Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (472)

Search Parameters:
Keywords = renewable marine energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3220 KiB  
Article
Distributed Energy Management for Ship-Integrated Energy System Under Marine Environmental Risk Field
by Yuxin Zhang, Yang Xiao and Tieshan Li
Energies 2025, 18(15), 4163; https://doi.org/10.3390/en18154163 - 6 Aug 2025
Abstract
To reduce carbon emissions in the shipping industry, the energy management problem of the ship-integrated energy system (S-IES) is analyzed in this paper. Firstly, a marine environmental risk field model is constructed to quantify the degree of hazard when designing the sailing route. [...] Read more.
To reduce carbon emissions in the shipping industry, the energy management problem of the ship-integrated energy system (S-IES) is analyzed in this paper. Firstly, a marine environmental risk field model is constructed to quantify the degree of hazard when designing the sailing route. Meanwhile, an energy management model that considers both economic and environmental benefits is developed to enhance the penetration rate of renewable resources. Subsequently, a distributed energy management algorithm based on finite-time consensus theory is proposed to ensure a rapid and accurate response to load demand. Moreover, a mathematical analysis is provided to demonstrate the algorithm’s effectiveness. Finally, the sea area between Singapore Port (Singapore) and Penang Port (Malaysia) is chosen as the simulation environment. The experimental results demonstrate the effectiveness of energy management for the S-IES. Full article
Show Figures

Figure 1

28 pages, 11518 KiB  
Article
Identifying Sustainable Offshore Wind Farm Sites in Greece Under Climate Change
by Vasiliki I. Chalastani, Elissavet Feloni, Carlos M. Duarte and Vasiliki K. Tsoukala
J. Mar. Sci. Eng. 2025, 13(8), 1508; https://doi.org/10.3390/jmse13081508 - 5 Aug 2025
Abstract
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms [...] Read more.
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms (OWFs) is a challenge for renewable energy policy and marine spatial planning (MSP). To address these issues, this study considers the marine space of Greece to propose a GIS-based multi-criteria decision-making (MCDM) framework employing the Analytic Hierarchy Process (AHP) to identify suitable sites for OWFs. The approach assesses 19 exclusion criteria encompassing legislative, environmental, safety, and technical constraints to determine the eligible areas. Subsequently, 10 evaluation criteria are weighted to determine the selected areas’ level of suitability. The study considers baseline conditions (1981–2010) and future climate scenarios based on RCP 4.5 and RCP 8.5 for two horizons (2011–2040 and 2041–2070), integrating projected wind velocities and sea level rise to evaluate potential shifts in suitable areas. Results indicate the central and southeastern Aegean Sea as the most suitable areas for OWF deployment. Climate projections indicate a modest increase in suitable areas. The findings serve as input for climate-resilient MSP seeking to promote sustainable energy development. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

15 pages, 2188 KiB  
Article
Research and Simulation Analysis on a Novel U-Tube Type Dual-Chamber Oscillating Water Column Wave Energy Conversion Device
by Shaohui Yang, Haijian Li, Yan Huang, Jianyu Fan, Zhichang Du, Yongqiang Tu, Chenglong Li and Beichen Lin
Energies 2025, 18(15), 4141; https://doi.org/10.3390/en18154141 - 5 Aug 2025
Viewed by 157
Abstract
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine [...] Read more.
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine environments, limiting their long-term viability and efficiency. To address these limitations, this paper proposes a novel U-tube type dual chamber OWC wave energy conversion device integrated within a marine vehicle. The research involves the design of a U-tube dual-chamber OWC device, which utilizes the pitch motion of a marine vehicle to drive the oscillation of water columns within the U-tube, generating reciprocating airflow that drives an air turbine. Numerical simulations using computational fluid dynamics (CFD) were conducted to analyze the effects of various structural dimensions, including device length, width, air chamber height, U-tube channel width, and bottom channel height, on the aerodynamic power output. The simulations considered real sea conditions, focusing on low-frequency waves prevalent in China’s sea areas. Simulation results reveal that increasing the device’s length and width substantially boosts aerodynamic power, while air chamber height and U-tube channel width have minor effects. These findings provide valuable insights into the optimal design of U-tube dual-chamber OWC devices for efficient wave energy conversion, laying the foundation for future physical prototype development and experimental validation. Full article
Show Figures

