Impacts of Climate Change on Oceans and Ocean-Based Solutions: A Comprehensive Review from the Deep Learning Perspective
Abstract
1. Introduction
- Which DL architectures demonstrate high performance for different types of oceanography problems?
- Which physical processes in the ocean are poorly modeled by existing DL approaches and why?
- How do different types of oceanography data (satellite, in situ, reanalysis) affect the performance of DL models?
- How is the problem of different spatiotemporal resolutions in multisensory data (satellite observations) addressed?
2. Data: Foundations of Ocean Studies
2.1. Observational Data
2.1.1. Remote Sensing Data
Optical Remote Sensing
SAR
GNSS-R
Passive Microwave
LiDAR
X-Band Radar
HF Radar
Acoustic Remote Sensing
2.1.2. In Situ Observation Data
2.2. Model Data
2.3. Reanalysis Data
- ERA5: The fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF), known as ERA5, integrates satellite observations, in situ measurements, and numerical model analyses to produce high-quality datasets [57]. ERA5 offers data at varying spatial and temporal resolutions, such as sea surface wind speed at 0.25 resolution and wave height at 0.5 resolution, with an hourly time step [58,59]. This comprehensive dataset supports a wide range of applications in meteorology, oceanography, and climate research.
- SODA: The Simple Ocean Data Assimilation (SODA) dataset, developed by the University of Maryland, combines historical satellite observations, buoy data, ship-based measurements, and other observations with physical ocean models, providing high-resolution, three-dimensional representations of ocean states. This dataset is widely used for studying long-term oceanographic changes and validating global climate models [60].
- GODAS: Produced by the U.S. National Centers for Environmental Prediction, Global Ocean Data Assimilation System (GODAS) integrates observational data with numerical models to generate high-resolution gridded datasets of oceanic variables, such as temperature, salinity, and current [61]. This reanalysis data focus on seasonal forecasting, especially the prediction of El Niño-Southern Oscillation (ENSO), making it a crucial tool for climate research and weather prediction [62].
- OISST: The Optimum Interpolation Sea Surface Temperature (OISST) dataset, provided by the U.S. National Centers for Environmental Information (NCEI), integrates in situ observations with satellite measurements and applies an interpolation algorithm to create consistent, gap-filled SST fields. These datasets are essential for analyzing SST trends, monitoring marine heatwaves (MHWs), and supporting climate predictions [63,64].
- GLORYS: Developed by the European Copernicus Marine Environment Monitoring Service (CMEMS), Global Ocean Reanalysis and Simulation (GLORYS) reanalysis products provide global datasets with a high spatial resolution of 1/12 (approximately 8 km). These datasets include variables for currents, sea level, temperature, salinity, mixed layer depth, and ice parameters, making them valuable for oceanographic and climate studies [65].
3. DL Models for Ocean Studies
3.1. MLP
3.2. Convolution-Based Architecture
3.2.1. Vanilla CNNs
3.2.2. U-Net
3.3. RNN
3.4. GAN
3.5. ViT
4. Impact of Climate Change on Oceans: Leveraging DL for Monitoring and Analysis
4.1. Understanding Impacts on Physical Properties via DL
4.1.1. Applying DL to Estimate Ocean pH Levels
4.1.2. DL for Predicting Ocean Warming Trends and Associated Extreme Weather Events
Area | Reference | Application | Data | Model | Results |
---|---|---|---|---|---|
Ocean pH | Li et al. [99] | pH Estimation | SST, SSS, dissolved oxygen, nitrate, phosphate, silicate, spatial coordinates, time (cruises); SST, SSS, dissolved oxygen, nitrate, phosphate, silicate (FVCOM) | ANN | pH RMSE = 0.04. |
Jiang et al. [100] | pH Estimation | pCO2, SSS, SST (LDEO); pCO2, SSS, SST, TA, pH (GLODAP); Chl, SST, RRS (MODIS-Aqua) U-wind, V-wind (CCMP); MLD (CMEMS) | RF, GRNN, FFNN | Global pH Product: High-resolution (0.25° × 0.25°) monthly pH maps (2004–2019). Model Accuracy: R2 = 0.54, RMSE = 0.029. | |
Wang et al. [101] | pH Estimation | SST, SSS, Chl, pCO2, pH (CMEMS); pH (KEO, CCE1, Kaneohe stations) | LR, RF, BP-NN | R2 = 0.9702, RMSE = 0.0074. | |
Osborne et al. [103] | pH Estimation | DIC, TA, fCO2 (GOMECC); SST, SSS, Chl, pH, nitrate, oxygen, pressure (BGC-Argo) | GOM-NNpH | pH RMSE = 0.008. | |
Shaik et al. [107] | TA Estimation | SST, SSS, nitrate, TA (GLODAP); SST (MODIS-Aqua); nitrate (WOA2018); SSS (MMOI-SSS) | MLP, RF, TabNet | TA RMSE = 3.08 µmol/kg, R2 = 0.99. | |
Galdies et al. [106] | pH & TA Estimation | DIC, TA, pH, SST, SSS (OCADS); Wind speed, direction, stress (ASCAT); Chl, RRS (MODIS-Aqua), PIC, POC (VIRRS); SSS (SMOS); SST (OISST); MLD (CMEMS) | ANN | Produced high-resolution (0.04° × 0.04°) daily maps of DIC, TA, and pH. Model Accuracy: TA bias = 4 µmol/kg, pH bias = −0.025. | |
SST, ENSO, and MHWs | Taylor et al. [118] | SST Prediction | SST, 2 m air temperature (ERA5) | U-Net-LSTM | RMSE increased slightly with lead time: from 0.48 °C (1 month) to 0.63 °C (18 months). |
Qi et al. [117] | SST Prediction | SST (OISST); sea surface wind (CCMP) and height anomalies (CMEMS) | 3D U-Net | RMSE increased from approximately 0.3 °C to 0.7 °C during the 1-day to 30-day prediction period. | |
Dai et al. [119] | SST Prediction | SST (OISST) | TransDtSt-Part model, a Transformer-based architecture | The RMSE ranged from 0.754 °C to 0.895 °C for the South China Sea and from 0.793 °C to 0.920 °C for the East China Sea over prediction horizons of 30 to 360 days. | |
Kim et al. [121] | Super Resolution | SST (OISST, OSTIA, G1SST, ERA5, buoys from KMA and NIFS) | GAN | RMSE = 1.60 °C for upscaling 2.5× on global ocean data. | |
Song et al. [139] | ENSO Forecast | SSTA, HCA (CMIP5, SODA, GODAS) | Spatial-Temporal Transformer Network | Achieved a correlation greater than 0.5 for predictions up to 18 months. | |
Li et al. [154] | ENSO Forecast | SSTA (ERSST, OISST); HCA (SODA, GODAS) | SERCNN, residual CNN with squeeze-and-excitation attention block | Indian and Atlantic HCA extended ENSO predictability by one season. | |
Xie et al. [149] | MHW Prediction | SST (OISST); SSHA (CMEMS); sea surface wind (CCMP) | 3D U-Net | Achieved RMSE ranging from 0.31 °C (1-day lead) to 0.69 °C (30-day lead) for SST prediction. Successfully detected MHW events in 2021. | |
Sun et al. [152] | MHW Prediction | SSTA (OISST) | U-Net & ConvLSTM | MHW forecast accuracy decreased with time from 0.92 (1-day), 0.89 (3-day), 0.88 (5-day), to 0.87 (7-day). | |
Sea Ice | Zhang et al. [155] | Detection | Sentinel-1 SAR image | MSDA-Net, ConvNeXt architecture embedded with an attention mechanism | MIoU = 93.0%, Precision = 96.3%, Recall = 98.1%, F1-score = 97.2%. |
Ren et al. [156] | Detection | Sentinel-1 SAR image, NSIDC sea ice product | DAU-Net, attention mechanism with U-Net | Accuracy = 94.39%, IoU = 0.8673, Precision = 0.9355, Recall = 0.9225 | |
Rogers et al. [157] | Detection | Sentinel-1 SAR image, MODIS-Terra MSI image | ViSual_IceD, a U-Net-based model with dual-encoder | Accuracy = 0.942, F1-score = 0.972 | |
Chen et al. [158] | Classification | Sentinel-1 SAR image; brightness temperature data (AMSR2); 2 m air temperature, 10 m wind speed, total column water vapor, total column cloud liquid water (ERA5); sea ice chart (Canadian and Greenland Ice Service) | Multitask U-Net | SIC: R2 = 91.7%; SOD: F1-score = 88.2%; FLOE: F1-score = 76.4%. | |
Hong et al. [159] | Classification | GFGE dataset (Gaofen optical image and Google Earth image); HY dataset (Gaofen optical image from the 2021 Gaofen Challenge); SI-STSAR-7 dataset (Sentinel-1 SAR image) | SeaIceNet, a Global–Local Transformer-based model | GFGE: OA = 91.84%, F1-score = 84.91%; HY: OA = 99.22%, F1-score = 97.27%; SI-stsar-7: OA = 98.75%, F1-score = 98.88%. | |
Jiang et al. [160] | SIC Prediction | SIC (NSIDC) | SICFormer, a model based on a 3D-Swin Transformer architecture | MAE = 1.89%, RMSE = 5.98%, MAPE = 4.31% | |
Sea Level | Yang et al. [161] | Tide Level Forecast | Tide level data (ten ports including Keelung, Taipei, Penghu, etc.) | MLP | Averaged RMSE across ten ports achieved 0.07 m. |
Shahabi et al. [162] | Storm Surge Prediction | Wind velocity of magnitude and azimuth direction (CFSR); astronomical tides (10 NOAA stations) | CNN-LSTM | RMSE = 0.114 m, CC = 0.94. | |
Mulia et al. [163] | Storm Surge Prediction | Typhoon best track data (IBTrACS); wind, sea level pressure (JODC); storm surge (JMA); bathymetry data (GEBCO) | GAN | RMSE = 0.12 m (6 h); RMSE = 0.13 m (12 h). | |
Nieves et al. [164] | Sea Level Prediction | SLA (CMEMS); Upper-Ocean Temperature Anomalies for 0–100 m and 0–700 m, OHC for 0–700 m (NCEI) | LSTM | Achieved 1–2 year forecast. | |
Raj. et al. [165] | Sea Level Prediction | sea level height, air temperature, water temperature, wind speed and direction, wind gust, and barometric pressure (BOM, Australian) | CNN-BiGRU | Milner Bay: RMSE = 0.0248 m, MAPE = 1.748%; Darwin: RMSE = 0.1016 m, MAPE = 2.412%. | |
Sabililah et al. [166] | Sea Level Prediction | sea level data (IDSL) | Transformer | 1-Day Prediction: RMSE = 0.033 m, CC = 0.997. 7-Day Prediction: RMSE = 0.037 m, CC = 0.998. 14-Day Prediction: RMSE = 0.033 m, CC = 0.997. |
4.1.3. Advancing Sea Ice Monitoring and Prediction with DL
4.1.4. Predicting Sea Level Rise with DL
4.2. Unveiling Changes in Different Vulnerable Marine Ecosystems Using AI
4.2.1. DL Applications for Coral Reef Monitoring
Area | Reference | Application | Data | Model | Results |
---|---|---|---|---|---|
Coral Reef | Zhang et al. [197] | Classification | GF-2 MSI image | GCU-Net, a U-Net model integrating convolutional attention and geospatial cognition | North Reef: OA = 90.46%, Kappa = 0.88; Zhaoshu Island: OA = 88.92%, Kappa = 0.88. |
Li et al. [196] | Classification | Planet Dove Satellite RGB imagery; reef extent data (MCRMP) | Dense U-Net | Precision = 0.76, Recall = 0.59, F1-score = 0.66, Accuracy = 0.93. | |
Zhong et al. [195] | Classification | Leica ADS40 MSI; ICESat-2 LiDAR data; NOAA-provided bathymetry LiDAR data; Puerto Rico Benthic Habitats and Geomorphic Zone Classification Map | CNN and RF | Coffin Island: OA = 91.91%, Kappa = 0.9013; Punta Vaquero: OA = 89.91%, Kappa = 0.8735. | |
Zhou et al. [198] | Classification | ICESat-2 LiDAR data; MSI provided by Sentinel-2 and PlanetScope; ground-truth benthic images from in situ sampling | CR Transformer | Accuracy = 95.71%, mIoU = 91.25%. | |
Zhang et al. [202] | Classification | RGB images (Moorea IDEA project) with manual annotations | Cnet | mIoU = 81.83%, F1-score = 89.87%. | |
Sauder et al. [203] | 3D Mapping | Ego-motion videos | U-Net with ResNet34 backbone for depth and pose estimation; U-Net with ResNeXt50 backbone for segmentation | Total pixel accuracy = 84.1%; Mean class accuracy = 68.8%; 3D reconstruction in 18 frames per second. | |
Giles et al. [205] | Coral Bleaching Detection | RGB imagery collected by a drone over 5 time periods; Ground truth data collected via in situ transects during three time periods. | mRES-uNet | Unbleached coral classification: Precision = 0.96, Recall = 0.92; Bleached coral classification: Precision = 0.28, Recall = 0.58. | |
Shlesinger et al. [206] | Coral Bleaching Detection | Environmental variables including coral cover, depth, latitude, longitude, distance to shore, temperature, etc. (Global Coral Bleaching Database) | MLP | Coral bleaching was consistently linked to high sea-surface temperatures and temperature anomalies. | |
Seaweed | Zhu et al. [211] | Seaweed Classification | Sentinel-2 MSI; spectral and coordinate measurements from field sampling | U-Net, DeepLabv3, SegNet | UNet achieved the highest accuracy for Lvshunkou Region: OA = 94.56%, Kappa = 0.905, and for Jinzhou Region: OA = 94.68%, Kappa = 0.913. |
Gerlo et al. [212] | Seaweed Classification | Underwater stereo camera images | DeepLabV3+ | Seaweed segmentation IoU = 0.9. | |
Marquez et al. [213] | Kelp Monitoring | MSI from Landsat-5 and 8 | Mask R-CNN | Dice Coefficient = 0.93 ± 0.04. | |
Bell et al. [214] | Kelp Monitoring | Landsat satellite imagery; sUAS imagery (color, multispectral, hyperspectral); underwater imaging | CNN | Kelp detection accuracy achieved 91%. | |
Hobley et al. [215] | Macroalgae Classification | MSI from MicaSense RedEdge3 camera; In situ surveys data | U-Net with a VGG-13 encoder | F1-score = 87.79%. | |
Liu et al. [216] | Sargassum Mapping | MSI from MODIS-Aqua and VIIRS | FANet, a DL-based Feedback Attention Network | Achieved 96% overall accuracy and 91.72% precision in cloud masking. | |
Hu et al. [217] | Sargassum Mapping | Images from MODIS-Terra and Aqua, VIIRS (SNPP), and OLCI (Sentinel-3) | Res-U-Net | F1-score = 92.5%. | |
