Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,918)

Search Parameters:
Keywords = remark

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2338 KiB  
Article
Singlet Oxygen-Mediated Micropollutant Degradation Using an FePc-Modified CNT Filter via Peroxymonosulfate Activation
by Chenxin Xie, Yifan Ren and Yanbiao Liu
Catalysts 2025, 15(8), 747; https://doi.org/10.3390/catal15080747 - 5 Aug 2025
Abstract
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic [...] Read more.
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic properties. The resulting CNT-FePc filter achieved a 98.4% removal efficiency for bisphenol A (10 ppm) in a single-pass operation system, significantly outperforming the CNT/PMS system without FePc (41.6%). Additionally, the CNT-FePc/PMS system demonstrated remarkable resistance to performance inhibition by common water matrix components. Unlike typical radical-dominated PMS activation processes, mechanistic investigations confirmed that the CNT-FePc/PMS system selectively promoted singlet oxygen (1O2) generation as the primary oxidative pathway. Density functional theory (DFT) calculations revealed that PMS exhibited stronger adsorption on FePc (−3.05 eV) compared to CNT (−2.86 eV), and that FePc effectively facilitated O–O bond elongation in PMS, thereby facilitating 1O2 generation. Additionally, seed germination assays indicated a significant reduction in the biotoxicity of the treated effluents. Overall, this work presents a catalyst design strategy that merges molecular-level coordination chemistry with practical flow-through configuration, enabling rapid, selective, and environmentally benign micropollutant removal. Full article
(This article belongs to the Collection Advanced Catalysts for Wastewater Remediation Technologies)
Show Figures

Graphical abstract

13 pages, 7209 KiB  
Article
Evolutionary Analysis of the Land Plant-Specific TCP Interactor Containing EAR Motif Protein (TIE) Family of Transcriptional Corepressors
by Agustín Arce, Camila Schild, Delfina Maslein and Leandro Lucero
Plants 2025, 14(15), 2423; https://doi.org/10.3390/plants14152423 - 5 Aug 2025
Abstract
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin [...] Read more.
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin of the TIE family to the early evolution of the embryophyte, while an earlier diversification in algae cannot be ruled out. Strikingly, we found that the number of TIE members is highly constrained compared to the expansion of TCPs in angiosperms. We used co-expression data to identify potential TIE-TCP regulatory targets across Arabidopsis thaliana and rice. Notably, the expression pattern between these species is remarkably similar. TCP Class I and Class II genes formed two distinct clusters, and TIE genes cluster within the TCP Class I group. This study provides a comprehensive evolutionary analysis of the TIE family, shedding light on its conserved role in the regulation of gene transcription in flowering plant development. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

22 pages, 3743 KiB  
Article
Mechanical and Performance Characteristics of Warm Mix Asphalt Modified with Phase Change Materials and Recycled Cigarette Filters
by Zahraa Ahmed al-Mammori, Israa Mohsin Kadhim Al-Janabi, Ghadeer H. Abbas, Doaa Hazim Aziz, Fatin H. Alaaraji, Elaf Salam Abbas, Beshaer M. AL-shimmery, Tameem Mohammed Hashim, Ghanim Q. Al-Jameel, Ali Shubbar and Mohammed Salah Nasr
CivilEng 2025, 6(3), 41; https://doi.org/10.3390/civileng6030041 - 5 Aug 2025
Abstract
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric [...] Read more.
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric acid), as binder modifiers within warm mix asphalt (WMA) mixtures. Moving beyond the traditional focus on binder-only modifications, this research utilizes recycled cigarette filters (CFs) as a dual-purpose fiber additive, directly reinforcing the asphalt mixture while simultaneously transforming a major urban waste stream into valuable infrastructure. The performance of the developed WMA mixture has been evaluated in terms of stiffness behavior using an Indirect Tensile Strength Modulus (ITSM) test, permanent deformation using a static creep strain test, and rutting resistance using the Hamburg wheel-track test. Laboratory tests demonstrated that the incorporation of PCMs and recycled CFs into WMA mixtures led to remarkable improvements in stiffness, deformation resistance, and rutting performance. Modified mixes consistently outperformed the control, achieving up to 15% higher stiffness after 7 days of curing, 36% lower creep strain after 4000 s, and 64% reduction in rut depth at 20,000 passes. Cost–benefit analysis and service life prediction show that, despite costing USD 0.71 more per square meter with 5 cm thickness, the modified WMA mixture delivers much greater durability and rutting resistance, extending service life to 19–29 years compared to 10–15 years for the control. This highlights the value of these modifications for durable, sustainable pavements. Full article
Show Figures