Figure 1

31 pages, 9769 KiB  
Review
Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges
by Enrique Delgado-Alvarado, Enrique A. Morales-Gonzalez, José Amir Gonzalez-Calderon, Ma. Cristina Irma Peréz-Peréz, Jesús Delgado-Maciel, Mariana G. Peña-Juarez, José Hernandez-Hernandez, Ernesto A. Elvira-Hernandez, Maximo A. Figueroa-Navarro and Agustin L. Herrera-May
Technologies 2025, 13(8), 336; https://doi.org/10.3390/technologies13080336 - 2 Aug 2025
Viewed by 378
Abstract
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and [...] Read more.
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and harm marine ecosystems. This ocean energy can be harnessed through hybrid nanogenerators that combine triboelectric nanogenerators, electromagnetic generators, piezoelectric nanogenerators, and pyroelectric generators. These nanogenerators have advantages such as high-power density, robust design, easy operating principle, and cost-effective fabrication. However, the performance of these nanogenerators can be affected by the wear of their main components, reduction of wave frequency and amplitude, extreme corrosion, and sea storms. To address these challenges, future research on hybrid nanogenerators must improve their mechanical strength, including materials and packages with anti-corrosion coatings. Herein, we present recent advances in the performance of different hybrid nanogenerators to harvest ocean energy, including various transduction mechanisms. Furthermore, this review reports potential applications of hybrid nanogenerators to power devices in marine infrastructure or serve as self-powered MIoT monitoring sensor networks. This review discusses key challenges that must be addressed to achieve the commercial success of these nanogenerators, regarding design strategies with advanced simulation models or digital twins. Also, these strategies must incorporate new materials that improve the performance, reliability, and integration of future nanogenerator array systems. Thus, optimized hybrid nanogenerators can represent a promising technology for ocean energy harvesting with application in the maritime industry. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 - 2 Aug 2025
Viewed by 133
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
Show Figures

Figure 1

39 pages, 2898 KiB  
Review
Floating Solar Energy Systems: A Review of Economic Feasibility and Cross-Sector Integration with Marine Renewable Energy, Aquaculture and Hydrogen
by Marius Manolache, Alexandra Ionelia Manolache and Gabriel Andrei
J. Mar. Sci. Eng. 2025, 13(8), 1404; https://doi.org/10.3390/jmse13081404 - 23 Jul 2025
Viewed by 737
Abstract
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. [...] Read more.
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. Floating solar photovoltaic (FPV) technology is gaining recognition as an innovative renewable energy option, presenting benefits like minimized land requirements, improved cooling effects, and possible collaborations with hydropower. This study aims to assess the levelized cost of electricity (LCOE) associated with floating solar initiatives in offshore and onshore environments. Furthermore, the LCOE is assessed for initiatives that utilize floating solar PV modules within aquaculture farms, as well as for the integration of various renewable energy sources, including wind, wave, and hydropower. The LCOE for FPV technology exhibits considerable variation, ranging from 28.47 EUR/MWh to 1737 EUR/MWh, depending on the technologies utilized within the farm as well as its geographical setting. The implementation of FPV technology in aquaculture farms revealed a notable increase in the LCOE, ranging from 138.74 EUR/MWh to 2306 EUR/MWh. Implementation involving additional renewable energy sources results in a reduction in the LCOE, ranging from 3.6 EUR/MWh to 315.33 EUR/MWh. The integration of floating photovoltaic (FPV) systems into green hydrogen production represents an emerging direction that is relatively little explored but has high potential in reducing costs. The conversion of this energy into hydrogen involves high final costs, with the LCOH ranging from 1.06 EUR/kg to over 26.79 EUR/kg depending on the complexity of the system. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

19 pages, 6291 KiB  
Article
Tidal Current Energy Assessment and Exploitation Recommendations for Semi-Enclosed Bay Straits: A Case Study on the Bohai Strait, China
by Yuze Song, Pengcheng Ma, Zikang Li, Yilin Zhai, Dan Li, Hongyuan Shi and Chao Li
Energies 2025, 18(14), 3787; https://doi.org/10.3390/en18143787 - 17 Jul 2025
Viewed by 169
Abstract
Against the backdrop of increasingly depleted global non-renewable resources, research on renewable energy has become urgently critical. As a significant marine clean energy source, tidal current energy has attracted growing scholarly interest, effectively addressing global energy shortages and fossil fuel pollution. Semi-enclosed bay [...] Read more.
Against the backdrop of increasingly depleted global non-renewable resources, research on renewable energy has become urgently critical. As a significant marine clean energy source, tidal current energy has attracted growing scholarly interest, effectively addressing global energy shortages and fossil fuel pollution. Semi-enclosed bay straits, with their geographically advantageous topography, offer substantial potential for tidal energy exploitation. China’s Bohai Strait exemplifies such a geomorphological feature. This study focuses on the Bohai Strait, employing the Delft3D model to establish a three-dimensional numerical simulation of tidal currents in the region. Combined with the Flux tidal energy assessment method, the tidal energy resources are evaluated, and exploitation recommendations are proposed. The results demonstrate that the Laotieshan Channel, particularly its northern section, contains the most abundant tidal energy reserves in the Bohai Strait. The Laotieshan Channel has an average power flux density of 50.83 W/m2, with a tidal energy potential of approximately 81,266.5 kW, of which about 12,189.97 kW is technically exploitable. Particularly in its northern section, favorable flow conditions exist—peak current speeds can reach 2 m/s, and the area offers substantial effective power generation hours. Annual durations with flow velocities exceeding 0.5 m/s total around 4500 h, making this zone highly suitable for deploying tidal turbines. To maximize the utilization of tidal energy resources, installation within the upper 20 m of the water layer is recommended. This study not only advances tidal energy research in semi-enclosed bay straits but also provides a critical reference for future studies, while establishing a foundational framework for practical tidal energy development in the Bohai Strait region. Full article
Show Figures