Guo et al. [218] | Green Algae Detection | Sentinel-1 SAR image; nitrate concentration and SST (CMEMS) | GA-Net based on U-Net framework | mIoU = 86.31%, Accuracy = 98.36%, Precision = 93.29%, Recall = 92.03%, F1-score = 92.65%. | |
Coastal Wetland | Luo et al. [219] | Classification | HSI acquired by OHS-1 sensor, Zhuhai-1 satellite. | HyperBCS, CNN with self-attention module | MongCai Dataset: OA = 98.29% and Kappa = 0.976; CamPha Dataset: OA = 96.82% and Kappa = 0.958. |
Zheng et al. [220] | Classification | RGB imagery collected by a UAV | U-Net, DeepLabv3+, PSPNet | DeepLabv3+ achieved the highest performance, OA = 94.62%, F1-score = 0.8957, mIoU = 0.8188. | |
Jamali et al. [221] | Classification | Sentinel-1 SAR; Sentinel-2 Optical Imagery; LiDAR-derived DEM | Multimodel architecture integrating swin Transformer, VGG-16 CNN, and 3D CNN | OA = 92.30%, AA = 92.68%, Kappa = 90.65%. | |
Moreno et al. [222] | Mangrove Mapping | Sentinel-1 SAR | U-Net architecture using EfficientNet-B7, ResNet-101, and VGG16 as backbones. | U-Net with EfficientNet-B7 achieved best results of OA = 97.35%, F1-score = 85.36%, and IoU = 74.46%. | |
Seydi et al. [223] | Mangrove Mapping | Sentinel-2 MSI | HSK-CNN, a model integrating 2D convolution, 3D convolution, and SK attention module | OA = 94%, Kappa = 0.93. | |
Xie et al. [224] | Mangrove Mapping | GF-3 SAR; GF-6 MSI | AttU-Net, U-Net with SE attention mechanism | Average Metrics Across Test Areas: OA = 94.41%, F1-score = 90.01%, Kappa = 84.05%. | |
Li et al. [225] | Salt Marsh Mapping | Sentinel-2 MSI | U-Net | OA = 90%, Kappa = 0.862. | |
Liu et al. [226] | Salt Marsh Mapping | Point cloud data from LiDAR mounted on a drone | ANN | AUC = 0.9450. |
4.2.2. Leveraging DL for Kelp Forest and Other Seaweed Ecosystems Monitoring
4.2.3. DL for Coastal Wetland Mapping and Analysis
5. Ocean-Based Climate Change Solutions Enhanced by DL
5.1. Mitigation Strategies Using DL
5.1.1. Developing Ocean-Based Renewable Energy with DL
5.1.2. Advancing Low-Carbon Maritime Transportation Through AI
Area | Reference | Application | Data | Model | Results |
---|---|---|---|---|---|
Renewable Energy | Du et al. [264] | Wind Speed Retrieval | CYGNSS, wind speed (ERA5, SMAP, SFMR, OSCAR) | RFCN | RMSE = 1.031 m/s; bias = −0.0003 m/s. |
Lu et al. [268] | Wind Speed Retrieval | CYGNSS, ERA5 | CNN-LSTM | RMSE = 1.34 m/s; CC = 0.82. | |
Liu et al. [69] | Wind Speed Retrieval | CYGNSS, ERA5 | 1D-CNN | RMSE = 1.486 m/s; bias = −0.091 m/s; CC = 0.828. | |
Mu et al. [271] | Wind Speed Retrieval | Sentinel-1 SAR; SFMR hurricane measurements; SMAP wind products | DCCN | RMSE = 2.61 m/s; CC = 0.95. | |
Zanchetta et al. [272] | Wind Direction Retrieval | Sentinel-1 SAR; ECMWF TCo1279 HRES global model; satellite scatterometer (OSI-SAF); in situ wind measurements | ResNet | SAR vs. ECMWF: bias = −1.1°; SAR vs. Scatterometer: bias = 2.4°; SAR vs. in situ: bias = −4.6°. | |
Guo et al. [270] | Wind Direction Retrieval | GF-3 SAR; EAR5 | Inception v3 | RMSE = 9.12°. | |
Chen et al. [278] | SWH Estimation | X-band marine radar images; buoy-measured SWH | CGRU, a model integrating CNN and GRU | Rainless: RMSE = 0.29 m, CC = 0.93; Rainy: RMSE = 0.54 m, CC = 0.87. | |
Huang et al. [279] | SWH Estimation | SWH from X-band radar images; Triaxys directional wave buoys | TCN | RMSE = 0.24 m, bias = 0.07 m, CC = 0.94. | |
Maritime Transportation | Zhang et al. [291] | Ship Fuel Consumption Prediction | Real-world operational data from bulk carrier | Bi-LSTM with attention | R2 ranges from 0.71 to 0.94 across 8 different voyages. |
Liu et al. [293] | Ship Fuel Consumption Prediction | Operational data from a bulk carrier; environmental data from ECMWF | TGMA, a model combined with TCN, GRU, and multihead attention | Voyage 1: RMSE = 0.012 g/s, R2 = 0.96; Voyage 2: RMSE = 0.014 g/s, R2 = 0.94. | |
Ilias et al. [292] | Ship Fuel Consumption Prediction | Operational data from three fishing ships | Bi-LSTM with self-attention | R2 = 99.45%, RMSE = 0.99, MAE = 0.36. | |
Moradi et al. [296] | Fuel Consumption Prediction & Marine Route Optimization | Operational data from a container ship; dynamic weather data from Stormglass.io | ANN, DQN, DQPG, PPO | Fuel consumption prediction: RMSE = 0.097, R2 = 0.989; Fuel consumption reduced by 6.64%, 1.54%, 1.07% after route optimization. | |
Ocean Carbon Sink | Zemskova et al. [297] | DIC estimation | B-SOSE, bgc-Argo, GLODAP, SOCAT, SOCCOM | U-Net | Near-surface DIC increased, reducing ocean carbon storage potential in 2010s. |
Wang et al. [298] | pCO2 Estimation | SOCAT, ECMWF | FFNN | RMSE = 8.86 µatm, MAE = 5.01 µatm. | |
Picard et al. [299] | Particle prediction | POLGYR simulations | U-Net | Valid predictions = 81% | |
Coastal Floods | Muñoz et al. [300] | Mapping | Landsat ARD imagery; Sentinel-1 SAR; LiDAR-derived DEM; Delft3D-FM simulations; high water masks from USGS | CNN | OA = 97%. |
Liu et al. [301] | Mapping | Sentinel-1 SAR; land-cover types from OpenStreetMap; ground truth from Copernicus EMS Rapid Mapping product | SARCFMNet, U-Net-based model | Accuracy = 0.98, F1-score = 0.88. | |
Sorkhabi et al. [302] | Prediction | SST (MODIS), sea level data (satellite altimetry), wind speed (CMIP5), precipitation (NOAA) | CNN-LSTM | Wind speed: RMSE = 0.84 m/s; Precipitation: RMSE = 48.75 mm; SST: RMSE = 3.48 °C; MSL: RMSE = 24 mm. | |
Park et al. [303] | Prediction | Tide data (KHOA), rainfall (KMA), elevation, slope (ME); coastal flood trace (Korea Land and Geospatial Informatrix Corporation) | KNN, RF, SVM | KNN ROC = 0.946. | |
Xu et al. [304] | Prediction | Rainfall and tide levels from Water Bureau of Haikou City | LightGBM-CNN | MAE = 0.044, RMSE = 0.101. | |
Hu et al. [305] | Prediction | Wave data | LSTM-ROM | Showed high agreement with full hydrodynamic model results. | |
Fisheries | Lekunberri et al. [306] | Classification | Images from Electronic Monitoring | ResNet50V2, Mask R-CNN | Accuracy = 77.66%, average mAP = 0.74. |
Shedrawi et al. [307] | Fisheries Management | Images, tablets, or webs collected during fishery surveys | YOLOv4, ResNet-101 | Length and weight measurement: R2 = 0.99 with human measurements; Species identification: Recall = 79% for 264 species. | |
Marques et al. [308] | Species Detection & Segmentation | PLHS dataset (acoustic backscatter data) | Mask R-CNN | Mask R-CNN with ResNet-50 for instance segmentation: mAP = 92.12%; for object detection mAP = 89.12%. | |
Slonimer et al. [309] | Classification | Echograms from ZAFP | U-Net | Herring F1-score = 0.93; Salmon F1-score = 0.87; Bubble F1-score = 0.86. | |
Han et al. [310] | Fishing Ground Prediction | Operational records; environmental variables such as SST, Chl-a, SLA, SSS, dissolved oxygen from CMS | 3D CNN | Central fishing ground: Precision = 0.72, Recall = 0.80, F1-score = 0.76. | |
Xie et al. [311] | Fishing Ground Prediction | Commercial catch records; SST (NOAA OceanWatch) | U-Net | OA = 89.90%, Precision = 0.9125, Recall = 0.9005, F1-score = 0.9050. |
5.1.3. DL Applications in Ocean Carbon Sink
5.2. Adaptation Strategies Supported by DL
5.2.1. Strengthening Coastal Protection with DL
5.2.2. Improving Fisheries Management Leveraging DL
6. Conclusions and Future Perspectives
6.1. Summary
6.2. Challenges
6.2.1. Interpolation-Induced Errors
6.2.2. Insufficient Spatiotemporal Validation
6.2.3. Lack of Uncertainty Quantification
6.2.4. Limited Explainability
6.2.5. Poorly Modeled Ocean Processes
6.3. Directions for Future Research
6.3.1. Reducing Interpolation-Induced Errors
6.3.2. Enhancing Validation Across Space and Time
6.3.3. Quantifying Model Uncertainty
6.3.4. Advancing Explainability
6.3.5. Towards Physic-Informed Neural Networks (PINNs)
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lincoln, S.; Andrews, B.; Birchenough, S.N.; Chowdhury, P.; Engelhard, G.H.; Harrod, O.; Pinnegar, J.K.; Townhill, B.L. Marine litter and climate change: Inextricably connected threats to the world’s oceans. Sci. Total Environ. 2022, 837, 155709. [Google Scholar] [CrossRef]
- Garcia-Soto, C.; Cheng, L.; Caesar, L.; Schmidtko, S.; Jewett, E.B.; Cheripka, A.; Rigor, I.; Caballero, A.; Chiba, S.; Báez, J.C.; et al. An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Front. Mar. Sci. 2021, 8, 642372. [Google Scholar]
- Gaines, S.; Cabral, R.; Free, C.M.; Golbuu, Y.; Arnason, R.; Battista, W.; Bradley, D.; Cheung, W.; Fabricius, K.; Hoegh-Guldberg, O.; et al. The expected impacts of climate change on the ocean economy. In The Blue Compendium: From Knowledge to Action for a Sustainable Ocean Economy; Springer: Berlin/Heidelberg, Germany, 2023; pp. 15–50. [Google Scholar]
- Rani, M.; Masroor, M.; Kumar, P. Remote sensing of Ocean and coastal environment–overview. Remote Sens. Ocean Coast. Environ. 2021, 1, 1–15. [Google Scholar]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Legler, D.M.; Freeland, H.J.; Lumpkin, R.; Ball, G.; McPhaden, M.; North, S.; Crowley, R.; Goni, G.; Send, U.; Merrifield, M. The current status of the real-time in situ Global Ocean Observing System for operational oceanography. J. Oper. Oceanogr. 2015, 8, s189–s200. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling climate change with machine learning. ACM Comput. Surv. (CSUR) 2022, 55, 1–96. [Google Scholar] [CrossRef]
- Wang, H.; Li, X. DeepBlue: Advanced convolutional neural network applications for ocean remote sensing. IEEE Geosci. Remote Sens. Mag. 2023, 12, 138–161. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Zheng, G.; Ren, Y.; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, M.; Tao, M.; Zhou, W.; Lu, X.; Xiong, Y.; Li, F.; Wang, Q. The role of satellite remote sensing in mitigating and adapting to global climate change. Sci. Total Environ. 2023, 904, 166820. [Google Scholar] [CrossRef]
- Dickey, T.; Lewis, M.; Chang, G. Optical oceanography: Recent advances and future directions using global remote sensing and in situ observations. Rev. Geophys. 2006, 44, 1–39. [Google Scholar] [CrossRef]
- Amani, M.; Moghimi, A.; Mirmazloumi, S.M.; Ranjgar, B.; Ghorbanian, A.; Ojaghi, S.; Ebrahimy, H.; Naboureh, A.; Nazari, M.E.; Mahdavi, S.; et al. Ocean remote sensing techniques and applications: A review (part I). Water 2022, 14, 3400. [Google Scholar] [CrossRef]
- Meng, L.; Yan, X.H. Remote Sensing for Subsurface and Deeper Oceans: An overview and a future outlook. IEEE Geosci. Remote Sens. Mag. 2022, 10, 72–92. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hu, C. Dependence of satellite ocean color data products on viewing angles: A comparison between SeaWiFS, MODIS, and VIIRS. Remote Sens. Environ. 2016, 175, 120–129. [Google Scholar] [CrossRef]
- Barnes, B.B.; Cannizzaro, J.P.; English, D.C.; Hu, C. Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters: An assessment of methods. Remote Sens. Environ. 2019, 220, 110–123. [Google Scholar] [CrossRef]
- Choi, J.K.; Park, Y.J.; Lee, B.R.; Eom, J.; Moon, J.E.; Ryu, J.H. Application of the Geostationary Ocean Color Imager (GOCI) to mapping the temporal dynamics of coastal water turbidity. Remote Sens. Environ. 2014, 146, 24–35. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, K.; Shao, D.; Xu, Y.; Gu, W. Monitoring the characteristics of the Bohai Sea ice using high-resolution geostationary ocean color imager (GOCI) data. Sustainability 2019, 11, 777. [Google Scholar] [CrossRef]
- Wu, J.; Goes, J.I.; do Rosario Gomes, H.; Lee, Z.; Noh, J.H.; Wei, J.; Shang, Z.; Salisbury, J.; Mannino, A.; Kim, W.; et al. Estimates of diurnal and daily net primary productivity using the Geostationary Ocean Color Imager (GOCI) data. Remote Sens. Environ. 2022, 280, 113183. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, C.; Barnes, B.B.; Harrison, T.N. Monitoring Sargassum inundation on beaches and nearshore waters using PlanetScope/Dove observations. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1503605. [Google Scholar] [CrossRef]
- Werdell, P.J.; McKinna, L.I.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [CrossRef]
- Mohseni, F.; Saba, F.; Mirmazloumi, S.M.; Amani, M.; Mokhtarzade, M.; Jamali, S.; Mahdavi, S. Ocean water quality monitoring using remote sensing techniques: A review. Mar. Environ. Res. 2022, 180, 105701. [Google Scholar] [CrossRef]
- Ruddick, K.; Neukermans, G.; Vanhellemont, Q.; Jolivet, D. Challenges and opportunities for geostationary ocean colour remote sensing of regional seas: A review of recent results. Remote Sens. Environ. 2014, 146, 63–76. [Google Scholar] [CrossRef]
- Rizaev, I.G.; Karakuş, O.; Hogan, S.J.; Achim, A. Modeling and SAR imaging of the sea surface: A review of the state-of-the-art with simulations. ISPRS J. Photogramm. Remote Sens. 2022, 187, 120–140. [Google Scholar] [CrossRef]
- Howell, S.E.; Small, D.; Rohner, C.; Mahmud, M.S.; Yackel, J.J.; Brady, M. Estimating melt onset over Arctic sea ice from time series multi-sensor Sentinel-1 and RADARSAT-2 backscatter. Remote Sens. Environ. 2019, 229, 48–59. [Google Scholar] [CrossRef]