Figure 1

19 pages, 9745 KiB  
Article
Reconfigurable Wireless Power Transfer System with High Misalignment Tolerance Using Coaxial Antipodal Dual DD Coils for AUV Charging Applications
by Yonglu Liu, Mingxing Xiong, Qingxuan Zhang, Fengshuo Yang, Yu Lan, Jinhai Jiang and Kai Song
Energies 2025, 18(15), 4148; https://doi.org/10.3390/en18154148 - 5 Aug 2025
Abstract
Wireless power transfer (WPT) systems for autonomous underwater vehicles (AUVs) are gaining traction in marine exploration due to their operational convenience, safety, and flexibility. Nevertheless, disturbances from ocean currents and marine organisms frequently induce rotational, axial, and air-gap misalignments, significantly degrading the output [...] Read more.
Wireless power transfer (WPT) systems for autonomous underwater vehicles (AUVs) are gaining traction in marine exploration due to their operational convenience, safety, and flexibility. Nevertheless, disturbances from ocean currents and marine organisms frequently induce rotational, axial, and air-gap misalignments, significantly degrading the output power stability. To mitigate this issue, this paper proposes a novel reconfigurable WPT system utilizing coaxial antipodal dual DD (CAD-DD) coils, which strategically switches between a detuned S-LCC topology and a detuned S-S topology at a fixed operating frequency. By characterizing the output power versus the coupling coefficient (P-k) profiles under both reconfiguration modes, a parameter design methodology is developed to ensure stable power delivery across wide coupling variations. Experimental validation using a 1.2 kW AUV charging prototype demonstrates remarkable tolerance to misalignment: ±30° rotation, ±120 mm axial displacement, and 20–50 mm air-gap variation. Within this range, the output power fluctuation is confined to within 5%, while the system efficiency exceeds 85% consistently, peaking at 91.56%. Full article
(This article belongs to the Special Issue Advances in Wireless Power Transfer Technologies and Applications)
Show Figures

Figure 1

19 pages, 5335 KiB  
Article
Study on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals Doped with Cellulose Nanocrystals
by Jiayan Wang, Yan Qiao, Ziyi Yang, Yue Han, Hui Zhang, Zhiguang Li, Guili Zheng, Yanjun Zhang and Lizhi Zhu
Molecules 2025, 30(15), 3273; https://doi.org/10.3390/molecules30153273 - 5 Aug 2025
Abstract
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low [...] Read more.
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low concentrations, the CNCs at the interface, by virtue of their unique chiral characteristics, induce an orderly arrangement of liquid crystal molecules. Meanwhile, the interaction between the film’s fiber structure and the liquid crystal droplets brings about an augmentation in the arrangement efficiency. The excellent dispersion of CNCs diminishes the random alignment of liquid crystal molecules and mitigates light scattering. Additionally, it aids in the deflection of the liquid crystal director, facilitating the lubrication of the liquid crystals’ movement. It is remarkable that within the range of relatively lower CNCs doping concentrations, specifically from 0.005 wt% to 0.05 wt%, the PDLC films exhibit lower threshold and saturation voltages, faster response, enhanced viewing angle performance and higher contrast. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