Figure 1

23 pages, 2079 KiB  
Article
Offshore Energy Island for Sustainable Water Desalination—Case Study of KSA
by Muhnad Almasoudi, Hassan Hemida and Soroosh Sharifi
Sustainability 2025, 17(14), 6498; https://doi.org/10.3390/su17146498 - 16 Jul 2025
Viewed by 469
Abstract
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework [...] Read more.
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework was developed to assess site feasibility based on renewable energy potential (solar, wind, and wave), marine traffic, site suitability, planned developments, and proximity to desalination facilities. Data was sourced from platforms such as Windguru and RETScreen, and spatial analysis was conducted using Inverse Distance Weighting (IDW) and Multi-Criteria Decision Analysis (MCDA). Results indicate that the central Red Sea region offers the most favorable conditions, combining high renewable resource availability with existing infrastructure. The estimated regional desalination energy demand of 2.1 million kW can be met using available renewable sources. Integrating these sources is expected to reduce local CO2 emissions by up to 43.17% and global desalination-related emissions by 9.5%. Spatial constraints for offshore installations were also identified, with land-based solar energy proposed as a complementary solution. The study underscores the need for further research into wave energy potential in the Red Sea, due to limited real-time data and the absence of a dedicated wave energy atlas. Full article
Show Figures

Figure 1

26 pages, 2032 KiB  
Review
A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling
by Mustafa Rezaei, Gabriela Sanchez-Lecuona and Omid Abdolazimi
Minerals 2025, 15(7), 720; https://doi.org/10.3390/min15070720 - 9 Jul 2025
Viewed by 975
Abstract
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This [...] Read more.
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This review presents a comprehensive overview of REE geochemistry, mineralogy, and major deposit types including carbonatites, alkaline igneous rocks, laterites, placer deposits, coal byproducts, and marine sediments. It also highlights the global distribution and economic potential of key REE projects. The integration of machine learning has further enhanced exploration by enabling deposit classification and geochemical modeling, especially in data-limited regions. Environmental and health challenges associated with REE mining, processing, and electronic waste (e-waste) recycling are studied, along with the expanding use of REEs in agriculture and medicine. Some recycling efforts offer promise for supply diversification, but significant technological and economic barriers remain. Ensuring a secure and sustainable REE supply will require integrated approaches combining advanced analytics, machine learning, responsible extraction, and coordinated policy efforts. The present review offers a general overview that can be useful for informing future studies and resource-related discussions. Full article
Show Figures

Figure 1

59 pages, 4824 KiB  
Review
Impacts of Climate Change on Oceans and Ocean-Based Solutions: A Comprehensive Review from the Deep Learning Perspective
by Xin Qiao, Ke Zhang and Weimin Huang
Remote Sens. 2025, 17(13), 2306; https://doi.org/10.3390/rs17132306 - 4 Jul 2025
Viewed by 728
Abstract
Climate change poses significant threats to oceans, leading to ocean acidification, sea level rise, and sea ice loss and so on. At the same time, oceans play a crucial role in climate change mitigation and adaptation, offering solutions such as renewable energy and [...] Read more.
Climate change poses significant threats to oceans, leading to ocean acidification, sea level rise, and sea ice loss and so on. At the same time, oceans play a crucial role in climate change mitigation and adaptation, offering solutions such as renewable energy and carbon sequestration. Moreover, the availability of diverse ocean data sources, both remote sensing observations and in situ measurements, provides unprecedented opportunities to monitor these processes. Remote sensing data, with its extensive spatial coverage and accessibility, forms the foundation for accurately capturing changes in ocean conditions and developing data-driven solutions. This review explores the dual relationship between climate change and oceans, focusing on the impacts of climate change on oceans and ocean-based strategies to combat these challenges. From the artificial intelligence perspective, this study systematically analyzes recent advances in applying deep learning techniques to understand changes in ocean physical properties and marine ecosystems, as well as to optimize ocean-based climate solutions. By evaluating existing methodologies and identifying knowledge gaps, this review highlights the pivotal role of deep learning in advancing ocean-related climate research, outlines existing current challenges, and provides insights into potential future directions. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

