Effects of Grain Size on Mechanical Properties of Nanopolycrystalline Fe-Al Alloy
Abstract
1. Introduction
2. Methods
3. Results and Discussion
3.1. Grain Size Effect
3.2. Analysis of Deformation Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharun, V.; Rajasekaran, M.; Shanmugam, S.K.; Tripathi, V.; Rajneesh Sharma, G.; Puthilibai, G.; Sudhakar, M.; Negash, K. Study on Developments in Protection Coating Techniques for Steel. Adv. Mater. Sci. Eng. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Q.; Cui, B.; Wu, K. Study on Reliability and Selection of Silicone Grease Used for Coating at the Interface Between Cable and Accessory. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 2354–2362. [Google Scholar] [CrossRef]
- Aljibori, H.; Al-Amiery, A.; Kadhum, A. Advances in corrosion protection coatings: A comprehensive review. Int. J. Corros. Scale Inhib. 2023, 12, 1476–1520. [Google Scholar] [CrossRef]
- Liu, H.; Yan, L.; Wang, F. Synthesis of antioxidant functionalized nano-TiO2 for improving fire resistance and UV-shielding behavior of intumescent fire-retardant coatings for cable. Prog. Org. Coat. 2024, 194, 108622. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, W.; Chen, J.; Skrzypkowski, K.; Zagórski, K.; Zagórska, A. Investigation into Effects of Coating on Stress Corrosion of Cable Bolts in Deep Underground Environments. Materials 2024, 17, 3563. [Google Scholar] [CrossRef]
- Huang, J.; Xie, H.; Luo, L.M.; Zan, X.; Liu, D.G.; Wu, Y.C. Preparation and properties of FeAl/Al2O3 composite tritium permeation barrier coating on surface of 316L stainless steel. Surf. Coat. Technol. 2020, 383, 125282. [Google Scholar] [CrossRef]
- Yin, B.; Liu, G.; Zhou, H.; Chen, J.; Yan, F. Microstructures and properties of plasma sprayed FeAl/CeO2/ZrO2 nano-composite coating. Appl. Surf. Sci. 2010, 256, 4176–4184. [Google Scholar] [CrossRef]
- Rajath Hegde, M.M.; Surendranathan, A.O. Phase transformation, structural evolution, and mechanical property of nanostructured feal as a result of mechanical alloying. Powder Metall. Met. Ceram. 2009, 48, 641–651. [Google Scholar] [CrossRef]
- Morris-Muñoz, M.A.; Dodge, A.; Morris, D.G. Structure, strength and toughness of nanocrystalline FeAl. Nanostructured Mater. 1999, 11, 873–885. [Google Scholar] [CrossRef]
- Petch, N.J. The Cleavage Strength of Polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Society Sect. B 1951, 64, 747. [Google Scholar] [CrossRef]
- Niu, Y.; Jia, Y.; Lv, X.; Zhu, Y.; Wang, Y. Molecular dynamics simulations of polycrystalline titanium mechanical properties: Grain size effect. Mater. Today Commun. 2024, 40, 109558. [Google Scholar] [CrossRef]
- Song, H.; Gao, T.; Gao, Y.; Liu, Y.; Xie, Q.; Chen, Q.; Xiao, Q.; Liang, Y.; Wang, B. Hall–Petch relationship in Ti3Al nano-polycrystalline alloys by molecular dynamics simulation. J. Mater. Sci. 2022, 57, 20589–20600. [Google Scholar] [CrossRef]
- Chen, J.; Li, R.; Wang, B.; Liu, G. Effect of grain size on tensile deformation behavior of nano-polycrystalline Al and Al–Mg alloys with grain boundary segregation of Mg. J. Mater. Res. Technol. 2024, 33, 6328–6339. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Baskes, M.I. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 1992, 46, 2727–2742. [Google Scholar] [CrossRef]