- Alpers, W.; Zhao, Y.; Mouche, A.A.; Chan, P.W. A note on radar signatures of hydrometeors in the melting layer as inferred from Sentinel-1 SAR data acquired over the ocean. Remote Sens. Environ. 2021, 253, 112177. [Google Scholar] [CrossRef]
- Wang, C.; Tandeo, P.; Mouche, A.; Stopa, J.E.; Gressani, V.; Longepe, N.; Vandemark, D.; Foster, R.C.; Chapron, B. Classification of the global Sentinel-1 SAR vignettes for ocean surface process studies. Remote Sens. Environ. 2019, 234, 111457. [Google Scholar] [CrossRef]
- Bruck, M.; Lehner, S. TerraSAR-X/TanDEM-X sea state measurements using the XWAVE algorithm. Int. J. Remote Sens. 2015, 36, 3890–3912. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Mouche, A.; Shao, W.; Zhu, J.; Ren, L.; Xie, C. GF-3 SAR ocean wind retrieval: The first view and preliminary assessment. Remote Sens. 2017, 9, 694. [Google Scholar] [CrossRef]
- Asiyabi, R.M.; Ghorbanian, A.; Tameh, S.N.; Amani, M.; Jin, S.; Mohammadzadeh, A. Synthetic aperture radar (SAR) for ocean: A review. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 9106–9138. [Google Scholar] [CrossRef]
- Ardila, J.; Laurila, P.; Kourkouli, P.; Strong, S. Persistent monitoring and mapping of floods globally based on the ICEYE SAR imaging constellation. In Proceedings of the IGARSS, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 6296–6299. [Google Scholar]
- La, T.V.; Pelich, R.M.; Li, Y.; Matgen, P.; Chini, M. Monitoring of spatio-temporal variations of oil slicks via the collocation of multi-source satellite images. Remote Sens. 2024, 16, 3110. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Munoz-Martin, J.F.; Morris, M. Latest advances in the global navigation satellite system—Reflectometry (GNSS-R) field. Remote Sens. 2023, 15, 2157. [Google Scholar] [CrossRef]
- Jin, S.; Camps, A.; Jia, Y.; Wang, F.; Martin-Neira, M.; Huang, F.; Yan, Q.; Zhang, S.; Li, Z.; Edokossi, K.; et al. Remote sensing and its applications using GNSS reflected signals: Advances and prospects. Satell. Navig. 2024, 5, 19. [Google Scholar] [CrossRef]
- Alonso-Arroyo, A.; Zavorotny, V.U.; Camps, A. Sea ice detection using UK TDS-1 GNSS-R data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4989–5001. [Google Scholar] [CrossRef]
- Di Simone, A.; Park, H.; Riccio, D.; Camps, A. Sea target detection using spaceborne GNSS-R delay-Doppler maps: Theory and experimental proof of concept using TDS-1 data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 4237–4255. [Google Scholar] [CrossRef]
- Gleason, S.; Ruf, C.S.; Clarizia, M.P.; O’Brien, A.J. Calibration and unwrapping of the normalized scattering cross section for the cyclone global navigation satellite system. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2495–2509. [Google Scholar] [CrossRef]
- Carreno-Luengo, H.; Crespo, J.A.; Akbar, R.; Bringer, A.; Warnock, A.; Morris, M.; Ruf, C. The CYGNSS mission: On-going science team investigations. Remote Sens. 2021, 13, 1814. [Google Scholar] [CrossRef]
- Karvonen, J. Baltic sea ice concentration estimation using SENTINEL-1 SAR and AMSR2 microwave radiometer data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2871–2883. [Google Scholar] [CrossRef]
- Hihara, T.; Kubota, M.; Okuro, A. Evaluation of sea surface temperature and wind speed observed by GCOM-W1/AMSR2 using in situ data and global products. Remote Sens. Environ. 2015, 164, 170–178. [Google Scholar] [CrossRef]
- Collister, B.L.; Zimmerman, R.C.; Sukenik, C.I.; Hill, V.J.; Balch, W.M. Remote sensing of optical characteristics and particle distributions of the upper ocean using shipboard lidar. Remote Sens. Environ. 2018, 215, 85–96. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Omar, A.; Yang, Y.; Vaughan, M.; Lee, Z.; Neumann, T.; Trepte, C.; Getzewich, B. Lidar attenuation coefficient in the global oceans: Insights from ICESat-2 mission. Opt. Express 2023, 31, 29107–29118. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X.; Gill, E.W. Ocean wind and wave measurements using X-band marine radar: A comprehensive review. Remote Sens. 2017, 9, 1261. [Google Scholar] [CrossRef]
- Huang, W.; Gill, E.W. Ocean remote sensing using X-band shipborne nautical radar—Applications in eastern Canada. In Coastal Ocean Observing Systems; Elsevier: Amsterdam, The Netherlands, 2015; pp. 248–264. [Google Scholar]
- Rubio, A.; Mader, J.; Corgnati, L.; Mantovani, C.; Griffa, A.; Novellino, A.; Quentin, C.; Wyatt, L.; Schulz-Stellenfleth, J.; Horstmann, J.; et al. HF radar activity in European coastal seas: Next steps toward a pan-European HF radar network. Front. Mar. Sci. 2017, 4, 8. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Brown, C.J. Grand challenges in acoustic remote sensing: Discoveries to support a better understanding of our changing planet. Front. Remote Sens. 2022, 2, 824848. [Google Scholar] [CrossRef]
- Brenner, S.; Thomson, J.; Rainville, L.; Torres, D.; Doble, M.; Wilkinson, J.; Lee, C. Acoustic sensing of ocean mixed layer depth and temperature from uplooking ADCPs. J. Atmos. Ocean. Technol. 2023, 40, 53–64. [Google Scholar] [CrossRef]
- Meadows, G.A. A review of low cost underwater acoustic remote sensing for large freshwater systems. J. Gt. Lakes Res. 2013, 39, 173–182. [Google Scholar] [CrossRef]
- Gould, J.; Sloyan, B.; Visbeck, M. In situ ocean observations: A brief history, present status, and future directions. Int. Geophys. 2013, 103, 59–81. [Google Scholar]
- Kwon, K.; Choi, B.J.; Kim, S.D.; Lee, S.H.; Park, K.A. Assessment and improvement of global gridded sea surface temperature datasets in the Yellow Sea using in situ ocean buoy and research vessel observations. Remote Sens. 2020, 12, 759. [Google Scholar] [CrossRef]
- Purser, A.; Marcon, Y.; Dreutter, S.; Hoge, U.; Sablotny, B.; Hehemann, L.; Lemburg, J.; Dorschel, B.; Biebow, H.; Boetius, A. Ocean Floor Observation and Bathymetry System (OFOBS): A new towed camera/sonar system for deep-sea habitat surveys. IEEE J. Ocean. Eng. 2018, 44, 87–99. [Google Scholar] [CrossRef]
- Van Vranken, C.; Jakoboski, J.; Carroll, J.W.; Cusack, C.; Gorringe, P.; Hirose, N.; Manning, J.; Martinelli, M.; Penna, P.; Pickering, M.; et al. Towards a global Fishing Vessel Ocean Observing Network (FVON): State of the art and future directions. Front. Mar. Sci. 2023, 10, 1176814. [Google Scholar] [CrossRef]
- Kwiatkowski, L.; Torres, O.; Bopp, L.; Aumont, O.; Chamberlain, M.; Christian, J.R.; Dunne, J.P.; Gehlen, M.; Ilyina, T.; John, J.G.; et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 2020, 17, 3439–3470. [Google Scholar] [CrossRef]
- Yao, R.; Shao, W.; Hao, M.; Zuo, J.; Hu, S. The Respondence of wave on sea surface temperature in the context of global change. Remote Sens. 2023, 15, 1948. [Google Scholar] [CrossRef]
- Lam, R.; Sanchez-Gonzalez, A.; Willson, M.; Wirnsberger, P.; Fortunato, M.; Alet, F.; Ravuri, S.; Ewalds, T.; Eaton-Rosen, Z.; Hu, W.; et al. Learning skillful medium-range global weather forecasting. Science 2023, 382, 1416–1421. [Google Scholar] [CrossRef]
- Shihong, W.; Yiding, Z.; Xunqiang, Y.; Fangli, Q. Current status of global ocean reanalysis datasets. Adv. Earth Sci. 2018, 33, 794. [Google Scholar]
- Storto, A.; Alvera-Azcárate, A.; Balmaseda, M.A.; Barth, A.; Chevallier, M.; Counillon, F.; Domingues, C.M.; Drevillon, M.; Drillet, Y.; Forget, G.; et al. Ocean reanalyses: Recent advances and unsolved challenges. Front. Mar. Sci. 2019, 6, 418. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Sreelakshmi, S.; Bhaskaran, P.K. Wind-generated wave climate variability in the Indian Ocean using ERA-5 dataset. Ocean Eng. 2020, 209, 107486. [Google Scholar] [CrossRef]
- Potisomporn, P.; Adcock, T.A.; Vogel, C.R. Evaluating ERA5 reanalysis predictions of low wind speed events around the UK. Energy Rep. 2023, 10, 4781–4790. [Google Scholar] [CrossRef]
- Carton, J.A.; Giese, B.S.; Grodsky, S.A. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J. Geophys. Res. Ocean. 2005, 110, C09006. [Google Scholar] [CrossRef]
- Kim, J.; Teng, Y.C.; Vernieres, G.; Sluka, T.; Paturi, S.; Hao, Y.; Worthen, D.; Li, B.; Wang, J.; Zhu, J.; et al. NOAA-NCEP Next Generation Global Ocean Data Assimilation System (NG-GODAS). In Research Activities in Earth System Modelling; Report; Working Group on Numerical Experimentation: São José dos Campos, Brazil, 2021. [Google Scholar]
- Geng, X.; Kug, J.S.; Shin, N.Y.; Zhang, W.; Chen, H.C. On the spatial double peak of the 2023–2024 El Niño event. Commun. Earth Environ. 2024, 5, 691. [Google Scholar] [CrossRef]
- Gupta, H.; Sil, S. Assessment of GHRSST and OISST Datasets in Identification of Marine Heat-Waves and Heat-Spikes. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1501705. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, M.; Song, Z.; Wang, G.; Zhao, C.; Shu, Q.; Zhang, Y.; Qiao, F. A quantitative analysis of marine heatwaves in response to rising sea surface temperature. Sci. Total Environ. 2023, 881, 163396. [Google Scholar] [CrossRef]
- de Souza, J.M.A.C.; Couto, P.; Soutelino, R.; Roughan, M. Evaluation of four global ocean reanalysis products for New Zealand waters–A guide for regional ocean modelling. N. Z. J. Mar. Freshw. Res. 2021, 55, 132–155. [Google Scholar] [CrossRef]
- Chakraborty, S.; Ide, K.; Balachandran, B. Missing values imputation in ocean buoy time series data. Ocean Eng. 2025, 318, 120145. [Google Scholar] [CrossRef]
- Goh, E.; Yepremyan, A.; Wang, J.; Wilson, B. MAESSTRO: Masked Autoencoders for Sea Surface Temperature Reconstruction under Occlusion. Ocean Sci. 2024, 20, 1309–1323. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Cai, R.; He, L.; Chen, J.; Plaza, A. Enhanced spatiotemporal fusion via MODIS-like images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5610517. [Google Scholar] [CrossRef]
- Liu, X.; Bai, W.; Tan, G.; Huang, F.; Xia, J.; Yin, C.; Sun, Y.; Du, Q.; Meng, X.; Liu, C.; et al. GNSS-R Global Sea Surface Wind Speed Retrieval Based on Deep Learning. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4207215. [Google Scholar] [CrossRef]
- Lloyd, D.T.; Abela, A.; Farrugia, R.A.; Galea, A.; Valentino, G. Optically enhanced super-resolution of sea surface temperature using deep learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5000814. [Google Scholar] [CrossRef]
- Ping, B.; Su, F.; Han, X.; Meng, Y. Applications of deep learning-based super-resolution for sea surface temperature reconstruction. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 14, 887–896. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Hsu, C.Y. STEPNet: A Spatial and Temporal Encoding Pipeline to handle Temporal Heterogeneity in Climate Modeling using AI: A Use Case of Sea Ice Forecasting. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2025, 18, 4921–4935. [Google Scholar] [CrossRef]
- Ricciardulli, L.; Manaster, A.; Lindsley, R. Investigation of a calibration change in the ocean surface wind measurements from the TAO buoy array. Bull. Am. Meteor. Soc. 2025, 106, E242–E260. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hu, C.; Bailey, S.W.; Pahlevan, N.; Franz, B.A. Cross-calibration of MODIS and VIIRS long near infrared bands for ocean color science and applications. Remote Sens. Environ. 2021, 260, 112439. [Google Scholar] [CrossRef]
- Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Chen, H.; Lippitt, C.D. Google Earth Engine and artificial intelligence (AI): A comprehensive review. Remote Sens. 2022, 14, 3253. [Google Scholar] [CrossRef]
- Sun, W.; Chen, C.; Liu, W.; Yang, G.; Meng, X.; Wang, L.; Ren, K. Coastline extraction using remote sensing: A review. GISci. Remote Sens. 2023, 60, 2243671. [Google Scholar] [CrossRef]
- Serras, P.; Ibarra-Berastegi, G.; Sáenz, J.; Ulazia, A. Combining random forests and physics-based models to forecast the electricity generated by ocean waves: A case study of the Mutriku wave farm. Ocean Eng. 2019, 189, 106314. [Google Scholar] [CrossRef]
- Callens, A.; Morichon, D.; Abadie, S.; Delpey, M.; Liquet, B. Using Random forest and Gradient boosting trees to improve wave forecast at a specific location. Appl. Ocean Res. 2020, 104, 102339. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Dong, C.; Xu, G.; Han, G.; Bethel, B.J.; Xie, W.; Zhou, S. Recent developments in artificial intelligence in oceanography. Ocean-Land Res. 2022, 2022, 9870950. [Google Scholar] [CrossRef]
- Xiao, H.X.; Liu, X.; Yu, R.; Yao, B.; Zhang, F.; Wang, Y.Q. Contributions of internal climate variability in driving global and ocean temperature variations using multi-layer perceptron neural network. Adv. Clim. Chang. Res. 2022, 13, 459–472. [Google Scholar] [CrossRef]