21 pages, 22173 KiB  
Article
Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life
by Youwei Yu, Tian Li, Shengwang Li, Silong Jia, Xinyu Yang, Yaxuan Cui, Hui Ma, Shuaishuai Yan and Shaoying Zhang
Foods 2025, 14(15), 2729; https://doi.org/10.3390/foods14152729 - 5 Aug 2025
Abstract
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus [...] Read more.
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus plantarum), with maltodextrin (MD) as the dispersed phase and hydroxypropyl methylcellulose (HPMC) as the continuous phase. Characterization of emulsions at varying concentrations revealed that the optimized W/W-PL^8 film exhibited superior stability, smooth morphology, and low water vapor permeability (WVP = 220.437 g/(m2·24 h)), making it a promising candidate for fruit and vegetable preservation. Furthermore, the coating demonstrated strong antioxidant activity, with scavenging rates of 58.99% (ABTS) and 94.23% (DPPH), along with potent antimicrobial effects, showing inhibition rates of 12.8% against Escherichia coli and 23.7% against Staphylococcus aureus. Applied to cherry tomatoes, the W/W-PL^8 coating significantly reduced respiration rates, minimized decay incidence, and maintained nutritional quality during storage. Remarkably, the coating successfully controlled Alternaria alternata contamination, enhancing the storage duration of cherry tomatoes. These findings highlight the potential of W/W-PL^8 as an eco-friendly and functional packaging material for fresh produce preservation. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

22 pages, 2666 KiB  
Article
Comparative Proteomic Analysis of Flammulina filiformis Reveals Substrate-Specific Enzymatic Strategies for Lignocellulose Degradation
by Weihang Li, Jiandong Han, Hongyan Xie, Yi Sun, Feng Li, Zhiyuan Gong and Yajie Zou
Horticulturae 2025, 11(8), 912; https://doi.org/10.3390/horticulturae11080912 (registering DOI) - 4 Aug 2025
Abstract
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In [...] Read more.
Flammulina filiformis, one of the most delicious and commercially important mushrooms, demonstrates remarkable adaptability to diverse agricultural wastes. However, it is unclear how different substrates affect the degradation of lignocellulosic biomass and the production of lignocellulolytic enzymes in F. filiformis. In this study, label-free comparative proteomic analysis of F. filiformis cultivated on sugarcane bagasse, cotton seed shells, corn cobs, and glucose substrates was conducted to identify degradation mechanism across various substrates. Label-free quantitative proteomics identified 1104 proteins. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of protein expression differences were predominantly enriched in energy metabolism and carbohydrate metabolic pathways. Detailed characterization of carbohydrate-active enzymes among the identified proteins revealed glucanase (GH7, A0A067NSK0) as the key enzyme. F. filiformis secreted higher levels of cellulases and hemicellulases on sugarcane bagasse substrate. In the cotton seed shells substrate, multiple cellulases functioned collaboratively, while in the corn cobs substrate, glucanase predominated among the cellulases. These findings reveal the enzymatic strategies and metabolic flexibility of F. filiformis in lignocellulose utilization, providing novel insights for metabolic engineering applications in biotechnology. The study establishes a theoretical foundation for optimizing biomass conversion and developing innovative substrates using targeted enzyme systems. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

10 pages, 2384 KiB  
Article
Effects of Grain Size on Mechanical Properties of Nanopolycrystalline Fe-Al Alloy
by Xiaoming Liu, Kun Gao, Long Huang, Peng Chen and Jing Yang
Processes 2025, 13(8), 2462; https://doi.org/10.3390/pr13082462 - 4 Aug 2025
Abstract
FeAl intermetallic compounds exhibit high application potential in high-voltage transmission lines to withstand external forces such as powerlines’ own gravity and wind force. The ordered crystal structure in FeAl intermetallic compounds endows materials with high strength, but the remarkable brittleness at room temperature [...] Read more.
FeAl intermetallic compounds exhibit high application potential in high-voltage transmission lines to withstand external forces such as powerlines’ own gravity and wind force. The ordered crystal structure in FeAl intermetallic compounds endows materials with high strength, but the remarkable brittleness at room temperature restricts engineering applications. This contradiction is essentially closely related to the deformation mechanism at the nanoscale. Here, we performed molecular dynamics simulations to reveal anomalous grain size effects and deformation mechanisms in nanocrystalline FeAl intermetallic material. Models with grain sizes ranging from 6.2 to 17.4 nm were systematically investigated under uniaxial tensile stress. The study uncovers a distinctive inverse Hall-Petch relationship governing flow stress within the nanoscale regime. This behavior stems from high-density grain boundaries promoting dislocation annihilation over pile-up. Crucially, the material exhibits anomalous ductility at ultra-high strain rates due to stress-induced phase transformation dominating the plastic deformation. The nascent FCC phase accommodates strain through enhanced slip systems and inherent low stacking fault energy with the increasing phase fraction paralleling the stress plateau. Nanoconfinement suppresses the propagation of macroscopic defects while simultaneously suppressing room-temperature brittle fracture and inhibiting the rapid phase transformation pathways at extreme strain rates. These findings provide new theoretical foundations for designing high-strength and high-toughness intermetallic nanocompounds. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

