Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,594)

Search Parameters:
Keywords = remote sensing and sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1511 KB  
Article
Remote Sensing-Based Mapping of Forest Above-Ground Biomass and Its Relationship with Bioclimatic Factors in the Atacora Mountain Chain (Togo) Using Google Earth Engine
by Demirel Maza-esso Bawa, Fousséni Folega, Kueshi Semanou Dahan, Cristian Constantin Stoleriu, Bilouktime Badjaré, Jasmina Šinžar-Sekulić, Huaguo Huang, Wala Kperkouma and Batawila Komlan
Geomatics 2026, 6(1), 8; https://doi.org/10.3390/geomatics6010008 (registering DOI) - 22 Jan 2026
Abstract
Accurate estimation of above-ground biomass (AGB) is vital for carbon accounting, biodiversity conservation, and sustainable forest management, especially in tropical regions under strong anthropogenic pressure. This study estimated and mapped AGB in the Atacora Mountain Chain, Togo, using a multi-source remote sensing approach [...] Read more.
Accurate estimation of above-ground biomass (AGB) is vital for carbon accounting, biodiversity conservation, and sustainable forest management, especially in tropical regions under strong anthropogenic pressure. This study estimated and mapped AGB in the Atacora Mountain Chain, Togo, using a multi-source remote sensing approach within Google Earth Engine (GEE). Field data from 421 plots of the 2021 National Forest Inventory were combined with Sentinel-1 Synthetic Aperture Radar, Sentinel-2 multispectral imagery, bioclimatic variables from WorldClim, and topographic data. A Random Forest regression model evaluated the predictive capacity of different variable combinations. The best model, integrating SAR, optical, and climatic variables (S1S2allBio), achieved R2 = 0.90, MAE = 13.42 Mg/ha, and RMSE = 22.54 Mg/ha, outperforming models without climate data. Dense forests stored the highest biomass (124.2 Mg/ha), while tree/shrub savannas had the lowest (25.38 Mg/ha). Spatially, ~60% of the area had biomass ≤ 50 Mg/ha. Precipitation correlated positively with AGB (r = 0.55), whereas temperature showed negative correlations. This work demonstrates the effectiveness of integrating multi-sensor satellite data with climatic predictors for accurate biomass mapping in complex tropical landscapes. The approach supports national forest monitoring, REDD+ programs, and ecosystem restoration, contributing to SDGs 13, 15, and 12 and offering a scalable method for other tropical regions. Full article
Show Figures

Graphical abstract

27 pages, 5777 KB  
Review
A Review of Remote Sensing Monitoring of Plant Diversity in Tropical Forests
by Xi-Qing Sun, Hao-Biao Wu, Dao-Sheng Chen, Xiao-Dong Yang, Xing-Rong Ma, Huan-Cai Feng, Xiao-Yan Cheng, Shuang Yang, Hai-Tao Zhou and Run-Ze Wu
Forests 2026, 17(1), 142; https://doi.org/10.3390/f17010142 (registering DOI) - 22 Jan 2026
Abstract
Tropical forests are the most plant-diverse ecosystems on Earth, characterized by extremely high species richness and playing essential roles in ecosystem stability, carbon sequestration, and hydrological regulation. Although remote sensing has been widely applied to monitoring tropical forest plant diversity in recent decades, [...] Read more.
Tropical forests are the most plant-diverse ecosystems on Earth, characterized by extremely high species richness and playing essential roles in ecosystem stability, carbon sequestration, and hydrological regulation. Although remote sensing has been widely applied to monitoring tropical forest plant diversity in recent decades, a systematic understanding of its actual monitoring capacity remains limited. Based on a bibliometric analysis of 15,878 publications from 1960 to 2025, this study draws several key conclusions: (1) Global research is highly unevenly distributed, with most studies concentrated in China’s tropical monsoon forests, Brazil’s Amazon rainforest, Costa Rica’s tropical rainforests, and Mexico’s tropical dry forests, while many other regions remain understudied; (2) The Sentinel-2 and Landsat series are the most widely used satellite sensors, and indirect indicators are applied more frequently than direct spectral metrics in monitoring models. Hyperspectral data, Light Detection and Ranging (LiDAR), and nonlinear models generally achieve higher accuracy than multispectral data, Synthetic Aperture Radar (SAR), and linear models; (3) Sampling scales range from 64 m2 to 1600 ha, with the highest accuracy achieved when plot size is within 400 m2 < Area ≤ 2500 m2, and spatial resolutions below 10 m perform best. Based on these findings, we propose four priority directions for future research: (1) Quantifying spectral indicators and models; (2) Assessing the influence of canopy structure on biodiversity remote sensing accuracy; (3) Strengthening the application of high-resolution data and reducing intraspecific spectral variability; and (4) Enhancing functional diversity monitoring and advancing research on the relationship between biodiversity and ecosystem functioning. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