- Kawai, T.; Kawamura, Y.; Okada, T.; Mitsuyuki, T.; Chen, X. Sea state estimation using monitoring data by convolutional neural network (CNN). J. Mar. Sci. Technol. 2021, 26, 947–962. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Wang, H.; Li, X. Expanding Horizons: U-Net Enhancements for Semantic Segmentation, Forecasting, and Super-Resolution in Ocean Remote Sensing. J. Remote Sens. 2024, 4, 0196. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Zhao, Q.; Peng, S.; Wang, J.; Li, S.; Hou, Z.; Zhong, G. Applications of deep learning in physical oceanography: A comprehensive review. Front. Mar. Sci. 2024, 11, 1396322. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Hou, S.; Guan, J.; Yao, J. STA-GAN: A spatio-temporal attention generative adversarial network for missing value imputation in satellite data. Remote Sens. 2022, 15, 88. [Google Scholar] [CrossRef]
- Hong, Y.; Que, X.; Wang, Z.; Ma, X.; Wang, H.; Salati, S.; Liu, J. Mangrove extraction from super-resolution images generated by deep learning models. Ecol. Indic. 2024, 159, 111714. [Google Scholar] [CrossRef]
- Yu, M.; Wang, Z.; Song, D.; Cao, X. Deep learning approach for downscaling the significant wave height based on CBAM_CGAN. Ocean Eng. 2024, 312, 119169. [Google Scholar] [CrossRef]
- Zhou, Y. Ocean energy applications for coastal communities with artificial intelligencea state-of-the-art review. Energy AI 2022, 10, 100189. [Google Scholar] [CrossRef]
- Wu, S.; Bao, S.; Dong, W.; Wang, S.; Zhang, X.; Shao, C.; Zhu, J.; Li, X. PGTransNet: A physics-guided transformer network for 3D ocean temperature and salinity predicting in tropical Pacific. Front. Mar. Sci. 2024, 11, 1477710. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T.; Ryu, J.G.; Kim, J. Spatiotemporal graph neural network for multivariate multi-step ahead time-series forecasting of sea temperature. Eng. Appl. Artif. Intell. 2023, 126, 106854. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, Z.; Xiong, Z.; Shi, Y.; Saha, S.; Zhu, X.X. Beyond Grid Data: Exploring graph neural networks for Earth observation. IEEE Geosci. Remote Sens. Mag. 2024, 13, 175–208. [Google Scholar] [CrossRef]
- Ning, D.; Vetrova, V.; Bryan, K.R.; Koh, Y.S. Harnessing the power of graph representation in climate forecasting: Predicting global monthly mean sea surface temperatures and anomalies. Earth Space Sci. 2024, 11, e2023EA003455. [Google Scholar] [CrossRef]
- Wang, T.; Li, Z.; Geng, X.; Jin, B.; Xu, L. Time series prediction of sea surface temperature based on an adaptive graph learning neural model. Future Internet 2022, 14, 171. [Google Scholar] [CrossRef]
- Ou, M.; Xu, S.; Luo, B.; Zhou, H.; Zhang, M.; Xu, P.; Zhu, H. 3D Ocean Temperature Prediction via Graph Neural Network with Optimized Attention Mechanisms. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1503405. [Google Scholar] [CrossRef]
- Patanè, L.; Iuppa, C.; Faraci, C.; Xibilia, M.G. A deep hybrid network for significant wave height estimation. Ocean Model. 2024, 189, 102363. [Google Scholar] [CrossRef]
- Ma, D.; Gregor, L.; Gruber, N. Four decades of trends and drivers of global surface ocean acidification. Glob. Biogeochem. Cycle 2023, 37, e2023GB007765. [Google Scholar] [CrossRef]
- Li, X.; Bellerby, R.G.J.; Ge, J.; Wallhead, P.; Liu, J.; Yang, A. Retrieving monthly and interannual total-scale pH (pHT) on the East China Sea shelf using an artificial neural network: ANN-pHT-v1. Geosci. Model Dev. 2020, 13, 5103–5117. [Google Scholar] [CrossRef]
- Jiang, Z.; Song, Z.; Bai, Y.; He, X.; Yu, S.; Zhang, S.; Gong, F. Remote sensing of global sea surface pH based on massive underway data and machine learning. Remote Sens. 2022, 14, 2366. [Google Scholar] [CrossRef]
- Wang, J.; Yao, P.; Liu, J.; Wang, X.; Mao, J.; Xu, J.; Wang, J. Reconstruction of Surface Seawater pH in the North Pacific. Sustainability 2023, 15, 5796. [Google Scholar] [CrossRef]
- Zhong, G.; Li, X.; Song, J.; Qu, B.; Wang, F.; Wang, Y.; Zhang, B.; Cheng, L.; Ma, J.; Yuan, H.; et al. A global monthly field of seawater pH over 3 decades: A machine learning approach. Earth Syst. Sci. Data Discuss. 2024, 2024, 719–740. [Google Scholar]
- Osborne, E.; Xu, Y.Y.; Soden, M.; McWhorter, J.; Barbero, L.; Wanninkhof, R. A neural network algorithm for quantifying seawater pH using Biogeochemical-Argo floats in the open Gulf of Mexico. Front. Mar. Sci. 2024, 11, 1468909. [Google Scholar] [CrossRef]
- Krasting, J.P.; De Palma, M.; Sonnewald, M.; Dunne, J.P.; John, J.G. Regional sensitivity patterns of Arctic Ocean acidification revealed with machine learning. Commun. Earth Environ. 2022, 3, 91. [Google Scholar] [CrossRef]
- Cameselle, S.; Velo, A.; Doval, M.D.; Broullón, D.; Pérez, F.F. Long-term trends of pH, alkalinity, and hydrogen ion concentration in an upwelling-dominated coastal ecosystem: Ría de Vigo, NW Spain. Sci. Rep. 2024, 14, 17929. [Google Scholar] [CrossRef]
- Galdies, C.; Guerra, R. High resolution estimation of ocean dissolved inorganic carbon, total alkalinity and pH based on deep learning. Water 2023, 15, 1454. [Google Scholar] [CrossRef]
- Shaik, I.; Yadav, S.; Krishna, G.; Mahesh, P.; Nagamani, P.V.; Begum, S.; Manmode, Y.; Rao, G.S. Global Surface Ocean Total Alkalinity Estimation: The Machine Learning Approach. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1503305. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Le, Q.T.P.; Doan, M.T.T.; Bui, H.M. Predicting Total Alkalinity in Saline Water Using Machine Learning: A Case Study with RapidMiner. Sustain. Chem. One World 2024, 4, 100032. [Google Scholar] [CrossRef]
- Li, X.; Bellerby, R.G.; Wallhead, P.; Ge, J.; Liu, J.; Liu, J.; Yang, A. A neural network-based analysis of the seasonal variability of surface total alkalinity on the East China Sea Shelf. Front. Mar. Sci. 2020, 7, 219. [Google Scholar] [CrossRef]
- Broullón, D.; Pérez, F.F.; Velo, A.; Hoppema, M.; Olsen, A.; Takahashi, T.; Key, R.M.; Tanhua, T.; González-Dávila, M.; Jeansson, E.; et al. A global monthly climatology of total alkalinity: A neural network approach. Earth Syst. Sci. Data 2019, 11, 1109–1127. [Google Scholar] [CrossRef]
- Cheng, L.; von Schuckmann, K.; Abraham, J.P.; Trenberth, K.E.; Mann, M.E.; Zanna, L.; England, M.H.; Zika, J.D.; Fasullo, J.T.; Yu, Y.; et al. Past and future ocean warming. Nat. Rev. Earth Environ. 2022, 3, 776–794. [Google Scholar] [CrossRef]
- Zhao, X.; Qi, J.; Yu, Y.; Zhou, L. Deep learning for ocean temperature forecasting: A survey. Intell. Mar. Technol. Syst. 2024, 2, 28. [Google Scholar] [CrossRef]
- Yu, X.; Shi, S.; Xu, L.; Liu, Y.; Miao, Q.; Sun, M. A novel method for sea surface temperature prediction based on deep learning. Math. Probl. Eng. 2020, 2020, 6387173. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Yu, J.; Xu, L. An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism. IEEE Geosci. Remote Sens. Lett. 2020, 17, 740–744. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Xu, Z.; Cai, Y.; Xu, L.; Chen, Z.; Gong, J. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environ. Modell. Softw 2019, 120, 104502. [Google Scholar] [CrossRef]
- Hou, S.; Li, W.; Liu, T.; Zhou, S.; Guan, J.; Qin, R.; Wang, Z. D2CL: A dense dilated convolutional LSTM model for sea surface temperature prediction. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 12514–12523. [Google Scholar] [CrossRef]
- Qi, J.; Xie, B.; Yang, D.; Li, D.; Yin, B. Deep Learning-driven Forecasting of Daily Sea Surface Temperatures in the South China Sea. In Proceedings of the 2024 Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–25 April 2024; pp. 1–6. [Google Scholar]
- Taylor, J.; Feng, M. A deep learning model for forecasting global monthly mean sea surface temperature anomalies. Front. Clim. 2022, 4, 932932. [Google Scholar] [CrossRef]
- Dai, H.; He, Z.; Wei, G.; Lei, F.; Zhang, X.; Zhang, W.; Shang, S. Long-term Prediction of Sea Surface Temperature by Temporal Embedding Transformer with Attention Distilling and Partial Stacked Connection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 4280–4293. [Google Scholar] [CrossRef]
- Ducournau, A.; Fablet, R. Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data. In Proceedings of the 9th IAPR Workshop Pattern Recogniton Remote Sensing (PRRS), Cancun, Mexico, 4 December 2016; pp. 1–6. [Google Scholar]
- Kim, J.; Kim, T.; Ryu, J.G. Multi-source deep data fusion and super-resolution for downscaling sea surface temperature guided by Generative Adversarial Network-based spatiotemporal dependency learning. Int. J. Appl. Earth Observ. Geoinf. 2023, 119, 103312. [Google Scholar] [CrossRef]
- Wang, G.G.; Cheng, H.; Zhang, Y.; Yu, H. ENSO analysis and prediction using deep learning: A review. Neurocomputing 2023, 520, 216–229. [Google Scholar] [CrossRef]
- Mir, S.; Arbab, M.A.; Rehman, S.U. ENSO dataset & comparison of deep learning models for ENSO forecasting. Earth Sci. Inform. 2024, 17, 2623–2628. [Google Scholar]
- Mu, B.; Qin, B.; Yuan, S. ENSO-GTC: ENSO Deep Learning Forecast Model With a Global Spatial-Temporal Teleconnection Coupler. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003132. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, X.; Luo, J.J.; Lin, Y.; Wright, J.S.; Lu, Y.; Chen, X.; Jiang, H.; Lin, P. Prediction of ENSO using multivariable deep learning. Atmos. Ocean. Sci. Lett. 2023, 16, 100350. [Google Scholar] [CrossRef]
- Hu, J.; Weng, B.; Huang, T.; Gao, J.; Ye, F.; You, L. Deep residual convolutional neural network combining dropout and transfer learning for ENSO forecasting. Geophys. Res. Lett. 2021, 48, e2021GL093531. [Google Scholar] [CrossRef]
- Wang, T.; Huang, P. Superiority of a convolutional neural network Model over Dynamical models in Predicting Central Pacific ENSO. Adv. Atmos. Sci. 2024, 41, 141–154. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef]
- Qiao, S.; Zhang, C.; Zhang, X.; Zhang, K.; Shi, H.; Li, S.; Wei, H. Tendency-and-attention-informed deep learning for ENSO forecasts. Clim. Dyn. 2023, 61, 5271–5286. [Google Scholar] [CrossRef]
- Huang, A.; Vega-Westhoff, B.; Sriver, R.L. Analyzing El Niño–Southern Oscillation Predictability Using Long-Short-Term-Memory Models. Earth Space Sci. 2019, 6, 212–221. [Google Scholar] [CrossRef]
- Gupta, M.; Kodamana, H.; Sandeep, S. Prediction of ENSO beyond spring predictability barrier using deep convolutional LSTM networks. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1501205. [Google Scholar] [CrossRef]
- Geng, H.; Wang, T. Spatiotemporal model based on deep learning for ENSO forecasts. Atmosphere 2021, 12, 810. [Google Scholar] [CrossRef]
- He, D.; Lin, P.; Liu, H.; Ding, L.; Jiang, J. DLENSO: A deep learning ENSO forecasting model. In Proceedings of the PRICAI 2019: Trends in Artificial Intelligence, Cuvu, Yanuca Island, Fiji, 26–30 August 2019; pp. 12–23. [Google Scholar]
- Sreeraj, P.; Balaji, B.; Paul, A.; Francis, P. A probabilistic forecast for multi-year ENSO using Bayesian convolutional neural network. Environ. Res. Lett. 2024, 19, 124023. [Google Scholar] [CrossRef]
- Liang, C.; Sun, Z.; Shu, G.; Li, W.; Liu, A.A.; Wei, Z.; Yin, B. Adaptive Graph Spatial-Temporal Attention Networks for long lead ENSO prediction. Expert Syst. Appl. 2024, 255, 124492. [Google Scholar] [CrossRef]
- Cachay, S.R.; Erickson, E.; Bucker, A.F.C.; Pokropek, E.; Potosnak, W.; Osei, S.; Lütjens, B. Graph Neural Networks for Improved El Niño Forecasting. arXiv 2020, arXiv:2012.01598. [Google Scholar]
- Ye, F.; Hu, J.; Huang, T.Q.; You, L.J.; Weng, B.; Gao, J.Y. Transformer for El niño-southern oscillation prediction. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1003305. [Google Scholar]
- Zhao, A.; Qin, M.; Wu, S.; Liu, R.; Du, Z. ENSO Forecasts With Spatiotemporal Fusion Transformer Network. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 17066–17074. [Google Scholar] [CrossRef]
- Song, D.; Su, X.; Li, W.; Sun, Z.; Ren, T.; Liu, W.; Liu, A.A. Spatial-temporal transformer network for multi-year ENSO prediction. Front. Mar. Sci. 2023, 10, 1143499. [Google Scholar] [CrossRef]
- Oliver, E.C.; Benthuysen, J.A.; Darmaraki, S.; Donat, M.G.; Hobday, A.J.; Holbrook, N.J.; Schlegel, R.W.; Sen Gupta, A. Marine heatwaves. Annu. Rev. Mar. Sci. 2021, 13, 313–342. [Google Scholar] [CrossRef]
- Smith, K.E.; Burrows, M.T.; Hobday, A.J.; King, N.G.; Moore, P.J.; Sen Gupta, A.; Thomsen, M.S.; Wernberg, T.; Smale, D.A. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 2023, 15, 119–145. [Google Scholar] [CrossRef]
- Barkhordarian, A.; Nielsen, D.M.; Olonscheck, D.; Baehr, J. Arctic marine heatwaves forced by greenhouse gases and triggered by abrupt sea-ice melt. Commun. Earth Environ. 2024, 5, 57. [Google Scholar] [CrossRef]
- Fernández-Barba, M.; Belyaev, O.; Huertas, I.E.; Navarro, G. Marine heatwaves in a shifting Southern Ocean induce dynamical changes in primary production. Commun. Earth Environ. 2024, 5, 404. [Google Scholar] [CrossRef]
- Amaya, D.J.; Miller, A.J.; Xie, S.P.; Kosaka, Y. Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun. 2020, 11, 1903. [Google Scholar] [CrossRef]