16 pages, 2547 KiB  
Article
Formation and Biological Characteristics Analysis of Artificial Gynogenetic WuLi Carp Induced by Inactivated Sperm of Megalobrama Amblycephala
by Xiaowei Xu, Enkui Hu, Qian Xiao, Xu Huang, Chongqing Wang, Xidan Xu, Kun Zhang, Yue Zhou, Jinhai Bai, Zhengkun Liu, Yuchen Jiang, Yan Tang, Xinyi Deng, Siyang Li, Wanjing Peng, Ling Xiong, Yuhan Yang, Zeyang Li, Ming Ma, Qinbo Qin and Shaojun Liuadd Show full author list remove Hide full author list
Biology 2025, 14(8), 994; https://doi.org/10.3390/biology14080994 (registering DOI) - 4 Aug 2025
Abstract
Artificial gynogenesis is an essential technique for aquaculture breeding. Fertile offspring of the WuLi carp (Cyprinus carpio var. Quanzhounensis, 2n = 100, WLC) were successfully produced via gynogenesis using ultraviolet-irradiated sperm from the blunt snout bream (Megalobrama amblycephala, 2 [...] Read more.
Artificial gynogenesis is an essential technique for aquaculture breeding. Fertile offspring of the WuLi carp (Cyprinus carpio var. Quanzhounensis, 2n = 100, WLC) were successfully produced via gynogenesis using ultraviolet-irradiated sperm from the blunt snout bream (Megalobrama amblycephala, 2n = 48, BSB). As anticipated, gonadal section examination confirmed that all gynogenetic WuLi carp (2n = 100, GWB) were female. To investigate whether paternal DNA fragments from BSB were integrated into the GWB genome, comparative analyses of morphological traits, DNA content, chromosomal numbers, 5S rDNA sequences, microsatellite DNA markers, fluorescence in situ hybridization (FISH), growth performance and nutritional composition were systematically conducted between GWB and maternal WLC. The results revealed pronounced maternal inheritance patterns across morphological characteristics, DNA quantification, chromosomal configurations, 5S rDNA sequences and FISH signals, while microsatellite detection unequivocally confirmed paternal BSB DNA fragment integration into the GWB genome. Remarkably, GWB demonstrated significantly superior growth performance and elevated unsaturated fatty acid content relative to the maternal line. This approach not only addressed germplasm degradation in WLC but also provided valuable theoretical foundations for breeding programs in this commercially significant species. Full article
Show Figures

Figure 1

19 pages, 455 KiB  
Article
A Quantum-Resistant FHE Framework for Privacy-Preserving Image Processing in the Cloud
by Rafik Hamza
Algorithms 2025, 18(8), 480; https://doi.org/10.3390/a18080480 - 4 Aug 2025
Abstract
The advent of quantum computing poses an existential threat to the security of cloud services that handle sensitive visual data. Simultaneously, the need for computational privacy requires the ability to process data without exposing it to the cloud provider. This paper introduces and [...] Read more.
The advent of quantum computing poses an existential threat to the security of cloud services that handle sensitive visual data. Simultaneously, the need for computational privacy requires the ability to process data without exposing it to the cloud provider. This paper introduces and evaluates a hybrid quantum-resistant framework that addresses both challenges by integrating NIST-standardized post-quantum cryptography with optimized fully homomorphic encryption (FHE). Our solution uses CRYSTALS-Kyber for secure channel establishment and the CKKS FHE scheme with SIMD batching to perform image processing tasks on a cloud server without ever decrypting the image. This work provides a comprehensive performance analysis of the complete, end-to-end system. Our empirical evaluation demonstrates the framework’s practicality, detailing the sub-millisecond PQC setup costs and the amortized transfer of 33.83 MB of public FHE materials. The operational performance shows remarkable scalability, with server-side computations and client-side decryption completing within low single-digit milliseconds. By providing a detailed analysis of a viable and efficient architecture, this framework establishes a practical foundation for the next generation of privacy-preserving cloud applications. Full article
Show Figures