20 pages, 4718 KiB  
Article
Wind Energy Development on Lake Huron: An Offshore Foundation Design Perspective
by Clare Burnley and Shunde Yin
Processes 2025, 13(7), 2118; https://doi.org/10.3390/pr13072118 - 3 Jul 2025
Viewed by 360
Abstract
The popularity of offshore wind farming is accelerating, and researchers are exploring the possibility of implementing offshore wind turbines across the Great Lakes. Offshore wind turbines operate using the same principles as regular wind turbines, but require complex foundation design to withstand high [...] Read more.
The popularity of offshore wind farming is accelerating, and researchers are exploring the possibility of implementing offshore wind turbines across the Great Lakes. Offshore wind turbines operate using the same principles as regular wind turbines, but require complex foundation design to withstand high shear forces from waves. Extensive site characterization is necessary to effectively design detailed offshore wind turbine structures. High cost and time commitments, along with policy and societal considerations, have limited present research on offshore wind feasibility in the Great Lakes. This study focuses on wave impacts, assessing popular offshore wind farms and identifying monopile foundations as the optimal design for a hypothetical offshore wind farm in the lime bedrock of Lake Huron. RSPile is used to assess the stability of the proposed foundation design against deflection, bending, and rotation under average wave forces and extreme storm events. Ultimately, preliminary analysis recommends an 8 m diameter pipe embedded 30 m into the seabed to satisfy industry standards for offshore wind turbine foundation design. Full article
Show Figures

Figure 1

39 pages, 2307 KiB  
Article
Modeling of Energy Management System for Fully Autonomous Vessels with Hybrid Renewable Energy Systems Using Nonlinear Model Predictive Control via Grey Wolf Optimization Algorithm
by Harriet Laryea and Andrea Schiffauerova
J. Mar. Sci. Eng. 2025, 13(7), 1293; https://doi.org/10.3390/jmse13071293 - 30 Jun 2025
Viewed by 320
Abstract
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear [...] Read more.
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC) with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—and is benchmarked against a conventional rule-based (RB) method. The HRES architecture comprises photovoltaic arrays, vertical-axis wind turbines (VAWTs), diesel engines, generators, and a battery storage system. A ship dynamics model was used to represent propulsion power under realistic sea conditions. Simulations were conducted using real-world operational and environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF). Performance is evaluated using marine-relevant indicators—fuel consumption; emissions; battery state of charge (SOC); and emission cost—and validated using standard regression metrics. The NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches, achieving high prediction accuracy and greater energy efficiency. These results confirm the reliability and optimization capability of predictive EMS frameworks in reducing emissions and operational costs in autonomous maritime operations. Full article
(This article belongs to the Special Issue Advancements in Hybrid Power Systems for Marine Applications)
Show Figures

Figure 1

20 pages, 1080 KiB  
Article
Blue Horizons for Resilient Islands: Legal–Technological Synergies Advancing SDG 7 and 13 Through the UNCLOS–Paris Agreement Integration in SIDS’ Energy Transitions
by Steel Rometius and Xiaoxue Wei
Sustainability 2025, 17(13), 6011; https://doi.org/10.3390/su17136011 - 30 Jun 2025
Viewed by 462
Abstract
Small island developing states (SIDS) face a dual constraint of “environmental vulnerability and energy dependence” in the context of climate change. How to achieve just energy transitions has become a core proposition for SIDS to address. This paper focuses on how SIDS can [...] Read more.
Small island developing states (SIDS) face a dual constraint of “environmental vulnerability and energy dependence” in the context of climate change. How to achieve just energy transitions has become a core proposition for SIDS to address. This paper focuses on how SIDS can advance Sustainable Development Goal (SDG) 7 (affordable and clean energy) and Sustainable Development Goal 13 (climate action) through UNCLOS–Paris Agreement integration in energy transitions. Grounded in the theoretical framework of the Multidimensional Vulnerability Index (MVI), this research aims to construct a comprehensive analytical system that systematically examines the energy transition challenges facing SIDS and provide multi-level energy transition solutions spanning from international to domestic contexts for climate-vulnerable SIDS. The research findings reveal that SIDS face a structural predicament of “high vulnerability–low resilience” and the triple challenge of “energy–climate–development”. International climate finance is severely mismatched with the degree of vulnerability in SIDS; the United Nations Convention on the Law of the Sea (UNCLOS) and the Paris Agreement lack institutional synergy and fail to adequately support marine renewable energy development in SIDS. In response to these challenges, this study proposes multi-level solutions to promote the synergistic achievement of SDG 7 and SDG 13: at the international level, improve climate finance rules, innovate financing mechanisms, strengthen technological cooperation, and integrate relevant international legal framework; at the domestic level, optimize the layout of marine renewable energy development, construct sustainable investment ecosystems, and strengthen environmental scientific research and local data governance. Full article
(This article belongs to the Special Issue New Horizons: The Future of Sustainable Islands)
Show Figures