- Jacox, M.G.; Alexander, M.A.; Amaya, D.; Becker, E.; Bograd, S.J.; Brodie, S.; Hazen, E.L.; Pozo Buil, M.; Tommasi, D. Global seasonal forecasts of marine heatwaves. Nature 2022, 604, 486–490. [Google Scholar] [CrossRef]
- Ning, D.; Vetrova, V.; Bryan, K.; Delaux, S. Deep learning for spatiotemporal anomaly forecasting: A case study of marine heatwaves. In Proceedings of the ICML 2021 Workshop on Tackling Climate Change with Machine Learning, Virtual, 23 July 2021. [Google Scholar]
- Vonich, P.T.; Hakim, G.J. Predictability limit of the 2021 Pacific Northwest heatwave from deep-learning sensitivity analysis. Geophys. Res. Lett. 2024, 51, e2024GL110651. [Google Scholar] [CrossRef]
- Jacques-Dumas, V.; Ragone, F.; Borgnat, P.; Abry, P.; Bouchet, F. Deep learning-based extreme heatwave forecast. Front. Clim. 2022, 4, 789641. [Google Scholar] [CrossRef]
- Xie, B.; Qi, J.; Yang, S.; Sun, G.; Feng, Z.; Yin, B.; Wang, W. Sea Surface Temperature and Marine Heat Wave Predictions in the South China Sea: A 3D U-Net Deep Learning Model Integrating Multi-Source Data. Atmosphere 2024, 15, 86. [Google Scholar] [CrossRef]
- Sun, D.; Jing, Z.; Liu, H. Deep learning improves sub-seasonal marine heatwave forecast. Environ. Res. Lett. 2024, 19, 064035. [Google Scholar] [CrossRef]
- He, Q.; Zhu, Z.; Zhao, D.; Song, W.; Huang, D. An Interpretable Deep Learning Approach for Detecting Marine Heatwaves Patterns. Appl. Sci. 2024, 14, 601. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, S.; Yang, J.; Gao, X.; Ji, J.; Dong, C. Artificial intelligence forecasting of marine heatwaves in the South China Sea using a combined U-Net and ConvLSTM system. Remote Sens. 2023, 15, 4068. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T.; Kim, J. Two-pathway spatiotemporal representation learning for extreme water temperature prediction. Eng. Appl. Artif. Intell. 2024, 131, 107718. [Google Scholar] [CrossRef]
- Li, T.; Tang, Y.; Lian, T.; Hu, A. Quantifying the relative contributions of the global oceans to ENSO predictability with deep learning. Geophys. Res. Lett. 2024, 51, e2023GL106584. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, G.; Luo, C.; Li, X.; Ye, Y.; Xian, D. A Multi-scale Dual Attention Network for the Automatic Classification of Polar Sea Ice and Open Water Based on Sentinel-1 SAR Images. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2024, 17, 5500–5516. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Yang, X.; Xu, H. Sea Ice Detection from SAR Images Based on Deep Fully Convolutional Networks. In Artificial Intelligence Oceanography; Springer Nature: Singapore, 2023; pp. 253–276. [Google Scholar]
- Rogers, M.S.; Fox, M.; Fleming, A.; van Zeeland, L.; Wilkinson, J.; Hosking, J.S. Sea ice detection using concurrent multispectral and synthetic aperture radar imagery. Remote Sens. Environ. 2024, 305, 114073. [Google Scholar] [CrossRef]
- Chen, X.; Patel, M.; Pena Cantu, F.; Park, J.; Noa Turnes, J.; Xu, L.; Scott, K.A.; Clausi, D.A. MMSeaIce: Multi-task mapping of sea ice parameters from AI4Arctic Sea Ice Challenge Dataset. EGUsphere 2023, 2023, 1–17. [Google Scholar]
- Hong, W.; Huang, Z.; Wang, A.; Liu, Y.; Cai, J.; Su, H. SeaIceNet: Sea Ice Recognition via Global-Local Transformer in Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5648216. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, B.; Zhao, H.; Jiang, Y.; Sun, Y. SICFormer: A 3D-Swin Transformer for Sea Ice Concentration Prediction. J. Mar. Sci. Eng. 2024, 12, 1424. [Google Scholar] [CrossRef]
- Yang, C.H.; Wu, C.H.; Hsieh, C.M.; Wang, Y.C.; Tsen, I.F.; Tseng, S.H. Deep learning for imputation and forecasting tidal level. IEEE J. Ocean. Eng. 2021, 46, 1261–1271. [Google Scholar] [CrossRef]
- Shahabi, A.; Tahvildari, N. A deep-learning model for rapid spatiotemporal prediction of coastal water levels. Coast. Eng. 2024, 190, 104504. [Google Scholar] [CrossRef]
- Mulia, I.E.; Ueda, N.; Miyoshi, T.; Iwamoto, T.; Heidarzadeh, M. A novel deep learning approach for typhoon-induced storm surge modeling through efficient emulation of wind and pressure fields. Sci. Rep. 2023, 13, 7918. [Google Scholar] [CrossRef]
- Nieves, V.; Radin, C.; Camps-Valls, G. Predicting regional coastal sea level changes with machine learning. Sci. Rep. 2021, 11, 7650. [Google Scholar] [CrossRef]
- Raj, N.; Murali, J.; Singh-Peterson, L.; Downs, N. Prediction of Sea Level Using Double Data Decomposition and Hybrid Deep Learning Model for Northern Territory, Australia. Mathematics 2024, 12, 2376. [Google Scholar] [CrossRef]
- Sabililah, R.N.; Adytia, D. Time Series Forecasting of Sea Level by Using Transformer Approach, with a Case Study in Pangandaran, Indonesia. In Proceedings of the 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), Lonavla, India, 7–9 April 2023; pp. 1–6. [Google Scholar]
- Pörtner, H.O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Nicolai, M.; Okem, A.; et al. The ocean and cryosphere in a changing climate. IPCC Spec. Rep. Ocean Cryosphere A Chang. Clim. 2019, 1155, 10–1017. [Google Scholar]
- Yan, Q.; Huang, W. Sea ice remote sensing using GNSS-R: A review. Remote Sens. 2019, 11, 2565. [Google Scholar] [CrossRef]
- Wang, Y.R.; Li, X.M. Arctic sea ice cover data from spaceborne SAR by deep learning. Earth Syst. Sci. Data 2021, 13, 2723–2742. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea ice thickness measurement using spaceborne GNSS-R: First results with TechDemoSat-1 data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 577–587. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Detecting sea ice from TechDemoSat-1 data using support vector machines with feature selection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 1409–1416. [Google Scholar] [CrossRef]
- Regmi, A.; Leinonen, M.E.; Pärssinen, A.; Berg, M. Monitoring sea ice thickness using GNSS-interferometric reflectometry. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2001405. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea ice sensing from GNSS-R data using convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1510–1514. [Google Scholar] [CrossRef]
- Hu, Y.; Hua, X.; Liu, W.; Wickert, J. Sea Ice Detection from GNSS-R Data Based on Residual Network. Remote Sens. 2023, 15, 4477. [Google Scholar] [CrossRef]
- Sudakow, I.; Asari, V.K.; Liu, R.; Demchev, D. MeltPondNet: A Swin Transformer U-Net for Detection of Melt Ponds on Arctic Sea Ice. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 8776–8784. [Google Scholar] [CrossRef]
- Lyu, H.; Huang, W.; Mahdianpari, M. Eastern Arctic sea ice sensing: First results from the RADARSAT constellation mission data. Remote Sens. 2022, 14, 1165. [Google Scholar] [CrossRef]
- Stokholm, A.; Buus-Hinkler, J.; Wulf, T.; Korosov, A.; Saldo, R.; Pedersen, L.T.; Arthurs, D.; Dragan, I.; Modica, I.; Pedro, J.; et al. The AutoICE Challenge. Cryosphere 2024, 18, 3471–3494. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Zhou, X.; Chu, Q.; Yin, X.; Li, G.; Dai, X.; Hu, S.; Jin, F. CNN and Transformer Fusion Network for Sea Ice Classification Using GaoFen-3 Polarimetric SAR Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 18898–18914. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X. Predicting the daily sea ice concentration on a subseasonal scale of the pan-arctic during the melting season by a deep learning model. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4301315. [Google Scholar] [CrossRef]
- Song, C.; Zhu, J.; Li, X. Assessments of data-driven deep learning models on one-month predictions of pan-arctic sea ice thickness. Adv. Atmos. Sci. 2024, 41, 1379–1390. [Google Scholar] [CrossRef]
- Chi, J.; Bae, J.; Kwon, Y.J. Two-stream convolutional long-and short-term memory model using perceptual loss for sequence-to-sequence Arctic sea ice prediction. Remote Sens. 2021, 13, 3413. [Google Scholar] [CrossRef]
- Andersson, T.R.; Hosking, J.S.; Pérez-Ortiz, M.; Paige, B.; Elliott, A.; Russell, C.; Law, S.; Jones, D.C.; Wilkinson, J.; Phillips, T.; et al. Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nat. Commun. 2021, 12, 5124. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, R.; Han, G.; Li, W.; Wang, X.; Shao, Q.; Wu, X.; Cao, L.; Zhou, G.; Hu, S. A Spatio-Temporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4300522. [Google Scholar]
- Bahari, N.A.A.B.S.; Ahmed, A.N.; Chong, K.L.; Lai, V.; Huang, Y.F.; Koo, C.H.; Ng, J.L.; El-Shafie, A. Predicting sea level rise using artificial intelligence: A review. Arch. Comput. Methods Eng. 2023, 30, 4045–4062. [Google Scholar] [CrossRef]
- Vicens-Miquel, M.; Tissot, P.E.; Medrano, F.A. Exploring Deep Learning Methods for Short-Term Tide Gauge Water Level Predictions. Water 2024, 16, 2886. [Google Scholar] [CrossRef]
- Tiggeloven, T.; Couasnon, A.; van Straaten, C.; Muis, S.; Ward, P.J. Exploring deep learning capabilities for surge predictions in coastal areas. Sci. Rep. 2021, 11, 17224. [Google Scholar] [CrossRef]
- Xie, W.; Xu, G.; Zhang, H.; Dong, C. Developing a deep learning-based storm surge forecasting model. Ocean Model. 2023, 182, 102179. [Google Scholar] [CrossRef]
- Lee, J.W.; Irish, J.L.; Bensi, M.T.; Marcy, D.C. Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning. Coast. Eng. 2021, 170, 104024. [Google Scholar] [CrossRef]
- Adeli, E.; Sun, L.; Wang, J.; Taflanidis, A.A. An advanced spatio-temporal convolutional recurrent neural network for storm surge predictions. Neural Comput. Appl. 2023, 35, 18971–18987. [Google Scholar] [CrossRef]
- Liu, J.; Jin, B.; Wang, L.; Xu, L. Sea surface height prediction with deep learning based on attention mechanism. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1501605. [Google Scholar] [CrossRef]
- Krishnamurthy, V.N.D.; Degadwala, S.; Vyas, D. Forecasting Future Sea Level Rise: A Data-driven Approach using Climate Analysis. In Proceedings of the 2023 2nd International Conference on Edge Computing and Applications (ICECAA), Namakkal, India, 19–21 July 2023; pp. 646–651. [Google Scholar]
- Yang, L.; Jin, T.; Gao, X.; Wen, H.; Schöne, T.; Xiao, M.; Huang, H. Sea level fusion of satellite altimetry and tide gauge data by deep learning in the Mediterranean Sea. Remote Sens. 2021, 13, 908. [Google Scholar] [CrossRef]
- Ai, B.; Liu, X.; Wen, Z.; Wang, L.; Ma, H.; Lv, G. A novel coral reef classification method combining radiative transfer model with deep learning. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 13400–13412. [Google Scholar] [CrossRef]
- Franceschini, S.; Meier, A.C.; Suan, A.; Stokes, K.; Roy, S.; Madin, E.M. A deep learning model for measuring coral reef halos globally from multispectral satellite imagery. Remote Sens. Environ. 2023, 292, 113584. [Google Scholar] [CrossRef]
- Zhong, J.; Sun, J.; Lai, Z. ICESat-2 and Multi-spectral Images Based Coral Reefs Geomorphic Zone Mapping Using a Deep Learning Approach. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 6085–6098. [Google Scholar] [CrossRef]
- Li, J.; Knapp, D.E.; Fabina, N.S.; Kennedy, E.V.; Larsen, K.; Lyons, M.B.; Murray, N.J.; Phinn, S.R.; Roelfsema, C.M.; Asner, G.P. A global coral reef probability map generated using convolutional neural networks. Coral Reefs 2020, 39, 1805–1815. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Y.; Ma, Y.; Ren, G.; Li, Z.; Bao, Y. GCU-Net: Remote Sensing Classification Method for Coral Reef Geomorphology Integrating Geospatial Cognition. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5003805. [Google Scholar] [CrossRef]
- Zhou, Y.; Mao, Z.; Mao, Z.; Zhang, X.; Zhang, L.; Huang, H. Benthic Mapping of Coral Reef Areas at Varied Water Depths using Integrated Active and Passive Remote Sensing Data and Novel Visual Transformer Models. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4211415. [Google Scholar] [CrossRef]
- Shao, X.; Chen, H.; Magson, K.; Wang, J.; Song, J.; Chen, J.; Sasaki, J. Deep Learning for Multilabel Classification of Coral Reef Conditions in the Indo-Pacific Using Underwater Photo Transect Method. Aquat. Conserv. Mar. Freshw. Ecosyst. 2024, 34, e4241. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.; Gruen, A.; Li, D. A survey on underwater coral image segmentation based on deep learning. Geo-Spat. Inf. Sci. 2024, 28, 472–496. [Google Scholar] [CrossRef]
- King, A.; Bhandarkar, S.M.; Hopkinson, B.M. A comparison of deep learning methods for semantic segmentation of coral reef survey images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1394–1402. [Google Scholar]
- Zhang, H.; Li, M.; Zhong, J.; Qin, J. CNet: A Novel Seabed Coral Reef Image Segmentation Approach Based on Deep Learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 767–775. [Google Scholar]
- Sauder, J.; Banc-Prandi, G.; Meibom, A.; Tuia, D. Scalable semantic 3D mapping of coral reefs with deep learning. Methods Ecol. Evol. 2024, 15, 916–934. [Google Scholar] [CrossRef]