Figure 1

20 pages, 1895 KiB  
Article
Distributed Low-Carbon Demand Response in Distribution Networks Incorporating Day-Ahead and Intraday Flexibilities
by Bin Hu, Xianen Zong, Hongbin Wu and Yue Yang
Processes 2025, 13(8), 2460; https://doi.org/10.3390/pr13082460 - 4 Aug 2025
Abstract
In this paper, we present a distributed low-carbon demand response method in distribution networks incorporating day-ahead and intraday flexibilities on the demand side. This two-stage demand dispatch scheme, including day-ahead schedule and intraday adjustment, is proposed to facilitate the coordination between power demand [...] Read more.
In this paper, we present a distributed low-carbon demand response method in distribution networks incorporating day-ahead and intraday flexibilities on the demand side. This two-stage demand dispatch scheme, including day-ahead schedule and intraday adjustment, is proposed to facilitate the coordination between power demand and local photovoltaic (PV) generation. We employ the alternating direction method of multipliers (ADMM) to solve the dispatch problem in a distributed manner. Demand response in a 141-bus test system serves as our case study, demonstrating the effectiveness of our approach in shifting power loads to periods of high PV generation. Our results indicate remarkable reductions in the total carbon emission by utilizing more distributed PV generation. Full article
(This article belongs to the Special Issue Modeling, Operation and Control in Renewable Energy Systems)
Show Figures

Figure 1

32 pages, 2102 KiB  
Article
D* Lite and Transformer-Enhanced SAC: A Hybrid Reinforcement Learning Framework for COLREGs-Compliant Autonomous Navigation in Dynamic Maritime Environments
by Tianqing Chen, Yamei Lan, Yichen Li, Jiesen Zhang and Yijie Yin
J. Mar. Sci. Eng. 2025, 13(8), 1498; https://doi.org/10.3390/jmse13081498 - 4 Aug 2025
Abstract
Autonomous navigation in dynamic, multi-vessel maritime environments presents a formidable challenge, demanding strict adherence to the International Regulations for Preventing Collisions at Sea (COLREGs). Conventional approaches often struggle with the dual imperatives of global path optimality and local reactive safety, and they frequently [...] Read more.
Autonomous navigation in dynamic, multi-vessel maritime environments presents a formidable challenge, demanding strict adherence to the International Regulations for Preventing Collisions at Sea (COLREGs). Conventional approaches often struggle with the dual imperatives of global path optimality and local reactive safety, and they frequently rely on simplistic state representations that fail to capture complex spatio-temporal interactions among vessels. We introduce a novel hybrid reinforcement learning framework, D* Lite + Transformer-Enhanced Soft Actor-Critic (TE-SAC), to overcome these limitations. This hierarchical framework synergizes the strengths of global and local planning. An enhanced D* Lite algorithm generates efficient, long-horizon reference paths at the global level. At the local level, the TE-SAC agent performs COLREGs-compliant tactical maneuvering. The core innovation resides in TE-SAC’s synergistic state encoder, which uniquely combines a Graph Neural Network (GNN) to model the instantaneous spatial topology of vessel encounters with a Transformer encoder to capture long-range temporal dependencies and infer vessel intent. Comprehensive simulations demonstrate the framework’s superior performance, validating the strengths of both planning layers. At the local level, our TE-SAC agent exhibits remarkable tactical intelligence, achieving an exceptional 98.7% COLREGs compliance rate and reducing energy consumption by 15–20% through smoother, more decisive maneuvers. This high-quality local control, guided by the efficient global paths from the enhanced D* Lite algorithm, culminates in a 10–32 percentage point improvement in overall task success rates compared to state-of-the-art baselines. This work presents a robust, verifiable, and efficient framework. By demonstrating superior performance and compliance with rules in high-fidelity simulations, it lays a crucial foundation for advancing the practical application of intelligent autonomous navigation systems. Full article
(This article belongs to the Special Issue Motion Control and Path Planning of Marine Vehicles—3rd Edition)
Show Figures

