGFR pathway | EGFR | Upregulates EGFR | Resistance to sorafenib | [58] |
PART1/miR-512-3p/CHRAC1/YY1 | CHRAC1 | YY1 activates PART1 to inhibit miR-512-3p, upregulating CHRAC1 | Resistance to cisplatin | [59] |
YY1/miR-135b/BMAL1 pathway | BMAL1 | YY1 activates miR-135b, inhibits BMAL1 | Resistance to gemcitabine | [60] |
TRIM34/YY1 pathway | TRIM34 | Upregulates TRIM | Anti-ferroptosis | [61] |
SIRT1/YY1/GPX4 axis | GPX4 | Upregulates GPX4 | Anti-ferroptosis | [62] |
YY1/SLC7A11 pathway | SLC7A11 | Upregulates SLC7A11 | Resistance to ferroptosis-inducing agents erastin and RSL-3 | [63] |
YY1/SNX1/EGFR/PPARs-ACSL1/4 pathway | SNX1/EGFR/PPARs-ACSL1/4 | Inhibits SNX1 | Resistance to 5-FU | [64] |
Pathway | Target Gene | Regulation | Resistance Type | Refs |
---|---|---|---|---|
YY1/VEGF/ VEGFR | VEGF/VEGFA | Upregulates HIF-1α | Resistance to bevacizumab | [133] |
YY1/HIF-1α | HIF-1α | Upregulates VEGF, VEGFA expression | Resistance to multidrug treatment | [104] |
Drug efflux pathway | P-gp, MRPs | Upregulates P-gp, MRPs’ expression | Resistance to multidrug treatment | [134] |
Glycolysis–hedgehog pathway | AKR1C3 | Promotes AKR1C3 expression, activates Hedgehog axis | Resistance to lenalidomide | [96] |
EGFR/AKT/ERK-KRAS pathway | KRAS | Activates the EGFR/AKT/ERK pathway and promotes the localization of KRAS membranes | Resistance to cetuximab | [114] |
PPP | PLK1, G6PD | Activates PPP | Resistance to paclitaxel and cisplatin | [115] |
Glycolysis | HK2/PDK1 | Upregulates HK2/PDK1, promotes the lactylation of H3K18 (H3K18la) positive feedback | Resistance to cisplatin | [116] |
Lipid synthesis | ING5 | The SRF–YY1 complex upregulates ING5 expression | Resistance to sorafenib | [117] |
Sphingolipidosis unspecified | GALC | Inhibits GALC | Resistance to doxorubicin | [118] |
Immune checkpoint pathways | PD-L1, LAG-3, TIM3 | Upregulates PD-L1, LAG-3, and TIM3 | Resistance to cisplatin | [122] |
Immune escape | CD47 | Upregulates CD47 and inhibits phagocytosis by macrophages | Resistance to immunotherapy | [123] |
Immunosuppression | CTLA-4 | Upregulates CTLA-4 | Resistance to immunotherapy | [123] |
Glycolysis/T cell | HK2/PDK1 | Activates HK2/PDK1 | Resistance to immunotherapy and chemotherapy | [116] |
Immunosuppression | TGF-β, IL-10 | Upregulates TGF-β and IL-10 | Resistance to immunotherapy | [135] |
Immune resistance | IL-2 | YY1 and EZH2 synergistically inhibit IL-2 | Resistance to immunotherapy | [127] |
IL-32-β5-Integrin-Src-Akt | IL-32 | Upregulates IL-32 | Resistance to tyrosine kinase inhibitors | [129] |
FXR-MRP2 | FXR | IL-18 inhibits FXR activity and simultaneously activates the NF-κB/YY1 axis | Resistance to multidrug treatment | [130] |
HIF-1α-VEGF | VEGF | Upregulates VEGF | Resistance to immunotherapy | [41] |
SMAD3/4-FOXP3-T | FOXP3 | YY1 binds to SMAD3/4 and inhibits FOXP3 transcription | Resistance to immunotherapy | [132] |
Amino acid metabolism | FGD6 | YY1 and YAP synergistically bind to the FGD6 promoter | Resistance to mTOR inhibitors | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Jia, X.; Meliala, I.T.S.; Li, Y.; Kasim, V. Yin Yang 1 (YY1) as a Central Node in Drug Resistance Pathways: Potential for Combination Strategies in Cancer Therapy. Biomolecules 2025, 15, 1069. https://doi.org/10.3390/biom15081069
Li Z, Jia X, Meliala ITS, Li Y, Kasim V. Yin Yang 1 (YY1) as a Central Node in Drug Resistance Pathways: Potential for Combination Strategies in Cancer Therapy. Biomolecules. 2025; 15(8):1069. https://doi.org/10.3390/biom15081069
Chicago/Turabian StyleLi, Zhiyan, Xiang Jia, Ian Timothy Sembiring Meliala, Yanjun Li, and Vivi Kasim. 2025. "Yin Yang 1 (YY1) as a Central Node in Drug Resistance Pathways: Potential for Combination Strategies in Cancer Therapy" Biomolecules 15, no. 8: 1069. https://doi.org/10.3390/biom15081069
APA StyleLi, Z., Jia, X., Meliala, I. T. S., Li, Y., & Kasim, V. (2025). Yin Yang 1 (YY1) as a Central Node in Drug Resistance Pathways: Potential for Combination Strategies in Cancer Therapy. Biomolecules, 15(8), 1069. https://doi.org/10.3390/biom15081069