18 pages, 3461 KB  
Article
Real Time IoT Low-Cost Air Quality Monitoring System
by Silvian-Marian Petrică, Ioana Făgărășan, Nicoleta Arghira and Iulian Munteanu
Sustainability 2026, 18(2), 1074; https://doi.org/10.3390/su18021074 - 21 Jan 2026
Abstract
This paper proposes a complete solution, implementing a low-cost, energy-independent, network-connected, and scalable environmental air parameter monitoring system. It features a remote sensing module which provides environmental data to a cloud-based server and a software application for real-time and historical data processing, standardized [...] Read more.
This paper proposes a complete solution, implementing a low-cost, energy-independent, network-connected, and scalable environmental air parameter monitoring system. It features a remote sensing module which provides environmental data to a cloud-based server and a software application for real-time and historical data processing, standardized air quality indices computations, and a comprehensive visualization of environmental parameters evolutions. A fully operational prototype was built around a low-cost micro-controller connected to low-cost air parameter sensors and a GSM modem, powered by a stand-alone renewable energy-based power supply. The associated software platform has been developed by using Microsoft Power Platform technologies. The collected data is transmitted from sensors to a remote server via the GSM modem using custom-built JSON structures. From there, data is extracted and forwarded to a database accessible to users through a dedicated application. The overall accuracy of the air quality monitoring system has been thoroughly validated both in controlled indoor environment and against a trusted outdoor air quality reference station. The proposed air parameters monitoring solution paves the way for future research actions, such as the classification of polluted sites or prediction of air parameter variations in the site of interest. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

16 pages, 4339 KB  
Article
Reinforcement Learning Technique for Self-Healing FBG Sensor Systems in Optical Wireless Communication Networks
by Rénauld A. Dellimore, Jyun-Wei Li, Hung-Wei Huang, Amare Mulatie Dehnaw, Cheng-Kai Yao, Pei-Chung Liu and Peng-Chun Peng
Appl. Sci. 2026, 16(2), 1012; https://doi.org/10.3390/app16021012 - 19 Jan 2026
Viewed by 34
Abstract
This paper proposes a large-scale, self-healing multipoint fiber Bragg grating (FBG) sensor network that employs reinforcement learning (RL) techniques to enhance the resilience and efficiency of optical wireless communication networks. The system features a mesh-structured, self-healing ring-mesh architecture employing 2 × 2 optical [...] Read more.
This paper proposes a large-scale, self-healing multipoint fiber Bragg grating (FBG) sensor network that employs reinforcement learning (RL) techniques to enhance the resilience and efficiency of optical wireless communication networks. The system features a mesh-structured, self-healing ring-mesh architecture employing 2 × 2 optical switches, enabling robust multipoint sensing and fault tolerance in the event of one or more link failures. To further extend network coverage and support distributed deployment scenarios, free-space optical (FSO) links are integrated as wireless optical backhaul between central offices and remote monitoring sites, including structural health, renewable energy, and transportation systems. These FSO links offer high-speed, line-of-sight connections that complement physical fiber infrastructure, particularly in locations where cable deployment is impractical. Additionally, RL-based artificial intelligence (AI) techniques are employed to enable intelligent path selection, optimize routing, and enhance network reliability. Experimental results confirm that the RL-based approach effectively identifies optimal sensing paths among multiple routing options, both wired and wireless, resulting in reduced energy consumption, extended sensor network lifespan, and improved transmission delay. The proposed hybrid FSO–fiber self-healing sensor system demonstrates high survivability, scalability, and low routing path loss, making it a strong candidate for future services and mission-critical applications. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