- Lee, B.-J.; Baskes, M.I. Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 2000, 62, 8564–8567. [Google Scholar] [CrossRef]
- Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Larsen, P.M.; Schmidt, S.; Schiøtz, J. Robust structural identification via polyhedral template matching. Model. Simul. Mater. Sci. Eng. 2016, 24, 055007. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 2012, 20, 085007. [Google Scholar] [CrossRef]
- Lu, X.; Dong, C.; Guo, X.; Ren, J.; Xue, H.; Tang, F.; Ding, Y. Effects of grain size and temperature on mechanical properties of nano-polycrystalline Nickel-cobalt alloy. J. Mater. Res. Technol. 2020, 9, 13161–13173. [Google Scholar] [CrossRef]
- Naik, S.N.; Walley, S.M. The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 2020, 55, 2661–2681. [Google Scholar] [CrossRef]
- Li, L.-L.; Su, Y.; Beyerlein, I.J.; Han, W.-Z. Achieving room-temperature brittle-to-ductile transition in ultrafine layered Fe-Al alloys. Sci. Adv. 2020, 6, eabb6658. [Google Scholar] [CrossRef]
- Su, R.; Neffati, D.; Cho, J.; Shang, Z.; Zhang, Y.; Ding, J.; Li, Q.; Xue, S.; Wang, H.; Kulkarni, Y.; et al. High-strength nanocrystalline intermetallics with room temperature deformability enabled by nanometer thick grain boundaries. Sci. Adv. 2021, 7, eabc8288. [Google Scholar] [CrossRef]
- Wang, H.; Kou, R.; Yi, H.; Figueroa, S.; Vecchio, K.S. Mesoscale hetero-deformation induced (HDI) stress in FeAl-based metallic-intermetallic laminate (MIL) composites. Acta Mater. 2021, 213, 116949. [Google Scholar] [CrossRef]
- Zamanzade, M.; Barnoush, A.; Motz, C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals 2016, 6, 10. [Google Scholar] [CrossRef]
- Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [Google Scholar] [CrossRef]
- Dong, S.; Liu, X.-Y.; Zhou, C. Atomistic modeling of plastic deformation in B2-FeAl/Al nanolayered composites. J. Mater. Sci. 2021, 56, 17080–17095. [Google Scholar] [CrossRef]
- Guo, Y.-F.; Wang, Y.-S.; Zhao, D.-L. Atomistic simulation of stress-induced phase transformation and recrystallization at the crack tip in bcc iron. Acta Mater. 2007, 55, 401–407. [Google Scholar] [CrossRef]
Grain Size (nm) | Number of Grains | x (nm) | y (nm) | z (nm) | Number of Atoms |
---|---|---|---|---|---|
6.2 | 8 | 10 | 10 | 10 | 86,810 |
8.1 | 12 | 15 | 15 | 15 | 293,011 |
10.8 | 12 | 20 | 20 | 20 | 694,409 |
12.4 | 8 | 20 | 20 | 20 | 694,505 |
14.9 | 8 | 24 | 24 | 24 | 1,199,917 |
17.4 | 5 | 24 | 24 | 24 | 1,200,012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Gao, K.; Huang, L.; Chen, P.; Yang, J. Effects of Grain Size on Mechanical Properties of Nanopolycrystalline Fe-Al Alloy. Processes 2025, 13, 2462. https://doi.org/10.3390/pr13082462
Liu X, Gao K, Huang L, Chen P, Yang J. Effects of Grain Size on Mechanical Properties of Nanopolycrystalline Fe-Al Alloy. Processes. 2025; 13(8):2462. https://doi.org/10.3390/pr13082462
Chicago/Turabian StyleLiu, Xiaoming, Kun Gao, Long Huang, Peng Chen, and Jing Yang. 2025. "Effects of Grain Size on Mechanical Properties of Nanopolycrystalline Fe-Al Alloy" Processes 13, no. 8: 2462. https://doi.org/10.3390/pr13082462
APA StyleLiu, X., Gao, K., Huang, L., Chen, P., & Yang, J. (2025). Effects of Grain Size on Mechanical Properties of Nanopolycrystalline Fe-Al Alloy. Processes, 13(8), 2462. https://doi.org/10.3390/pr13082462