Figure 1

14 pages, 1732 KiB  
Article
A Promising Prognostic Indicator for Pleural Mesothelioma: Pan-Immuno-Inflammation Value
by Serkan Yaşar, Feride Yılmaz, Ömer Denizhan Tatar, Hasan Çağrı Yıldırım, Zafer Arık, Şuayib Yalçın and Mustafa Erman
J. Clin. Med. 2025, 14(15), 5467; https://doi.org/10.3390/jcm14155467 - 4 Aug 2025
Abstract
Background: Pleural mesothelioma (PM) is a type of cancer that is difficult to diagnose and treat. Patients may have vastly varying prognoses, and prognostic factors may help guide the clinical approach. As a recently identified biomarker, the pan-Immune-Inflammation-Value (PIV) is a simple, comprehensive, [...] Read more.
Background: Pleural mesothelioma (PM) is a type of cancer that is difficult to diagnose and treat. Patients may have vastly varying prognoses, and prognostic factors may help guide the clinical approach. As a recently identified biomarker, the pan-Immune-Inflammation-Value (PIV) is a simple, comprehensive, and peripheral blood cell-based biomarker. Methods: The present study represents a retrospective observational analysis carried out within a single-center setting. Ninety-five patients with PM stages I–IV were enrolled in the study. We analyzed the correlation between patients’ demographic characteristics, clinicopathological factors such as histological subtypes, surgery status, tumor thickness, blood-based parameters, and treatment options with their prognoses. PIV was calculated by the following formula: (neutrophil count × monocyte count × platelet count)/lymphocyte count. Additionally, blood-based parameters were used to calculate the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), and systemic immune inflammation index (SII). Results: We categorized the patients into two groups, low PIV group (PIV ≤ 732.3) and high PIV group (PIV > 732.3) according to the determined cut-off value, which was defined as the median. It was revealed that high PIV was associated with poor survival outcomes. The median follow-up period was 15.8 months (interquartile range, IQR, 7.1 to 29.8 months). The median overall survival (OS) was significantly longer in patients in the low PIV group (median 29.8 months, 95% confidence interval (CI), 15.6 to 44) than the high PIV group (median 14.7 months, 95% CI, 10.8 to 18.6 p < 0.001). Furthermore, the study revealed that patients with low PIV, NLR, and SII values were more likely to be eligible for surgery and were diagnosed at earlier stages. Additionally, these markers were identified as potential predictors of disease-free survival (DFS) in the surgical cohort and of treatment response across the entire patient population. Conclusions: In addition to well-established clinical factors such as stage, histologic subtype, resectability, and Eastern Cooperative Oncology Group (ECOG) performance status (PS), PIV emerged as an independent and significant prognostic factor of overall survival (OS) in patients with PM. Moreover, PIV also demonstrated a remarkable independent prognostic value for disease-free survival (DFS) in this patient population. Additionally, some clues are provided for conditions such as treatment responses, staging, and suitability for surgery. As such, in this cohort, it has outperformed the other blood-based markers based on our findings. Given its ease of calculation and cost-effectiveness, PIV represents a promising and practical prognostic tool in the clinical management of pleural mesothelioma. It can be easily calculated using routinely available laboratory parameters for every cancer patient, requiring no additional cost or complex procedures, thus facilitating its integration into everyday clinical practice. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