29 pages, 5970 KB  
Article
SIGMaL: An Integrated Framework for Water Quality Monitoring in a Coastal Shallow Lake
by Anja Batina, Ante Šiljeg, Andrija Krtalić and Ljiljana Šerić
Remote Sens. 2026, 18(2), 312; https://doi.org/10.3390/rs18020312 - 16 Jan 2026
Viewed by 82
Abstract
Coastal lakes require monitoring approaches that capture spatial and temporal variability beyond the limits of conventional in situ measurements. In this study, a SIGMaL framework (Satellite–In situ–GIS-multicriteria decision analysis (MCDA)–Machine Learning (ML)) was developed, a unified methodology that integrates in situ monitoring, GIS [...] Read more.
Coastal lakes require monitoring approaches that capture spatial and temporal variability beyond the limits of conventional in situ measurements. In this study, a SIGMaL framework (Satellite–In situ–GIS-multicriteria decision analysis (MCDA)–Machine Learning (ML)) was developed, a unified methodology that integrates in situ monitoring, GIS MCDA-derived water quality index (WQI), satellite imagery, and ML models for comprehensive coastal lake water quality assessment. A WQI, derived from a 12-month series of in situ measurements and environmental parameters, was used alongside four physicochemical parameters measured by a multiparameter probe. First, satellite reflectance from each sensor was used to train a set of nine regression models for modelling electrical conductivity (EC), turbidity, water temperature (WT), and dissolved oxygen (DO). Second, convolutional neural networks (CNNs) with spectral and temporal inputs were trained to classify WQI classes, enabling a cross-sensor evaluation of their suitability for lake water quality monitoring. Third, the trained CNNs were applied to generate WQI maps for a subsequent 12-month period without in situ data. Across all analyses, WQI-based models provided more stable and accurate models than those trained on raw parameters. Sentinel-2 achieved the most consistent WQI performance (AUC ≈ 1.00, R2 ≈ 0.84), PlanetScope captured fine-scale spatial detail (R2 ≈ 0.77), while Landsat 8–9 was most effective for WT but less reliable for multi-class WQI discrimination. Sentinel-2 is recommended as the primary satellite sensor for WQI mapping within the SIGMaL framework. These findings demonstrate the advantages of WQI-based modelling and highlight the potential of ML–remote sensing integration to support coastal lake water quality monitoring. Full article
(This article belongs to the Special Issue Remote Sensing in Water Quality Monitoring)
Show Figures

Figure 1

26 pages, 7667 KB  
Article
Trans-AODnet for Aerosol Optical Depth Retrieval and Atmospheric Correction of Moderate to High-Spatial-Resolution Satellite Imagery
by He Cai, Bo Zhong, Huilin Liu, Yao Li, Bailin Du, Yang Qiao, Xiaoya Wang, Shanlong Wu, Junjun Wu and Qinhuo Liu
Remote Sens. 2026, 18(2), 311; https://doi.org/10.3390/rs18020311 - 16 Jan 2026
Viewed by 73
Abstract
High accuracy and time synchronous aerosol optical depth (AOD) is essential for atmospheric correction (AC) of medium and high spatial resolution (MHSR) remote sensing data. However, existing high-resolution AOD retrieval methods often rely on sparsely distributed ground-based measurements, which limits their capacity to [...] Read more.
High accuracy and time synchronous aerosol optical depth (AOD) is essential for atmospheric correction (AC) of medium and high spatial resolution (MHSR) remote sensing data. However, existing high-resolution AOD retrieval methods often rely on sparsely distributed ground-based measurements, which limits their capacity to resolve fine-scale spatial heterogeneity and consequently constrains retrieval performance. To address this limitation, we propose a framework that takes GF-1 top-of-atmosphere (TOA) reflectance as input, where the model is first pre-trained using MCD19A2 as Pseudo-labels, with high-confidence samples weighted according to their spatial consistency and temporal stability, and then fine-tuned using Aerosol Robotic Network (AERONET) observations. This approach enables improved retrieval accuracy while better capturing surface variability. Validation across multiple regions demonstrates strong agreement with AOD measurements, achieving the correlation coefficient (R) of 0.941 and RMSE of 0.113. Compared to models without pretraining, the proportion of AOD retrievals within EE improves by 13%. While applied to AC, the corrected surface reflectance also shows strong consistency with in situ observations (R > 0.93, RMSE < 0.04). The proposed Trans-AODnet significantly enhances the accuracy and reliability of AOD inputs for AC of high-resolution wide-field sensors (e.g., GF-WFV), offering robust support for regional environmental monitoring and exhibiting strong potential for broader remote sensing applications. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