- Jamil, S.; Rahman, M.; Haider, A. Bag of features (BoF) based deep learning framework for bleached corals detection. Big Data Cogn. Comput. 2021, 5, 53. [Google Scholar] [CrossRef]
- Giles, A.B.; Ren, K.; Davies, J.E.; Abrego, D.; Kelaher, B. Combining drones and deep learning to automate coral reef assessment with RGB imagery. Remote Sens. 2023, 15, 2238. [Google Scholar] [CrossRef]
- Shlesinger, T.; van Woesik, R. Oceanic differences in coral-bleaching responses to marine heatwaves. Sci. Total Environ. 2023, 871, 162113. [Google Scholar] [CrossRef]
- Morand, G.; Dixon, S.; Le Berre, T. Identifying key factors for coral survival in reef restoration projects using deep learning. Aquat. Conserv. Mar. Freshw. Ecosyst. 2022, 32, 1758–1773. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.; Wang, F.; Chen, Y.; Lee, Z. Detection of coral reef bleaching based on Sentinel-2 multi-temporal imagery: Simulation and case study. Front. Mar. Sci. 2021, 8, 584263. [Google Scholar] [CrossRef]
- Boonnam, N.; Udomchaipitak, T.; Puttinaovarat, S.; Chaichana, T.; Boonjing, V.; Muangprathub, J. Coral reef bleaching under climate change: Prediction modeling and machine learning. Sustainability 2022, 14, 6161. [Google Scholar] [CrossRef]
- Burns, C.; Bollard, B.; Narayanan, A. Machine-learning for mapping and monitoring shallow coral reef habitats. Remote Sens. 2022, 14, 2666. [Google Scholar] [CrossRef]
- Zhu, H.; Lu, Z.; Zhang, C.; Yang, Y.; Zhu, G.; Zhang, Y.; Liu, H. Remote Sensing Classification of Offshore Seaweed Aquaculture Farms on Sample Dataset Amplification and Semantic Segmentation Model. Remote Sens. 2023, 15, 4423. [Google Scholar] [CrossRef]
- Gerlo, J.; Kooijman, D.G.; Wieling, I.W.; Heirmans, R.; Vanlanduit, S. Seaweed growth monitoring with a low-cost vision-based system. Sensors 2023, 23, 9197. [Google Scholar] [CrossRef]
- Marquez, L.; Fragkopoulou, E.; Cavanaugh, K.; Houskeeper, H.; Assis, J. Artificial intelligence convolutional neural networks map giant kelp forests from satellite imagery. Sci. Rep. 2022, 12, 22196. [Google Scholar] [CrossRef]
- Bell, T.W.; Nidzieko, N.J.; Siegel, D.A.; Miller, R.J.; Cavanaugh, K.C.; Nelson, N.B.; Reed, D.C.; Fedorov, D.; Moran, C.; Snyder, J.N.; et al. The utility of satellites and autonomous remote sensing platforms for monitoring offshore aquaculture farms: A case study for canopy forming kelps. Front. Mar. Sci. 2020, 7, 520223. [Google Scholar] [CrossRef]
- Hobley, B.; Mackiewicz, M.; Bremner, J.; Dolphin, T.; Arosio, R. Crowdsourcing experiment and fully convolutional neural networks for coastal remote sensing of seagrass and macro-algae. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 8734–8746. [Google Scholar] [CrossRef]
- Liu, M.; Wang, M.; Sun, Y.; Li, Z.B. Deep-Learning-Based Cloud Masking on Multispectral Ocean Color Imagery for Floating Macroalgae Monitoring. IEEE Trans. Geosci. Remote Sens. 2023, 62, 4200213. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, S.; Barnes, B.B.; Xie, Y.; Wang, M.; Cannizzaro, J.P.; English, D.C. Mapping and quantifying pelagic Sargassum in the Atlantic Ocean using multi-band medium-resolution satellite data and deep learning. Remote Sens. Environ. 2023, 289, 113515. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, L.; Li, X. A deep learning model for green algae detection on SAR images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4210914. [Google Scholar] [CrossRef]
- Luo, J.; He, Z.; Lin, H.; Wu, H. Biscale Convolutional Self-Attention Network for Hyperspectral Coastal Wetlands Classification. IEEE Geosci. Remote Sens. Lett. 2024, 21, 6002705. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Hao, Y.Y.; Wang, Y.C.; Zhou, S.Q.; Wu, W.B.; Yuan, Q.; Gao, Y.; Guo, H.Q.; Cai, X.X.; Zhao, B. Coastal wetland vegetation classification using pixel-based, object-based and deep learning methods based on RGB-UAV. Land 2022, 11, 2039. [Google Scholar] [CrossRef]
- Jamali, A.; Mahdianpari, M. Swin transformer and deep convolutional neural networks for coastal wetland classification using sentinel-1, sentinel-2, and LiDAR data. Remote Sens. 2022, 14, 359. [Google Scholar] [CrossRef]
- de Souza Moreno, G.M.; de Carvalho Júnior, O.A.; de Carvalho, O.L.F.; Andrade, T.C. Deep semantic segmentation of mangroves in Brazil combining spatial, temporal, and polarization data from Sentinel-1 time series. Ocean Coast. Manag. 2023, 231, 106381. [Google Scholar] [CrossRef]
- Seydi, S.T.; Ahmadi, S.A.; Ghorbanian, A.; Amani, M. Land Cover Mapping in a Mangrove Ecosystem Using Hybrid Selective Kernel-Based Convolutional Neural Networks and Multi-Temporal Sentinel-2 Imagery. Remote Sens. 2024, 16, 2849. [Google Scholar] [CrossRef]
- Xie, Y.; Rui, X.; Zou, Y.; Tang, H.; Ouyang, N. Mangrove monitoring and extraction based on multi-source remote sensing data: A deep learning method based on SAR and optical image fusion. Acta Oceanol. Sin. 2024, 43, 110–121. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Cui, Y.; Hodgson, M. Mapping salt marsh along coastal South Carolina using U-Net. ISPRS J. Photogramm. Remote Sens. 2021, 179, 121–132. [Google Scholar] [CrossRef]
- Liu, K.; Liu, S.; Tan, K.; Yin, M.; Tao, P. ANN-Based Filtering of Drone LiDAR in Coastal Salt Marshes Using Spatial–Spectral Features. Remote Sens. 2024, 16, 3373. [Google Scholar] [CrossRef]
- Eger, A.M.; Marzinelli, E.M.; Beas-Luna, R.; Blain, C.O.; Blamey, L.K.; Byrnes, J.E.; Carnell, P.E.; Choi, C.G.; Hessing-Lewis, M.; Kim, K.Y.; et al. The value of ecosystem services in global marine kelp forests. Nat. Commun. 2023, 14, 1894. [Google Scholar] [CrossRef]
- Hamilton, S.L.; Bell, T.W.; Watson, J.R.; Grorud-Colvert, K.A.; Menge, B.A. Remote sensing: Generation of long-term kelp bed data sets for evaluation of impacts of climatic variation. Ecology 2020, 101, e03031. [Google Scholar] [CrossRef]
- UN Environment Programme. Into the Blue: Securing a Sustainable Future for Kelp Forests; UN Environment Programme: Nairobi, Kenya, 2023. [Google Scholar]
- Finger, D.J.; McPherson, M.L.; Houskeeper, H.F.; Kudela, R.M. Mapping bull kelp canopy in northern California using Landsat to enable long-term monitoring. Remote Sens. Environ. 2021, 254, 112243. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Bell, T.; Costa, M.; Eddy, N.E.; Gendall, L.; Gleason, M.G.; Hessing-Lewis, M.; Martone, R.; McPherson, M.; Pontier, O.; et al. A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps. Front. Mar. Sci. 2021, 8, 753531. [Google Scholar] [CrossRef]
- Schroeder, S.B.; Dupont, C.; Boyer, L.; Juanes, F.; Costa, M. Passive remote sensing technology for mapping bull kelp (Nereocystis luetkeana): A review of techniques and regional case study. Glob. Ecol. Conserv. 2019, 19, e00683. [Google Scholar] [CrossRef]
- Bell, T.W.; Cavanaugh, K.C.; Saccomanno, V.R.; Cavanaugh, K.C.; Houskeeper, H.F.; Eddy, N.; Schuetzenmeister, F.; Rindlaub, N.; Gleason, M. Kelpwatch: A new visualization and analysis tool to explore kelp canopy dynamics reveals variable response to and recovery from marine heatwaves. PLoS ONE 2023, 18, e0271477. [Google Scholar] [CrossRef]
- Gendall, L.; Schroeder, S.B.; Wills, P.; Hessing-Lewis, M.; Costa, M. A multi-satellite mapping framework for floating kelp forests. Remote Sens. 2023, 15, 1276. [Google Scholar] [CrossRef]
- Mahmood, A.; Ospina, A.G.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Fisher, R.B.; Kendrick, G.A. Automatic hierarchical classification of kelps using deep residual features. Sensors 2020, 20, 447. [Google Scholar] [CrossRef]
- Laval, M.; Belmouhcine, A.; Courtrai, L.; Descloitres, J.; Salazar-Garibay, A.; Schamberger, L.; Minghelli, A.; Thibaut, T.; Dorville, R.; Mazoyer, C.; et al. Detection of sargassum from sentinel satellite sensors using deep learning approach. Remote Sens. 2023, 15, 1104. [Google Scholar] [CrossRef]
- Gao, L.; Li, X.; Kong, F.; Yu, R.; Guo, Y.; Ren, Y. AlgaeNet: A deep-learning framework to detect floating green algae from optical and SAR imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 2782–2796. [Google Scholar] [CrossRef]
- Balado, J.; Olabarria, C.; Martínez-Sánchez, J.; Rodriguez-Perez, J.R.; Pedro, A. Semantic segmentation of major macroalgae in coastal environments using high-resolution ground imagery and deep learning. Int. J. Remote Sens. 2021, 42, 1785–1800. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Satellite remote sensing of pelagic Sargassum macroalgae: The power of high resolution and deep learning. Remote Sens. Environ. 2021, 264, 112631. [Google Scholar] [CrossRef]
- Ostrowski, A.; Connolly, R.M.; Sievers, M. Evaluating multiple stressor research in coastal wetlands: A systematic review. Mar. Environ. Res. 2021, 164, 105239. [Google Scholar] [CrossRef]
- Gonzalez-Perez, A.; Abd-Elrahman, A.; Wilkinson, B.; Johnson, D.J.; Carthy, R.R. Deep and machine learning image classification of coastal wetlands using unpiloted aircraft system multispectral images and lidar datasets. Remote Sens. 2022, 14, 3937. [Google Scholar] [CrossRef]
- Ke, L.; Lu, Y.; Tan, Q.; Zhao, Y.; Wang, Q. Precise mapping of coastal wetlands using time-series remote sensing images and deep learning model. Front. For. Glob. Chang. 2024, 7, 1409985. [Google Scholar] [CrossRef]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef]
- Maurya, K.; Mahajan, S.; Chaube, N. Remote sensing techniques: Mapping and monitoring of mangrove ecosystem—A review. Complex Intell. Syst. 2021, 7, 2797–2818. [Google Scholar] [CrossRef]
- Lin, C.H.; Chu, M.C.; Tang, P.W. CODE-MM: Convex deep mangrove mapping algorithm based on optical satellite images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5620619. [Google Scholar] [CrossRef]
- Guo, Y.; Liao, J.; Shen, G. Mapping large-scale mangroves along the maritime Silk Road from 1990 to 2015 using a novel deep learning model and Landsat data. Remote Sens. 2021, 13, 245. [Google Scholar] [CrossRef]
- Guo, M.; Yu, Z.; Xu, Y.; Huang, Y.; Li, C. ME-Net: A deep convolutional neural network for extracting mangrove using Sentinel-2A data. Remote Sens. 2021, 13, 1292. [Google Scholar] [CrossRef]
- Quang, N.H.; Quinn, C.H.; Carrie, R.; Stringer, L.C.; Van Hue, L.T.; Hackney, C.R.; Van Tan, D. Comparisons of regression and machine learning methods for estimating mangrove above-ground biomass using multiple remote sensing data in the red River Estuaries of Vietnam. Remote Sens. Appl. Soc. Environ. 2022, 26, 100725. [Google Scholar] [CrossRef]
- Dong, H.; Gao, Y.; Chen, R.; Wei, L. MangroveSeg: Deep-Supervision-Guided Feature Aggregation Network for Mangrove Detection and Segmentation in Satellite Images. Forests 2024, 15, 127. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Ahmadi, S.A.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Application of artificial neural networks for mangrove mapping using multi-temporal and multi-source remote sensing imagery. Water 2022, 14, 244. [Google Scholar] [CrossRef]
- Morgan, G.R.; Wang, C.; Li, Z.; Schill, S.R.; Morgan, D.R. Deep learning of high-resolution aerial imagery for coastal marsh change detection: A comparative study. ISPRS Int. J. Geo-Inf. 2022, 11, 100. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, F.; Li, R.; Zhang, C. Modeling the flow and geomorphic heterogeneity induced by salt marsh vegetation patches based on convolutional neural network UNet-Flow. J. Geophys. Res. Earth Surf. 2024, 129, e2023JF007336. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, L.; Song, Z.; Yu, S.; Zhang, X.; Tian, B.; Liu, M. Salt marsh carbon stock estimation using deep learning with Sentinel-1 SAR of the Yangtze River estuary, China. Int. J. Appl. Earth Observ. Geoinf. 2024, 133, 104138. [Google Scholar] [CrossRef]
- de Lima, R.P.; Karimzadeh, M. Model ensemble with dropout for uncertainty estimation in sea ice segmentation using Sentinel-1 SAR. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4303215. [Google Scholar]
- Chen, X.; Valencia, R.; Soleymani, A.; Scott, K.A. Predicting sea ice concentration with uncertainty quantification using passive microwave and reanalysis data: A case study in Baffin Bay. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4300213. [Google Scholar] [CrossRef]
- Wang, C. Calibration in deep learning: A survey of the state-of-the-art. arXiv 2023, arXiv:2308.01222. [Google Scholar]
- Hoegh-Guldberg, O.; Caldeira, K.; Chopin, T.; Gaines, S.; Haugan, P.; Hemer, M.; Howard, J.; Konar, M.; Krause-Jensen, D.; Lovelock, C.E.; et al. The ocean as a solution to climate change: Five opportunities for action. In The Blue Compendium: From Knowledge to Action for a Sustainable Ocean Economy; Springer: Berlin/Heidelberg, Germany, 2023; pp. 619–680. [Google Scholar]
- Qiao, X.; Yan, Q.; Huang, W. Hybrid CNN-Transformer Network with a Weighted MSE Loss for Global Sea Surface Wind Speed Retrieval from GNSS-R Data. IEEE Trans. Geosci. Remote Sens. 2025, 63, 4207013. [Google Scholar] [CrossRef]