14 pages, 1575 KiB  
Article
Cytotoxic Effects of Bifora testiculata (L.) Spreng. Essential Oil and Its Main Component on Cancer Cell Lines
by Alessandro Vaglica, Antonella Porrello, Natale Badalamenti, Vincenzo Ilardi, Maurizio Bruno, Filippo Maggi, Massimo Bramucci and Luana Quassinti
Plants 2025, 14(15), 2408; https://doi.org/10.3390/plants14152408 - 4 Aug 2025
Abstract
Bifora testiculata (L.) Spreng. (Apiaceae), an understudied species endemic to the Mediterranean and the only representative species of the genus Bifora in Sicily, was investigated for the first time for its essential oil (EO) chemical composition and cytotoxic properties. The EO was obtained [...] Read more.
Bifora testiculata (L.) Spreng. (Apiaceae), an understudied species endemic to the Mediterranean and the only representative species of the genus Bifora in Sicily, was investigated for the first time for its essential oil (EO) chemical composition and cytotoxic properties. The EO was obtained via hydrodistillation and analyzed using GC-MS, revealing an aldehyde-rich profile (86.10%), dominated by trans-2-dodecenal (67.49%). Comparative analysis with previous studies on B. testiculata from Greece confirmed a similar aldehyde-rich profile, although minor compositional differences suggest potential chemotype variation. Given the biological relevance of trans-2-dodecenal and related aldehydes, further investigations into the cytotoxic properties of the EO of B. testiculata (Bt) and its main constituent against cancer cell lines were undertaken. Three human tumor cell lines (MDA-MB 231, A375, and CaCo2) and a human non-tumor cell line (HEK293) were subjected to viability tests using the MTT assay. The EO and trans-2-dodecenal exhibited remarkable cytotoxic activity against all cell lines, with IC50 values ranging between 7.93 and 14.41 µg/mL for Bt and between 1.88 and 5.29 µg/mL for trans-2-dodecenal. AO/BE fluorescent staining and Hoechst nuclear staining showed the presence of apoptotic bodies in the treated cells. N-acetyl-L-cysteine was able to invert the effects of Bt and trans-2-dodecenal on cell lines, suggesting ROS involvement in cytotoxic activity. The results demonstrated that the Bt cytotoxic activity was mainly due to the presence of trans-2-dodecenal. Full article
(This article belongs to the Special Issue Plant Essential Oil with Biological Activity: 3nd Edition)
Show Figures

Figure 1

20 pages, 2680 KiB  
Article
Improved Automatic Deep Model for Automatic Detection of Movement Intention from EEG Signals
by Lida Zare Lahijan, Saeed Meshgini, Reza Afrouzian and Sebelan Danishvar
Biomimetics 2025, 10(8), 506; https://doi.org/10.3390/biomimetics10080506 - 4 Aug 2025
Abstract
Automated movement intention is crucial for brain–computer interface (BCI) applications. The automatic identification of movement intention can assist patients with movement problems in regaining their mobility. This study introduces a novel approach for the automatic identification of movement intention through finger tapping. This [...] Read more.
Automated movement intention is crucial for brain–computer interface (BCI) applications. The automatic identification of movement intention can assist patients with movement problems in regaining their mobility. This study introduces a novel approach for the automatic identification of movement intention through finger tapping. This work has compiled a database of EEG signals derived from left finger taps, right finger taps, and a resting condition. Following the requisite pre-processing, the captured signals are input into the proposed model, which is constructed based on graph theory and deep convolutional networks. In this study, we introduce a novel architecture based on six deep convolutional graph layers, specifically designed to effectively capture and extract essential features from EEG signals. The proposed model demonstrates a remarkable performance, achieving an accuracy of 98% in a binary classification task when distinguishing between left and right finger tapping. Furthermore, in a more complex three-class classification scenario, which includes left finger tapping, right finger tapping, and an additional class, the model attains an accuracy of 92%. These results highlight the effectiveness of the architecture in decoding motor-related brain activity from EEG data. Furthermore, relative to recent studies, the suggested model exhibits significant resilience in noisy situations, making it suitable for online BCI applications. Full article
Show Figures

Figure 1

Back to TopTop