23 pages, 7021 KB  
Article
Improved Daily Nighttime Light Data as High-Frequency Economic Indicator
by Xiangqi Yue, Zhong Zhao and Kun Hu
Appl. Sci. 2026, 16(2), 947; https://doi.org/10.3390/app16020947 - 16 Jan 2026
Viewed by 156
Abstract
Daily nighttime light (NTL) observations made by remote sensing satellites can monitor human activity at high temporal resolution, but are often constrained by residual physical disturbances. Even in standard products, such as NASA’s Black Marble VNP46A2, factors related to sensor viewing geometry, lunar [...] Read more.
Daily nighttime light (NTL) observations made by remote sensing satellites can monitor human activity at high temporal resolution, but are often constrained by residual physical disturbances. Even in standard products, such as NASA’s Black Marble VNP46A2, factors related to sensor viewing geometry, lunar illumination, atmospheric conditions, and seasonality can introduce noise into daily radiance retrievals. This study develops a locally adaptive framework to diagnose and correct residual disturbances in daily NTL data. By estimating location-specific regression models, we quantify the residual sensitivity of VNP46A2 radiance to multiple disturbance factors and selectively remove statistically significant components. The results show that the proposed approach effectively removes statistically significant residual disturbances from daily NTL data in the VNP46A2 product. An application for COVID-19 containment periods in China demonstrates the effectiveness of the proposed approach, where corrected daily NTL data exhibit enhanced temporal stability and improved interpretability. Further analysis based on event study approaches demonstrates that corrected daily NTL data enable the identification of short-run policy effects that are difficult to detect with lower-frequency indicators. Overall, this study enhances the suitability of daily NTL data for high-frequency socioeconomic applications and extends existing preprocessing approaches for daily NTL observations. Full article
(This article belongs to the Collection Space Applications)
Show Figures

Figure 1

18 pages, 6228 KB  
Article
All-Weather Flood Mapping Using a Synergistic Multi-Sensor Downscaling Framework: Case Study for Brisbane, Australia
by Chloe Campo, Paolo Tamagnone, Suelynn Choy, Trinh Duc Tran, Guy J.-P. Schumann and Yuriy Kuleshov
Remote Sens. 2026, 18(2), 303; https://doi.org/10.3390/rs18020303 - 16 Jan 2026
Viewed by 65
Abstract
Despite a growing number of Earth Observation satellites, a critical observational gap persists for timely, high-resolution flood mapping, primarily due to infrequent satellite revisits and persistent cloud cover. To address this issue, we propose a novel framework that synergistically fuses complementary data from [...] Read more.
Despite a growing number of Earth Observation satellites, a critical observational gap persists for timely, high-resolution flood mapping, primarily due to infrequent satellite revisits and persistent cloud cover. To address this issue, we propose a novel framework that synergistically fuses complementary data from three public sensor types. Our methodology harmonizes these disparate data sources by using surface water fraction as a common variable and downscaling them with flood susceptibility and topography information. This allows for the integration of sub-daily observations from the Visible Infrared Imaging Radiometer Suite and the Advanced Himawari Imager with the cloud-penetrating capabilities of the Advanced Microwave Scanning Radiometer 2. We evaluated this approach on the February 2022 flood in Brisbane, Australia using an independent ground truth dataset. The framework successfully compensates for the limitations of individual sensors, enabling the consistent generation of detailed, high-resolution flood maps. The proposed method outperformed the flood extent derived from commercial high-resolution optical imagery, scoring 77% higher than the Copernicus Emergency Management Service (CEMS) map in the Critical Success Index. Furthermore, the True Positive Rate was twice as high as the CEMS map, confirming that the proposed method successfully overcame the cloud cover issue. This approach provides valuable, actionable insights into inundation dynamics, particularly when other public data sources are unavailable. Full article
27 pages, 5553 KB  
Article
Retrieving Boundary Layer Height Using Doppler Wind Lidar and Microwave Radiometer in Beijing Under Varying Weather Conditions
by Chen Liu, Zhifeng Shu, Lu Yang, Hui Wang, Chang Cao, Yuxing Hou and Shenghuan Wen
Remote Sens. 2026, 18(2), 296; https://doi.org/10.3390/rs18020296 - 16 Jan 2026
Viewed by 127
Abstract
Understanding the evolution of the atmospheric boundary layer height (BLH) is essential for characterizing air–surface exchange and air pollution processes. This study investigates the consistency and applicability of three BLH retrieval methods based on multi-source remote sensing observations at Beijing Southern Suburb station [...] Read more.
Understanding the evolution of the atmospheric boundary layer height (BLH) is essential for characterizing air–surface exchange and air pollution processes. This study investigates the consistency and applicability of three BLH retrieval methods based on multi-source remote sensing observations at Beijing Southern Suburb station during autumn–winter 2023. Using Doppler wind lidar (DWL) and microwave radiometer (MWR) data, the Haar wavelet covariance transform (HWCT), vertical velocity variance (Var), and parcel methods were applied, and 10 min averages were used to suppress short-term fluctuations. Statistical analysis shows good overall consistency among the methods, with the strongest correlation between HWCT and Var method (R = 0.62) and average systematic positive bias of 0.4–0.6 km for the parcel method. Case studies under clear-sky, cloudy, and hazy conditions reveal distinct responses: HWCT effectively captures aerosol gradients but fails under cloud contamination, the Var method reflects turbulent dynamics and requires adaptive thresholds, and the Parcel method robustly describes thermodynamic evolution. The results demonstrate that the three methods are complementary in capturing the material, dynamic, and thermodynamic characteristics of the boundary layer, providing a comprehensive framework for evaluating BLH variability and improving multi-sensor retrievals under diverse meteorological conditions. Full article
Show Figures