- Colin, A.; Tandeo, P.; Peureux, C.; Husson, R.; Fablet, R. Reduction of rain-induced errors for wind speed estimation on SAR observations using convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 8586–8594. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W.; Haller, M.C. A novel scheme for extracting sea surface wind information from rain-contaminated X-band marine radar images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 5220–5234. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, W. A CNN-based Hybrid Dehazing and Regression Model for Sea Surface Wind Speed Retrieval from Rain-contaminated Marine Radar Data. In Proceedings of the OCEANS 2024-Singapore, Singapore, 15–18 April 2024; pp. 1–5. [Google Scholar]
- Qiao, X.; Huang, W. An Attention-Aided Convolutional Neural Network for Global Sea Surface Wind Speed Estimation from GNSS-R Data. In Proceedings of the IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 5952–5955. [Google Scholar]
- Zhao, D.; Heidler, K.; Asgarimehr, M.; Arnold, C.; Xiao, T.; Wickert, J.; Zhu, X.X.; Mou, L. DDM-Former: Transformer networks for GNSS reflectometry global ocean wind speed estimation. Remote Sens. Environ. 2023, 294, 113629. [Google Scholar] [CrossRef]
- Du, H.; Li, W.; Cardellach, E.; Ribó, S.; Rius, A.; Nan, Y. Deep residual fully connected network for GNSS-R wind speed retrieval and its interpretation. Remote Sens. Environ. 2024, 313, 114375. [Google Scholar] [CrossRef]
- Asgarimehr, M.; Arnold, C.; Weigel, T.; Ruf, C.; Wickert, J. GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet. Remote Sens. Environ. 2022, 269, 112801. [Google Scholar] [CrossRef]
- Guo, W.; Du, H.; Guo, C.; Southwell, B.J.; Cheong, J.W.; Dempster, A.G. Information fusion for GNSS-R wind speed retrieval using statistically modified convolutional neural network. Remote Sens. Environ. 2022, 272, 112934. [Google Scholar] [CrossRef]
- Qiao, X.; Huang, W. A Hybrid CNN-Transformer Network for Global Ocean Wind Speed Retrieval from GNSS-R Data. In Proceedings of the OCEANS 2024-Halifax, Halifax, NS, Canada, 23–26 September 2024; pp. 1–4. [Google Scholar]
- Lu, C.; Wang, Z.; Wu, Z.; Zheng, Y.; Liu, Y. Global ocean wind speed retrieval from GNSS reflectometry using CNN-LSTM network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5801112. [Google Scholar] [CrossRef]
- Yu, P.; Xu, W.; Zhong, X.; Johannessen, J.A.; Yan, X.H.; Geng, X.; He, Y.; Lu, W. A neural network method for retrieving sea surface wind speed for C-Band SAR. Remote Sens. 2022, 14, 2269. [Google Scholar] [CrossRef]
- Guo, C.; Ai, W.; Hu, S.; Du, X.; Chen, N. Sea surface wind direction retrieval based on convolution neural network and wavelet analysis. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 3868–3876. [Google Scholar] [CrossRef]
- Mu, S.; Li, X.; Wang, H. The fusion of physical, textural, and morphological information in SAR imagery for hurricane wind speed retrieval based on deep learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4207513. [Google Scholar] [CrossRef]
- Zanchetta, A.; Zecchetto, S. Wind direction retrieval from Sentinel-1 SAR images using ResNet. Remote Sens. Environ. 2021, 253, 112178. [Google Scholar] [CrossRef]
- Qiao, X.; Huang, W. Global Significant Wave Height Retrieval from Spaceborne GNSS-R Using Transformers. In Proceedings of the OCEANS 2024-Singapore, Singapore, 15–18 April 2024; pp. 1–7. [Google Scholar]
- Quach, B.; Glaser, Y.; Stopa, J.E.; Mouche, A.A.; Sadowski, P. Deep learning for predicting significant wave height from synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1859–1867. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, W.; Chen, X. Mitigation of rain effect on wave height measurement using X-band radar sensor. IEEE Sensors J. 2022, 22, 5929–5938. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, W. Wave height estimation from X-band radar data using variational mode decomposition. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1505405. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, W.; Chen, X. Evaluation and mitigation of rain effect on wave direction and period estimation from X-band marine radar images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 5207–5219. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W. Spatial–temporal convolutional gated recurrent unit network for significant wave height estimation from shipborne marine radar data. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4201711. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Z.; Chen, X. Wave height estimation from X-band nautical radar images using temporal convolutional network. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 11395–11405. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, W. SWHFormer: A Vision Transformer for Significant Wave Height Estimation From Nautical Radar Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5104213. [Google Scholar] [CrossRef]
- Qiao, X.; Huang, W. WaveTransNet: A Transformer-Based Network for Global Significant Wave Height Retrieval From Spaceborne GNSS-R Data. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4208011. [Google Scholar] [CrossRef]
- Khare, V.; Bhuiyan, M.A. Tidal energy-path towards sustainable energy: A technical review. Clean. Energy Syst. 2022, 3, 100041. [Google Scholar] [CrossRef]
- Geyman, E.C.; Maloof, A.C. Deriving tidal structure from satellite image time series. Earth Space Sci. 2020, 7, e2019EA000958. [Google Scholar] [CrossRef]
- Bilgili, L.; Ölçer, A.I. IMO 2023 strategy-Where are we and what is next? Mar. Pol. 2024, 160, 105953. [Google Scholar] [CrossRef]
- Yan, R.; Wang, S.; Psaraftis, H.N. Data analytics for fuel consumption management in maritime transportation: Status and perspectives. Transp. Res. E Logist. Transp. Rev. 2021, 155, 102489. [Google Scholar] [CrossRef]
- Uyanık, T.; Karatuğ, Ç.; Arslanoğlu, Y. Machine learning approach to ship fuel consumption: A case of container vessel. Transp. Res. D Transp. Environ. 2020, 84, 102389. [Google Scholar] [CrossRef]
- Kim, Y.R.; Jung, M.; Park, J.B. Development of a fuel consumption prediction model based on machine learning using ship in-service data. J. Mar. Sci. Eng. 2021, 9, 137. [Google Scholar] [CrossRef]
- Su, M.; Lee, H.J.; Wang, X.; Bae, S.H. Fuel consumption cost prediction model for ro-ro carriers: A machine learning-based application. Marit. Policy Manag. 2024, 52, 229–249. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, B.; Xie, X.; Li, X.; Li, Y.; Zhao, Y. Short-term forecasting for ship fuel consumption based on deep learning. Ocean Eng. 2024, 301, 117398. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, J.; Liu, Y.; Zhang, Q.; Liu, R.W. A multi-task analysis and modelling paradigm using LSTM for multi-source monitoring data of inland vessels. Ocean Eng. 2020, 213, 107604. [Google Scholar] [CrossRef]
- Zhang, M.; Tsoulakos, N.; Kujala, P.; Hirdaris, S. A deep learning method for the prediction of ship fuel consumption in real operational conditions. Eng. Appl. Artif. Intell. 2024, 130, 107425. [Google Scholar] [CrossRef]
- Ilias, L.; Kapsalis, P.; Mouzakitis, S.; Askounis, D. A Multitask Learning Framework for Predicting Ship Fuel Oil Consumption. IEEE Access 2023, 11, 132576–132589. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Lu, Y.; Zhang, Y.; Li, Z.; Ma, R.; Huang, L. A ship energy consumption prediction method based on TGMA model and feature selection. J. Mar. Sci. Eng. 2024, 12, 1098. [Google Scholar] [CrossRef]
- Bui-Duy, L.; Vu-Thi-Minh, N. Utilization of a deep learning-based fuel consumption model in choosing a liner shipping route for container ships in Asia. Asian J. Shipp. Logist. 2021, 37, 1–11. [Google Scholar] [CrossRef]
- Gkerekos, C.; Lazakis, I. A novel, data-driven heuristic framework for vessel weather routing. Ocean Eng. 2020, 197, 106887. [Google Scholar] [CrossRef]
- Moradi, M.H.; Brutsche, M.; Wenig, M.; Wagner, U.; Koch, T. Marine route optimization using reinforcement learning approach to reduce fuel consumption and consequently minimize CO2 emissions. Ocean Eng. 2022, 259, 111882. [Google Scholar] [CrossRef]
- Zemskova, V.E.; He, T.L.; Wan, Z.; Grisouard, N. A deep-learning estimate of the decadal trends in the Southern Ocean carbon storage. Nat. Commun. 2022, 13, 4056. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Song, J.; Li, X.; Zhong, G.; Zhang, B. Carbon sinks and variations of pCO2 in the Southern Ocean from 1998 to 2018 based on a deep learning approach. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 3495–3503. [Google Scholar] [CrossRef]
- Picard, T.; Gula, J.; Fablet, R.; Collin, J.; Mémery, L. Predicting particle catchment areas of deep-ocean sediment traps using machine learning. Ocean Sci. 2024, 20, 1149–1165. [Google Scholar] [CrossRef]
- Muñoz, D.F.; Muñoz, P.; Moftakhari, H.; Moradkhani, H. From local to regional compound flood mapping with deep learning and data fusion techniques. Sci. Total Environ. 2021, 782, 146927. [Google Scholar] [CrossRef]
- Liu, B.; Li, X.; Zheng, G. Coastal inundation mapping from bitemporal and dual-polarization SAR imagery based on deep convolutional neural networks. J. Geophys. Res. Ocean. 2019, 124, 9101–9113. [Google Scholar] [CrossRef]
- Sorkhabi, O.M.; Shadmanfar, B.; Al-Amidi, M.M. Deep learning of sea-level variability and flood for coastal city resilience. City Environ. Interact. 2023, 17, 100098. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, D.K. Prediction of coastal flooding risk under climate change impacts in South Korea using machine learning algorithms. Environ. Res. Lett. 2020, 15, 094052. [Google Scholar] [CrossRef]
- Xu, K.; Han, Z.; Bin, L.; Shen, R.; Long, Y. Rapid forecasting of compound flooding for a coastal area based on data-driven approach. Nat. Hazards 2024, 121, 1399–1421. [Google Scholar] [CrossRef]
- Hu, R.; Fang, F.; Pain, C.; Navon, I. Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method. J. Hydrol. 2019, 575, 911–920. [Google Scholar] [CrossRef]
- Lekunberri, X.; Ruiz, J.; Quincoces, I.; Dornaika, F.; Arganda-Carreras, I.; Fernandes, J.A. Identification and measurement of tropical tuna species in purse seiner catches using computer vision and deep learning. Ecol. Informat. 2022, 67, 101495. [Google Scholar] [CrossRef]
- Shedrawi, G.; Magron, F.; Vigga, B.; Bosserelle, P.; Gislard, S.; Halford, A.R.; Tiitii, S.; Fepuleai, F.; Molai, C.; Rota, M.; et al. Leveraging deep learning and computer vision technologies to enhance management of coastal fisheries in the Pacific region. Sci. Rep. 2024, 14, 20915. [Google Scholar] [CrossRef]
- Marques, T.P.; Cote, M.; Rezvanifar, A.; Albu, A.B.; Ersahin, K.; Mudge, T.; Gauthier, S. Instance segmentation-based identification of pelagic species in acoustic backscatter data. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021; pp. 4378–4387. [Google Scholar]
- Slonimer, A.L.; Dosso, S.E.; Albu, A.B.; Cote, M.; Marques, T.P.; Rezvanifar, A.; Ersahin, K.; Mudge, T.; Gauthier, S. Classification of Herring, Salmon, and Bubbles in Multifrequency Echograms Using U-Net Neural Networks. IEEE J. Ocean. Eng. 2023, 48, 1236–1254. [Google Scholar] [CrossRef]
- Han, H.; Yang, C.; Jiang, B.; Shang, C.; Sun, Y.; Zhao, X.; Xiang, D.; Zhang, H.; Shi, Y. Construction of chub mackerel (Scomber japonicus) fishing ground prediction model in the northwestern Pacific Ocean based on deep learning and marine environmental variables. Mar. Pollut. Bull. 2023, 193, 115158. [Google Scholar] [CrossRef]
- Xie, M.; Liu, B.; Chen, X.; Yu, W.; Wang, J. Deep learning-based fishing ground prediction using asymmetric spatiotemporal scales: A case study of Ommastrephes bartramii. Fishes 2024, 9, 64. [Google Scholar] [CrossRef]
- Gruber, N.; Bakker, D.C.; DeVries, T.; Gregor, L.; Hauck, J.; Landschützer, P.; McKinley, G.A.; Müller, J.D. Trends and variability in the ocean carbon sink. Nat. Rev. Earth Environ. 2023, 4, 119–134. [Google Scholar] [CrossRef]
- Mayot, N.; Buitenhuis, E.T.; Wright, R.M.; Hauck, J.; Bakker, D.C.; Le Quéré, C. Constraining the trend in the ocean CO2 sink during 2000–2022. Nat. Commun. 2024, 15, 8429. [Google Scholar] [CrossRef]
- Gattuso, J.P.; Williamson, P.; Duarte, C.M.; Magnan, A.K. The potential for ocean-based climate action: Negative emissions technologies and beyond. Front. Clim. 2021, 2, 575716. [Google Scholar] [CrossRef]
- Rödenbeck, C.; Bakker, D.C.; Gruber, N.; Iida, Y.; Jacobson, A.R.; Jones, S.; Landschützer, P.; Metzl, N.; Nakaoka, S.; Olsen, A.; et al. Data-based estimates of the ocean carbon sink variability–first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences 2015, 12, 7251–7278. [Google Scholar] [CrossRef]
- Landschützer, P.; Gruber, N.; Bakker, D.C.; Schuster, U.; Nakaoka, S.i.; Payne, M.R.; Sasse, T.P.; Zeng, J. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 2013, 10, 7793–7815. [Google Scholar] [CrossRef]