Figure 1

14 pages, 8001 KiB  
Article
Preparation of Transparent MTMS/BNNS Composite Siloxane Coatings with Anti-Biofouling Properties
by Lu Cao, Zhutao Ding, Qi Chen, Yefeng Ji, Ying Xiong, Yun Gao and Zhongyan Huo
Coatings 2025, 15(7), 769; https://doi.org/10.3390/coatings15070769 - 29 Jun 2025
Viewed by 389
Abstract
With the rapid development of marine renewable energy, especially offshore photovoltaic systems, the problem of biofouling of photovoltaic equipment in the marine environment has become increasingly prominent. The attachment of marine organisms such as algae will significantly affect the photoelectric conversion efficiency of [...] Read more.
With the rapid development of marine renewable energy, especially offshore photovoltaic systems, the problem of biofouling of photovoltaic equipment in the marine environment has become increasingly prominent. The attachment of marine organisms such as algae will significantly affect the photoelectric conversion efficiency of photovoltaic panels, thereby reducing the stability and economy of the system. In this study, a composite siloxane coating was designed and prepared. Methyltrimethoxysilane (MTMS) was used as the organosilicon component. The negative potential of the coating was significantly enhanced by incorporating hexagonal boron nitride nanosheets (h-BNNS). This negative potential and the negative charge on the surface of marine organisms, especially algae, would produce electrostatic repulsion, which can effectively reduce the attachment of organisms. The results show that the prepared coating exhibits excellent performance in anti-biofouling, adhesion, chemical stability, transparency, and self-cleaning properties. The transparency of the coating reached 92.7%. After immersion with Chlorella for 28 days, the coverage percentage on the coating surface was only 0.98%, while the coverage percentage on the blank sample was 23.25%. The corrosion resistance and salt resistance of the coating also ensure its stability in complex marine environments, and it has broad application prospects. Full article
(This article belongs to the Special Issue Advanced Polymer Coatings: Materials, Methods, and Applications)
Show Figures

Graphical abstract

31 pages, 6519 KiB  
Article
Nature-Based Environmental Citizenship Education for Sustainability: A Case Study from Türkiye
by Ümit İzgi Onbaşılı and Feride Ercan Yalman
Sustainability 2025, 17(13), 5917; https://doi.org/10.3390/su17135917 - 27 Jun 2025
Viewed by 558
Abstract
As global environmental challenges intensify, there is an increasing need to equip younger generations with the knowledge, values, and sense of responsibility necessary for a sustainable future. This study explores how environmental citizenship education (ECE), implemented through a nature-based learning program within a [...] Read more.
As global environmental challenges intensify, there is an increasing need to equip younger generations with the knowledge, values, and sense of responsibility necessary for a sustainable future. This study explores how environmental citizenship education (ECE), implemented through a nature-based learning program within a Nature and Science School (NSS) in Türkiye, was experienced and interpreted by primary school pupils in relation to their development of understanding of sustainability and environmental citizenship. NSSs, integrated into the formal education system by the Turkish Ministry of National Education, offer inquiry-driven and experiential learning in natural settings. The study took place in Talat Göktepe Grove, a biodiverse site including forest and marine ecosystems, where a four-month ECE program was conducted. A holistic single-case study design was employed, drawing on pupil diaries and semi-structured interviews. A total of 88 pupils engaged in structured outdoor activities addressing biodiversity, sustainability, and the climate crisis. Initially, pupils described environmental citizenship through individual actions. Over time, their perspectives expanded to include civic participation, environmental rights, and collective responsibility. Their reflections also revealed a more nuanced understanding of sustainability, encompassing concepts such as ecosystem balance, renewable energy, and environmental justice. The study provides insight into how nature-based education may support meaning-making around environmental citizenship and sustainability in early education. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

Back to TopTop