Graphical abstract

22 pages, 2913 KB  
Article
Emissivity-Driven Directional Biases in Geostationary Satellite Land Surface Temperature: Integrated Comparison and Parametric Analysis Across Complex Terrain in Hunan, China
by Jiazhi Fan, Qinzhe Han, Bing Sui, Leishi Chen, Luping Yang, Guanru Lv, Bi Zhou and Enguang Li
Remote Sens. 2026, 18(2), 284; https://doi.org/10.3390/rs18020284 - 15 Jan 2026
Viewed by 151
Abstract
Land surface temperature (LST) is fundamental for monitoring surface energy balance and environmental dynamics, with remote sensing providing the primary means of acquisition. However, directional anisotropy (DA) introduces systematic bias in satellite-derived LST products, particularly over complex landscapes. This study examines the impact [...] Read more.
Land surface temperature (LST) is fundamental for monitoring surface energy balance and environmental dynamics, with remote sensing providing the primary means of acquisition. However, directional anisotropy (DA) introduces systematic bias in satellite-derived LST products, particularly over complex landscapes. This study examines the impact of angular effects on LST retrievals from three leading East Asian geostationary satellites (FengYun 4A, FengYun 4B, and Himawari 9) across Hunan Province, China, using integrated comparison with in situ measurements and reanalysis data. Results show that all products exhibit a systematic cold bias, with FY4B achieving the highest accuracy. Diurnal retrieval precision increases with higher solar zenith angles (SZA), while no consistent relationship is observed between viewing zenith angle (VZA) and retrieval accuracy. Notably, the retrieval bias of the FY4 series increases significantly when the sun and sensor are aligned in azimuth, particularly when the relative azimuth angle (RAA) is less than or equal to 30°. Parametric modeling reveals that emissivity kernel-induced anisotropy is the principal driver of significant LST deviations in central Hunan, while solar kernel effects result in LST overestimation in mountainous regions and underestimation in plains. Increases in elevation or vegetation density reduce emissivity-induced errors but amplify errors caused by shadowing and sunlit effects. Emissivity anisotropy is thus identified as the primary source of LST DA. These findings deepen the understanding of LST DA in remote sensing and provide essential guidance for refining retrieval algorithms and improving the applicability of LST products in complex terrains. Full article
Show Figures