- Couespel, D.; Tjiputra, J.; Johannsen, K.; Vaittinada Ayar, P.; Jensen, B. Machine learning reveals regime shifts in future ocean carbon dioxide fluxes inter-annual variability. Commun. Earth Environ. 2024, 5, 99. [Google Scholar] [CrossRef]
- Huang, Y.; Fassbender, A.J.; Bushinsky, S.M. Biogenic carbon pool production maintains the Southern Ocean carbon sink. Proc. Natl. Acad. Sci. USA 2023, 120, e2217909120. [Google Scholar] [CrossRef]
- Zhong, G.; Li, X.; Song, J.; Wang, F.; Qu, B.; Wang, Y.; Zhang, B.; Ma, J.; Yuan, H.; Duan, L.; et al. The Southern Ocean carbon sink has been overestimated in the past three decades. Commun. Earth Environ. 2024, 5, 398. [Google Scholar] [CrossRef]
- Li, C.; Wu, H.; Yang, C.; Cui, L.; Ma, Z.; Wang, L. Advanced Machine Learning Models for Estimating the Distribution of Sea-Surface Particulate Organic Carbon (POC) Concentrations Using Satellite Remote Sensing Data: The Mediterranean as an Example. Sensors 2024, 24, 5669. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Bai, Y.; Yang, C.; Wang, J.; Zhou, Q.; Hu, S.; Shi, T.; Liao, X.; Wu, G. Improving satellite retrieval of oceanic particulate organic carbon concentrations using machine learning methods. Remote Sens. Environ. 2021, 256, 112316. [Google Scholar] [CrossRef]
- Wu, H.; Cui, L.; Wang, L.; Sun, R.; Zheng, Z. A method for estimating particulate organic carbon at the sea surface based on geodetector and machine learning. Front. Mar. Sci. 2023, 10, 1295874. [Google Scholar] [CrossRef]
- Cosby, A.; Lebakula, V.; Smith, C.; Wanik, D.; Bergene, K.; Rose, A.; Swanson, D.; Bloom, D. Accelerating growth of human coastal populations at the global and continent levels: 2000–2018. Sci. Rep. 2024, 14, 22489. [Google Scholar] [CrossRef]
- Toimil, A.; Losada, I.J.; Nicholls, R.J.; Dalrymple, R.A.; Stive, M.J. Addressing the challenges of climate change risks and adaptation in coastal areas: A review. Coast. Eng. 2020, 156, 103611. [Google Scholar] [CrossRef]
- Baills, A.; Garcin, M.; Bulteau, T. Assessment of selected climate change adaptation measures for coastal areas. Ocean Coast. Manage. 2020, 185, 105059. [Google Scholar] [CrossRef]
- Bongarts Lebbe, T.; Rey-Valette, H.; Chaumillon, É.; Camus, G.; Almar, R.; Cazenave, A.; Claudet, J.; Rocle, N.; Meur-Ferec, C.; Viard, F.; et al. Designing coastal adaptation strategies to tackle sea level rise. Front. Mar. Sci. 2021, 8, 740602. [Google Scholar] [CrossRef]
- Aziz, F.; Wang, X.; Mahmood, M.Q.; Awais, M.; Trenouth, B. Coastal urban flood risk management: Challenges and opportunities- A systematic review. J. Hydrol. 2024, 645, 132271. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Tang, W.; Chen, S.; Xie, W. Rapid spatio-temporal prediction of coastal urban floods based on deep learning approaches. Urban Clim. 2023, 52, 101716. [Google Scholar] [CrossRef]
- Lehodey, P.; Bertrand, A.; Hobday, A.J.; Kiyofuji, H.; McClatchie, S.; Menkès, C.E.; Pilling, G.; Polovina, J.; Tommasi, D. ENSO impact on marine fisheries and ecosystems. In El Niño Southern Oscillation in a Changing Climate; American Geophysical Union: Washington, DC, USA, 2020; pp. 429–451. [Google Scholar]
- Cheung, W.W.; Frölicher, T.L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 2020, 10, 6678. [Google Scholar] [CrossRef]
- Galappaththi, E.K.; Susarla, V.B.; Loutet, S.J.; Ichien, S.T.; Hyman, A.A.; Ford, J.D. Climate change adaptation in fisheries. Fish Fish. 2022, 23, 4–21. [Google Scholar] [CrossRef]
- Atlas, W.I.; Ma, S.; Chou, Y.C.; Connors, K.; Scurfield, D.; Nam, B.; Ma, X.; Cleveland, M.; Doire, J.; Moore, J.W.; et al. Wild salmon enumeration and monitoring using deep learning empowered detection and tracking. Front. Mar. Sci. 2023, 10, 1200408. [Google Scholar] [CrossRef]
- Palmer, M.; Álvarez-Ellacuría, A.; Moltó, V.; Catalán, I.A. Automatic, operational, high-resolution monitoring of fish length and catch numbers from landings using deep learning. Fish. Res. 2022, 246, 106166. [Google Scholar] [CrossRef]
- Zhang, D.; O’Conner, N.E.; Simpson, A.J.; Cao, C.; Little, S.; Wu, B. Coastal fisheries resource monitoring through A deep learning-based underwater video analysis. Estuar. Coast. Shelf Sci. 2022, 269, 107815. [Google Scholar] [CrossRef]
- Yassir, A.; Andaloussi, S.J.; Ouchetto, O.; Mamza, K.; Serghini, M. Acoustic fish species identification using deep learning and machine learning algorithms: A systematic review. Fish. Res. 2023, 266, 106790. [Google Scholar] [CrossRef]
- Brautaset, O.; Waldeland, A.U.; Johnsen, E.; Malde, K.; Eikvil, L.; Salberg, A.B.; Handegard, N.O. Acoustic classification in multifrequency echosounder data using deep convolutional neural networks. ICES J. Mar. Sci. 2020, 77, 1391–1400. [Google Scholar] [CrossRef]
- Hamard, Q.; Pham, M.T.; Cazau, D.; Heerah, K. A deep learning model for detecting and classifying multiple marine mammal species from passive acoustic data. Ecol. Inform. 2024, 84, 102906. [Google Scholar] [CrossRef]
- Xu, H.; Song, L.; Zhang, T.; Li, Y.; Shen, J.; Zhang, M.; Li, K. Effects of Different Spatial Resolutions on Prediction Accuracy of Thunnus alalunga Fishing Ground in Waters Near the Cook Islands Based on Long Short-Term Memory (LSTM) Neural Network Model. J. Ocean Univ. 2023, 22, 1427–1438. [Google Scholar] [CrossRef]
- Feng, Z.; Qi, J.; Li, D.; Xie, B.; Sun, G.; Yin, B.; Yang, S. Attention-enhanced deep learning model for reconstruction and downscaling of thermocline depth in the tropical Indian Ocean. Ocean Model. 2025, 196, 102537. [Google Scholar] [CrossRef]
- Kellogg, K.; Hoffman, P.; Standley, S.; Shaffer, S.; Rosen, P.; Edelstein, W.; Dunn, C.; Baker, C.; Barela, P.; Shen, Y.; et al. NASA-ISRO synthetic aperture radar (NISAR) mission. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–21. [Google Scholar]
- Unwin, M.J.; Pierdicca, N.; Cardellach, E.; Rautiainen, K.; Foti, G.; Blunt, P.; Guerriero, L.; Santi, E.; Tossaint, M. An introduction to the HydroGNSS GNSS reflectometry remote sensing mission. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 6987–6999. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ågerstrand, M.; Bi, M.; Gould, K.A.; Sauerland, U. Risks and benefits of large language models for the environment. Environ. Sci. Technol. 2023, 57, 3464–3466. [Google Scholar] [CrossRef]
- Ho, K.T.M.; Chen, K.C.; Lee, L.; Burt, F.; Yu, S.; Lee, P.H. Quantum computing for climate resilience and sustainability challenges. In Proceedings of the 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), Montreal, QC, Canada, 15–20 September 2024; pp. 262–267. [Google Scholar]
Category | Subcategory | Widely Used Data | Source | Characteristics | Applications |
---|---|---|---|---|---|
Observation Data | Remote Sensing Data | ||||
Optical | MODIS | https://modis.gsfc.nasa.gov/data/ (accessed on 1 July 2025) | 36 bands from 0.4 to 1.4 µm | Temperature, chl-a, sea ice | |
VIIRS | https://viirsland.gsfc.nasa.gov/ (accessed on 1 July 2025) | 22 bands from 0.41 to 12.01 µm | Temperature, chl-a, sea ice | ||
Landsat-8 OLI/TIRS | https://landsat.gsfc.nasa.gov/satellites/landsat-8/ (accessed on 1 July 2025) | 11 bands from 0.4 to 12.5 µm | Coastal wetland, e.g., mangroves | ||
Sentinel-2 MSI | https://browser.dataspace.copernicus.eu/ (accessed on 1 July 2025) | 13 bands from 0.44 to 2.19 µm | Chl-a, coral reef | ||
Sentinel-3 OLCI | https://browser.dataspace.copernicus.eu/ (accessed on 1 July 2025) | 21 bands from 0.4 to 1.02 µm | Chl-a, temperature | ||
GOCI | https://oceancolor.gsfc.nasa.gov/about/missions/goci/ (accessed on 1 July 2025) | 8 bands (6 visible, 2 NIR) | Chl-a, sea ice, coastal water dynamics | ||
PlanetScope | https://www.planet.com/industries/education-and-research/ (accessed on 1 July 2025) | 8 bands, 3–5 m per pixel | Coastal Wetland | ||
SAR | Sentinel-1 | https://browser.dataspace.copernicus.eu/ (accessed on 1 July 2025) | C-Band | Sea ice, oil spill, ship detection | |
RADARSAT-2 | https://www.asc-csa.gc.ca/eng/satellites/radarsat2/ (accessed on 1 July 2025) | C-Band | Sea ice and ship detection | ||
RCM | https://www.asc-csa.gc.ca/eng/satellites/radarsat/ (accessed on 1 July 2025) | C-Band | Sea ice, oil spill, ship detection | ||
TerraSAR-X | https://earth.esa.int/eogateway/missions/terrasar-x-and-tandem-x (accessed on 1 July 2025) | X-Band | Wave, sea ice, ship detection | ||
ICEYE | https://www.iceye.com/sar-data (accessed on 1 July 2025) | X-Band | Flood, oil spill monitoring | ||
GNSS-R | TDS-1 | https://merrbys.co.uk/ (accessed on 1 July 2025) | L-Band, global coverage | Sea ice, wind, wave | |
CYGNSS | https://cygnss.engin.umich.edu/data-products/ (accessed on 1 July 2025) | L-Band, cover 38°N and 38°S | Wind, wave, algae bloom | ||
Passive Microwave | AMSR-2 | https://www.earthdata.nasa.gov/data/instruments/amsr2 (accessed on 1 July 2025) | Multifrequency radiometer | Temperature, sea ice concentration, and wind speed | |
Lidar | ICESat-2 | https://icesat-2.gsfc.nasa.gov/ (accessed on 1 July 2025) | Laser pulses at 532 nm, global coverage | Sea ice | |
X-Band Radar | Furuno | https://github.com/openradar/open-radar-data (accessed on 1 July 2025) | X-Band, wavelength at 3 cm | Wind, wave, currents | |
HF Radar | NOAA HF Radar National Server | https://hfradar.ndbc.noaa.gov/ (accessed on 1 July 2025) | High frequency 3–30 MHz, cover coastal areas | Surface currents, wind, wave | |
Acoustic | Passive Acoustic Data | https://www.ncei.noaa.gov/products/passive-acoustic-data (accessed on 1 July 2025) | Sound waves | Fisheries | |
In Situ Data | |||||
Buoy | NDBC | https://www.ndbc.noaa.gov/ (accessed on 1 July 2025) | Mooring buoy, global distribution, real-time data | Wind, wave, air pressure | |
Float | Argo | https://www.aoml.noaa.gov/argo/ (accessed on 1 July 2025) | Autonomous profiling float, global distribution | Temperature, salinity, depth | |
BGC-Argo | https://biogeochemical-argo.org/ (accessed on 1 July 2025) | Floats carry biological and chemical sensors | Chl-a, oxygen, nitrate, pH | ||
Research Vessels | GLODAP | https://glodap.info/ (accessed on 1 July 2025) | Global synthesis of ocean carbon measurements | Alkalinity, oxygen, nitrate | |
GO-SHIP | http://www.go-ship.org/ (accessed on 1 July 2025) | Full-depth hydrographic sections for climate monitoring | DIC, pH | ||
Tide Gauges | U of Hawaii Sea Level Center | https://uhslc.soest.hawaii.edu/ (accessed on 1 July 2025) | Global distribution | Sea level height, tide | |
PSMSL | https://psmsl.org/ (accessed on 1 July 2025) | Global distribution | Sea level height, tide | ||
Underwater Images/Video | NOAA Ocean Exploration Video Portal | https://www.ncei.noaa.gov/access/ocean-exploration/video/ (accessed on 1 July 2025) | Images/videos taken by AUV or ROV | Coral reefs, undersea topography | |
Model Data | Physical Model | CMIP | https://pcmdi.llnl.gov/CMIP6/ (accessed on 1 July 2025) | Physical-based climate model | Temperature, precipitation, sea level, etc. |
WW3 | https://polar.ncep.noaa.gov/waves/wavewatch/ (accessed on 1 July 2025) | Physical-based wave model | wave | ||
ML Model | GraphCast | https://github.com/google-deepmind/graphcast (accessed on 1 July 2025) | ML model based on GNN | Weather-related variables | |
Reanalysis Data | ECMWF | ERA5 | https://cds.climate.copernicus.eu/datasets (accessed on 1 July 2025) | Global coverage, hourly values | Wind, wave, temperature |
U of Maryland | SODA | http://www.soda.umd.edu/ (accessed on 1 July 2025) | Global coverage | Wind, potential temperature, salinity | |
NOAA | GODAS | https://psl.noaa.gov/data/gridded/data.godas.html (accessed on 1 July 2025) | Global coverage, monthly values | Temperature, oxygen, salinity | |
OISST | https://www.ncei.noaa.gov/products/optimum-interpolation-sst (accessed on 1 July 2025) | Global coverage, daily values | SST | ||
CMEMS | GLORYS | https://data.marine.copernicus.eu/products (accessed on 1 July 2025) | Global coverage, daily and monthly values | Temperature, salinity, currents |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, X.; Zhang, K.; Huang, W. Impacts of Climate Change on Oceans and Ocean-Based Solutions: A Comprehensive Review from the Deep Learning Perspective. Remote Sens. 2025, 17, 2306. https://doi.org/10.3390/rs17132306
Qiao X, Zhang K, Huang W. Impacts of Climate Change on Oceans and Ocean-Based Solutions: A Comprehensive Review from the Deep Learning Perspective. Remote Sensing. 2025; 17(13):2306. https://doi.org/10.3390/rs17132306
Chicago/Turabian StyleQiao, Xin, Ke Zhang, and Weimin Huang. 2025. "Impacts of Climate Change on Oceans and Ocean-Based Solutions: A Comprehensive Review from the Deep Learning Perspective" Remote Sensing 17, no. 13: 2306. https://doi.org/10.3390/rs17132306
APA StyleQiao, X., Zhang, K., & Huang, W. (2025). Impacts of Climate Change on Oceans and Ocean-Based Solutions: A Comprehensive Review from the Deep Learning Perspective. Remote Sensing, 17(13), 2306. https://doi.org/10.3390/rs17132306