Figure 1

6 pages, 374 KB  
Proceeding Paper
Rethinking Rural Resilience: Bridging Ecology and Technology for Low-Carbon, Biodiverse Rural Economies Within the Context of European Green Deal
by Aphrodite Lioliou and Stavroula Kyritsi
Proceedings 2026, 134(1), 46; https://doi.org/10.3390/proceedings2026134046 - 14 Jan 2026
Viewed by 100
Abstract
This paper explores the intersection of digital technologies, sustainable agriculture, and biodiversity conservation within the framework of the European Green Deal. The study investigates how intelligent agricultural practices—enabled by digital tools such as sensors, AI, and IoT—can enhance soil health and conserve agrobiodiversity. [...] Read more.
This paper explores the intersection of digital technologies, sustainable agriculture, and biodiversity conservation within the framework of the European Green Deal. The study investigates how intelligent agricultural practices—enabled by digital tools such as sensors, AI, and IoT—can enhance soil health and conserve agrobiodiversity. A systematic literature review was conducted to map out current research trajectories, identify the taxonomic focus areas in biodiversity monitoring, and assess the integration of digital tools. Results show a significant upward trend in publications linking digitalization and sustainability in agriculture. Findings highlight that pollinators and soil biota dominate monitoring focus, while technologies like remote sensing and AI show increasing adoption. The study concludes that intelligent agriculture offers a path toward ecological and economic resilience in rural landscapes, aligning with the EU’s green transition agenda. Full article
Show Figures

Figure 1

25 pages, 8224 KB  
Article
QWR-Dec-Net: A Quaternion-Wavelet Retinex Framework for Low-Light Image Enhancement with Applications to Remote Sensing
by Vladimir Frants, Sos Agaian, Karen Panetta and Artyom Grigoryan
Information 2026, 17(1), 89; https://doi.org/10.3390/info17010089 - 14 Jan 2026
Viewed by 182
Abstract
Computer vision and deep learning are essential in diverse fields such as autonomous driving, medical imaging, face recognition, and object detection. However, enhancing low-light remote sensing images remains challenging for both research and real-world applications. Low illumination degrades image quality due to sensor [...] Read more.
Computer vision and deep learning are essential in diverse fields such as autonomous driving, medical imaging, face recognition, and object detection. However, enhancing low-light remote sensing images remains challenging for both research and real-world applications. Low illumination degrades image quality due to sensor limitations and environmental factors, weakening visual fidelity and reducing performance in vision tasks. Common issues such as insufficient lighting, backlighting, and limited exposure create low contrast, heavy shadows, and poor visibility, particularly at night. We propose QWR-Dec-Net, a quaternion-based Retinex decomposition network tailored for low-light image enhancement. QWR-Dec-Net consists of two key modules: a decomposition module that separates illumination and reflectance, and a denoising module that fuses a quaternion holistic color representation with wavelet multi-frequency information. This structure jointly improves color constancy and noise suppression. Experiments on low-light remote sensing datasets (LSCIDMR and UCMerced) show that QWR-Dec-Net outperforms current methods in PSNR, SSIM, LPIPS, and classification accuracy. The model’s accurate illumination estimation and stable reflectance make it well-suited for remote sensing tasks such as object detection, video surveillance, precision agriculture, and autonomous navigation. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

22 pages, 3716 KB  
Article
SPAD Retrieval of Jujube Canopy Using UAV-Based Multispectral and RGB Features with Genetic Algorithm–Optimized Ensemble Learning
by Guojun Hong, Caili Yu, Jianqiang Lu and Lin Liu
Agriculture 2026, 16(2), 191; https://doi.org/10.3390/agriculture16020191 - 12 Jan 2026
Viewed by 137
Abstract
The Soil and Plant Analyzer Development (SPAD) value is a reliable proxy for chlorophyll, yet conventional field measurement remains labor-intensive and spatially limited. Current remote sensing inversion models typically depend on costly multispectral sensors and rarely account for phenological changes, restricting their applicability [...] Read more.
The Soil and Plant Analyzer Development (SPAD) value is a reliable proxy for chlorophyll, yet conventional field measurement remains labor-intensive and spatially limited. Current remote sensing inversion models typically depend on costly multispectral sensors and rarely account for phenological changes, restricting their applicability across orchards and seasons. To overcome these limitations, this study introduces a stage-aware and low-cost SPAD inversion framework for jujube trees, integrating multi-source data fusion and an optimized ensemble model. A two-year experiment (2023–2024) combined UAV multispectral vegetation indices (VI) with RGB-derived color indices (CI) across leaf expansion, flowering, and fruit-setting stages. Rather than using static features, stage-specific predictors were systematically identified through a hybrid selection mechanism combining Random Forest Cumulative Feature Importance (RF-CFI), Recursive Feature Elimination (RFE), and F-tests. Building on these tailored features, XGBoost, decision tree (DT), CatBoost, and an Optimized Integrated Architecture (OIA) were developed, with all hyperparameters globally tuned using a genetic algorithm (GA). The RFI-CFI-OIA-GA model delivered superior accuracy (R2 = 0.758–0.828; MSE = 0.214–2.593; MAPE = 0.01–0.045 in 2024) in the training dataset, and robust cross-year transferability (R2 = 0.541–0.608; MSE = 0.698–5.139; MAPE = 0.015–0.058 in 2023). These results demonstrate that incorporating phenological perception into multi-source data fusion substantially reduces interference and enhances generalizability, providing a scalable and reusable strategy for precision orchard management and spatiotemporal SPAD mapping. Full article
Show Figures

Figure 1

34 pages, 4355 KB  
Review
Thin-Film Sensors for Industry 4.0: Photonic, Functional, and Hybrid Photonic-Functional Approaches to Industrial Monitoring
by Muhammad A. Butt
Coatings 2026, 16(1), 93; https://doi.org/10.3390/coatings16010093 - 12 Jan 2026
Viewed by 242
Abstract
The transition toward Industry 4.0 requires advanced sensing platforms capable of delivering real-time, high-fidelity data under extreme industrial conditions. Thin-film sensors, leveraging both photonic and functional approaches, are emerging as key enablers of this transformation. By exploiting optical phenomena such as Fabry–Pérot interference, [...] Read more.
The transition toward Industry 4.0 requires advanced sensing platforms capable of delivering real-time, high-fidelity data under extreme industrial conditions. Thin-film sensors, leveraging both photonic and functional approaches, are emerging as key enablers of this transformation. By exploiting optical phenomena such as Fabry–Pérot interference, guided-mode resonance, plasmonics, and photonic crystal effects, thin-film photonic devices provide highly sensitive, electromagnetic interference-immune, and remotely interrogated solutions for monitoring temperature, strain, and chemical environments. Complementarily, functional thin films including oxide-based chemiresistors, nanoparticle coatings, and flexible electronic skins extend sensing capabilities to diverse industrial contexts, from hazardous gas detection to structural health monitoring. This review surveys the fundamental optical principles, material platforms, and deposition strategies that underpin thin-film sensors, emphasizing advances in nanostructured oxides, 2D materials, hybrid perovskites, and additive manufacturing methods. Application-focused sections highlight their deployment in temperature and stress monitoring, chemical leakage detection, and industrial safety. Integration into Internet of Things (IoT) networks, cyber-physical systems, and photonic integrated circuits is examined, alongside challenges related to durability, reproducibility, and packaging. Future directions point to AI-driven signal processing, flexible and printable architectures, and autonomous self-calibration. Together, these developments position thin-film sensors as foundational technologies for intelligent, resilient, and adaptive manufacturing in Industry 4.0. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

14 pages, 1673 KB  
Article
A Multiplexable Op-Amp Interface for Accurate Readout of Remote Resistive Sensors
by Sanya Kuankid, Jirapong Jittakort and Apinan Aurasopon
Sensors 2026, 26(2), 461; https://doi.org/10.3390/s26020461 - 10 Jan 2026
Viewed by 167
Abstract
This paper presents a compact and accurate readout circuit for remote two-wire resistive sensors, based on an inverting operational amplifier with a fixed bias voltage, diode steering, and unidirectional square-wave excitation generated by a microcontroller. The proposed method determines the sensor resistance by [...] Read more.
This paper presents a compact and accurate readout circuit for remote two-wire resistive sensors, based on an inverting operational amplifier with a fixed bias voltage, diode steering, and unidirectional square-wave excitation generated by a microcontroller. The proposed method determines the sensor resistance by directly sampling two steady-state voltage plateaus at the op-amp output during alternating excitation phases. This approach enables fast, lead-wire-insensitive measurements without the need for analog filtering or precise PWM duty-cycle control. The architecture supports sensor array multiplexing via analog switches, allowing scalable, low-power implementation. Experimental results demonstrate a maximum relative error of 0.23% across a wide resistance range (0.5–3.5 kΩ), confirming the method’s suitability for low-cost, embedded, and remote sensing applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop