Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = regional water mass solutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2460 KB  
Article
Biodegradation and Metabolic Pathways of Thiamethoxam and Atrazine Driven by Microalgae
by Yongchao Wang, Fang Yang, Haiqing Liao, Weiying Feng, Pengcheng Duan, Zhuangzhuang Feng, Ting Pan, Yuxin Li and Qingfeng Miao
Water 2026, 18(3), 304; https://doi.org/10.3390/w18030304 - 24 Jan 2026
Viewed by 49
Abstract
Pesticide residues from agriculture pose persistent threats to ecosystems and human health. Precipitation and surface runoff facilitate the transport of pesticide residues, leading to their subsequent accumulation in lakes and rivers. Microalgae-based bioremediation offers a promising and environmentally friendly approach for degrading and [...] Read more.
Pesticide residues from agriculture pose persistent threats to ecosystems and human health. Precipitation and surface runoff facilitate the transport of pesticide residues, leading to their subsequent accumulation in lakes and rivers. Microalgae-based bioremediation offers a promising and environmentally friendly approach for degrading and detoxifying these residues. This study employed liquid chromatography–mass spectrometry (LC-MS) to determine pesticide residues in various microalgal solutions. Using three-dimensional excitation-emission matrix (3D-EEM) spectroscopy and fluorescence regional integration (FRI), we quantified the dynamics of dissolved organic matter (DOM) and its relationship with pesticide degradation in the microalgal system. Over time, Tolypothrix tenuis exhibited the highest degradation rate for THX (95.7%), while Anabaena showed the most effective degradation for ATZ (53.8%). Based on structural analysis of degradation products, three potential degradation pathways for THX and ATZ under microalgae action were proposed. Moreover, the degradation process may also involve reactive oxygen species and intracellular enzymes. Hydroxylation and carboxylation were the primary reactions involved in THX degradation, leading to ring opening and subsequent mineralization. In ATZ, the initially removed groups included methyl and carbonyl groups, with the final products undergoing hydroxylation and subsequent mineralization to water and carbon dioxide. This study, conducted within the context of aquatic environmental protection, investigates the threat of pesticide residues to aquatic ecosystems. It further elucidates the associated environmental impacts and degradation mechanisms from a microalgal perspective. Full article
Show Figures

Figure 1

18 pages, 3693 KB  
Article
Modeling and Performance Assessment of a NeWater System Based on Direct Evaporation and Refrigeration Cycle
by Yilin Huo, Eric Hu and Jay Wang
Energies 2026, 19(2), 468; https://doi.org/10.3390/en19020468 - 17 Jan 2026
Viewed by 199
Abstract
At present, the global shortage of water resources has led to serious challenges, and traditional water production technologies such as seawater desalination and atmospheric water harvesting have certain limitations due to inflexible operation and environmental conditions. This study proposes a novel water production [...] Read more.
At present, the global shortage of water resources has led to serious challenges, and traditional water production technologies such as seawater desalination and atmospheric water harvesting have certain limitations due to inflexible operation and environmental conditions. This study proposes a novel water production system (called “NeWater” system in this paper), which combines saline water desalination with atmospheric water-harvesting technologies to simultaneously produce freshwater from brackish water or seawater and ambient air. To evaluate its performance, an integrated thermodynamic and mathematical model of the system was developed and validated. The NeWater system consists of a vapor compression refrigeration unit (VRU), a direct evaporation unit (DEU), up to four heat exchangers, some valves, and auxiliary components. The system can be applied to areas and scenarios where traditional desalination technologies, like reverse osmosis and thermal-based desalination, are not feasible. By switching between different operating modes, the system can adapt to varying environmental humidity and temperature conditions to maximize its freshwater productivity. Based on the principles of mass and energy conservation, a performance simulation model of the NeWater system was developed, with which the impacts of some key design and operation parameters on system performance were studied in this paper. The results show that the performances of the VRU and DEU had a significant influence on system performance in terms of freshwater production and specific energy consumption. Under optimal conditions, the total freshwater yield could be increased by up to 1.9 times, while the specific energy consumption was reduced by up to 48%. The proposed system provides a sustainable and scalable water production solution for water-scarce regions. Optimization of the NeWater system and the selection of VRUs are beyond the scope of this paper and will be the focus of future research. Full article
Show Figures

Figure 1

17 pages, 3575 KB  
Article
Tailoring Properties Through Functionalized Alicyclic Diamine Towards Solution-Processable High-Performance Polyimide Films
by Lei Xiong, Feiyan Ding, Liangrong Li, Xinhai Wei, Jiayao Xu, Guanfa Xiao, Zhenyu Yang and Feng Liu
Polymers 2026, 18(2), 207; https://doi.org/10.3390/polym18020207 - 12 Jan 2026
Viewed by 257
Abstract
A novel fluorinated diamine monomer, 4,4′-((bicyclo[2.2.1]hept- 5-ene-2,3-diylbis (methylene)) bis(oxy))bis(3- (trifluoromethyl) aniline) (NFDA), featuring a tailored alicyclic norbornane core, flexible ether linkages, and pendant trifluoromethyl groups, was successfully synthesized. This monomer was polymerized with six commercial dianhydrides to produce a series of poly(amic acid) [...] Read more.
A novel fluorinated diamine monomer, 4,4′-((bicyclo[2.2.1]hept- 5-ene-2,3-diylbis (methylene)) bis(oxy))bis(3- (trifluoromethyl) aniline) (NFDA), featuring a tailored alicyclic norbornane core, flexible ether linkages, and pendant trifluoromethyl groups, was successfully synthesized. This monomer was polymerized with six commercial dianhydrides to produce a series of poly(amic acid) precursors, which were subsequently converted into high-performance polyimide (PI) films via a thermal imidization process. The strategic integration of the alicyclic, ether, and fluorinated motifs within the polymer backbone resulted in materials with an exceptional combination of properties. These PI films display outstanding solubility in a wide range of organic solvents, including low-boiling options like chloroform and tetrahydrofuran, highlighting their superior solution processability. The films are amorphous and exhibit remarkable hydrophobicity, evidenced by high water contact angles (up to 109.4°) and minimal water absorption (as low as 0.26%). Furthermore, they possess excellent optical transparency, with a maximum transmittance of 86.7% in the visible region. The materials also maintain robust thermal stability, with 5% mass loss temperatures exceeding 416 °C, and offer a desirable balance of mechanical strength and flexibility. This unique set of attributes, stemming from a rational molecular design, positions these polyimides as highly promising candidates for next-generation flexible electronics and advanced photovoltaics. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

31 pages, 5957 KB  
Article
A Study on the Preparation and Performance Optimization of Alkali-Activated Fly Ash-Based Aerogel-Modified Foam Concrete
by Peng Liu, Wei Wu and Yanfeng Gong
Buildings 2026, 16(1), 206; https://doi.org/10.3390/buildings16010206 - 2 Jan 2026
Viewed by 206
Abstract
To address the energy and environmental challenges, this study targets the need for ultra-low energy buildings in China’s hot summer-cold winter region (HSCW) by developing high-performance alkali-activated foam concrete (AAFC) insulation material. Initially, a target performance indicator system was established. Subsequently, a mix [...] Read more.
To address the energy and environmental challenges, this study targets the need for ultra-low energy buildings in China’s hot summer-cold winter region (HSCW) by developing high-performance alkali-activated foam concrete (AAFC) insulation material. Initially, a target performance indicator system was established. Subsequently, a mix proportion design method based on the volume method was proposed, and preliminary mix proportions were designed and tested to achieve the target performance. Accordingly, eight factors, including alkali equivalent and SiO2 aerogel content, were selected for further optimization. A systematic optimization of performance was then conducted using an L32(48) orthogonal experimental design. Range analysis and analysis of variance indicated that foam content significantly affected all target properties. The water-to-binder ratio notably influenced mechanical performance and dry density. Alkali equivalent and activator modulus directly regulated the reaction process. Notably, the incorporation of 2.5 wt% SiO2 aerogel reduced the thermal conductivity to 0.1107 W/(m·K), highlighting its significant role in improving thermal insulation and effectively resolving the common trade-off between insulation and mechanical properties in FC. Furthermore, the waterproofing agent played a critical role in reducing water absorption and enhancing frost resistance. Finally, the optimal mix proportion was determined through matrix analysis, with all material properties meeting the expected targets. Test results confirmed that the optimized FC achieved a dry density of 576.34 kg/m3, compressive and flexural strengths of 5.83 MPa and 1.41 MPa, respectively, a drying shrinkage rate of only 0.614 mm/m, a mass water absorption of 3.87%, and strength and mass loss rates below 10.5% and 1.8% after freeze–thaw cycles. Therefore, this material presents a novel solution for the envelope structures of low-energy buildings. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 16739 KB  
Article
Electrochemical Degradation Mechanism of Desert Sand Concrete Under the Combined Action of Electric Field and Sulfate
by Hong Wu, Yong Huang, Shisong Liu, Yubin Liu, Ting Liu, Baoxi Zuo and Sining Li
Sustainability 2026, 18(1), 176; https://doi.org/10.3390/su18010176 - 23 Dec 2025
Viewed by 207
Abstract
To promote the sustainable utilization of desert sand as a regional resource in the infrastructure construction of saline-alkali areas, this paper proposes an accelerated test method based on the coupling of an external electric field (60 V) and a 2% Na2SO [...] Read more.
To promote the sustainable utilization of desert sand as a regional resource in the infrastructure construction of saline-alkali areas, this paper proposes an accelerated test method based on the coupling of an external electric field (60 V) and a 2% Na2SO4 solution for rapid evaluation of its sulfate erosion resistance. The optimal mix proportion (FA 10%, water-to-binder ratio 0.33, cement-to-sand ratio 1:1.5, SF 10%) was determined through orthogonal experiments. By employing multi-scale analytical techniques including electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal analysis (TG-DTG), the differentiated deterioration mechanisms driven by the electric field were systematically revealed. The results show that the charge-transfer resistance (Rct) decreased by about 95% within 28 d, demonstrating the characteristic of “micro-scale deterioration preceding macro-scale strength loss.” The anode region was dominated by dissolution of hydration products (porosity 5.1%), while the cathode region, due to enrichment of sulfate ions (S content 3.37 wt.%), generated a large amount of expansive products, leading to more pronounced structural damage (porosity 8.3%) and greater mass loss (cathode 12.56% > anode 9.85%). This study not only elucidates the deterioration mechanisms of desert sand concrete under coupled environmental action, but also provides a mechanism-explicit, rapid and efficient laboratory evaluation method for its sulfate resistance, offering practical guidance for durability design and prevention in engineering structures exposed to saline-alkali conditions. Full article
Show Figures

Figure 1

25 pages, 11660 KB  
Article
Revisiting the Terrestrial Water Storage Changes in the Northeastern Tibetan Plateau Using GRACE/GRACE-FO at Different Spatial Scales Considering the Impacts of Large Lakes and Reservoirs
by Zhenyuan Zhu, Zhiyong Huang, Fancui Kong, Xin Luo, Jianping Wang, Yingkui Yang and Huiyang Shi
Remote Sens. 2025, 17(19), 3272; https://doi.org/10.3390/rs17193272 - 23 Sep 2025
Cited by 1 | Viewed by 985
Abstract
The large lakes and reservoirs of the northeastern Tibetan Plateau play a key role in regional water resources, yet their influence on terrestrial water storage (TWS) changes at different spatial scales remains unclear. This study employed the constrained forward modeling (CFM) method to [...] Read more.
The large lakes and reservoirs of the northeastern Tibetan Plateau play a key role in regional water resources, yet their influence on terrestrial water storage (TWS) changes at different spatial scales remains unclear. This study employed the constrained forward modeling (CFM) method to correct leakage errors in level-2 spherical harmonic (SH) coefficients from the Gravity Recovery and Climate Experiment and its follow-on missions (GRACE/GRACE-FO) at three spatial scales: two circular regions covering 90,000 km2 and 200,000 km2, respectively, and a 220,000 km2 region based on the shape of mass concentration (Mascon). TWS changes derived from SH solutions after leakage correction through CFM were compared with level-3 Mascon solutions. Individual water storage components, including lake and reservoir water storage (LRWS), groundwater storage (GWS), and soil moisture storage (SMS), were quantified, and their relationships with precipitation were assessed. From 2003 to 2022, the CFM method effectively mitigated signal leakage, revealing an overall upward trend in TWS at all spatial scales. Signals from Qinghai Lake and Longyangxia Reservoir dominated the long-term trend and amplitude variations of LRWS, respectively. LRWS explained more than 47% of the TWS changes, and together with GWS, accounted for over 85% of the changes. Both CFM-based and Mascon-based TWS changes indicated a consistent upward trend from January 2003 to September 2012, followed by declines from November 2012 to May 2017 and October 2018 to December 2022. During the decline phases, GWS contributions increased, while LRWS contributions and component exchange intensity decreased. LRWS, SMS, and TWS changes were significantly correlated with precipitation, with varying time lags. These findings underscore the value of GRACE/GRACE-FO data for monitoring multiscale TWS dynamics and their climatic drivers in lake- and reservoir-dominated regions. Full article
Show Figures

Figure 1

20 pages, 3810 KB  
Article
A Robust Two-Dimensional Shallow Flow Model with Adaptive Quadtree Mesh
by Gangfeng Wu, Zhiyuan Li and Haoxuan Weng
J. Mar. Sci. Eng. 2025, 13(10), 1834; https://doi.org/10.3390/jmse13101834 - 23 Sep 2025
Cited by 1 | Viewed by 665
Abstract
A two-dimensional shallow flow model is developed by integrating a positivity-preserving, well-balanced central-upwind scheme with a block-structured quadtree AMR grid implemented in the Afivo open-source framework. A non-negative water depth reconstruction ensures second-order spatial accuracy and the robust treatment of wetting and drying, [...] Read more.
A two-dimensional shallow flow model is developed by integrating a positivity-preserving, well-balanced central-upwind scheme with a block-structured quadtree AMR grid implemented in the Afivo open-source framework. A non-negative water depth reconstruction ensures second-order spatial accuracy and the robust treatment of wetting and drying, while coarse-grid fluxes at refinement boundaries are obtained by summing the corresponding fine-grid fluxes, thereby guaranteeing strict mass conservation between refinement levels. Mesh refinement is driven by gradients in water surface elevation, which focus resolution on regions of rapid flow variation, thereby improving both accuracy and computational efficiency. Model validation through benchmark problems and the Malpasset dam-break event show close agreement with analytical solutions, laboratory measurements, and previous numerical simulations, while achieving substantial reductions in computational cost. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 8542 KB  
Article
Frost Resistance of Fully Recycled Coarse Aggregate Concrete in Saline-Soil Regions: Seasonal Freezing
by Shefeng Guo, Jin Wu, Haoxiang Luan, Dadi Lin, Shan Wang, Ziyu Ji, Yuhao Chen and Min Li
Buildings 2025, 15(18), 3402; https://doi.org/10.3390/buildings15183402 - 19 Sep 2025
Viewed by 717
Abstract
With global sustainable construction growth, fully recycled coarse aggregate concrete (RCAC)—eco-friendly for cutting construction waste and reducing natural aggregate over-exploitation—has poor durability in seasonally freezing saline-soil regions (e.g., Tumushuke, Xinjiang): freeze-thaw and salt ions (NaCl, Na2SO4) cause microcracking, faster [...] Read more.
With global sustainable construction growth, fully recycled coarse aggregate concrete (RCAC)—eco-friendly for cutting construction waste and reducing natural aggregate over-exploitation—has poor durability in seasonally freezing saline-soil regions (e.g., Tumushuke, Xinjiang): freeze-thaw and salt ions (NaCl, Na2SO4) cause microcracking, faster performance decline, and shorter service life, limiting its use and requiring better salt freeze resistance. To address this, a field survey of Tumushuke’s saline soil was first conducted to determine local salt type and concentration, based on which a matching 12% NaCl + 4% Na2SO4 mixed salt solution was prepared. RCAC specimens modified with fly ash (FA), silica fume (SF), and polypropylene fiber (PPF) were then fabricated, cured under standard conditions (20 ± 2 °C, ≥95% relative humidity), and subjected to rapid freeze-thaw cycling in the salt solution. Multiple macro-performance and microstructural indicators (appearance, mass loss, relative dynamic elastic modulus (RDEM), porosity, microcracks, and corrosion products) were measured post-cycling. Results showed the mixed salt solution significantly exacerbated RCAC’s freeze-thaw damage, with degradation severity linked to cycle count and admixture dosage. The RCAC modified with 20% FA and 0.9% PPF exhibited optimal salt freeze resistance: after 125 cycles, its RDEM retention reached 75.98% (6.60% higher than the control), mass loss was only 0.28% (67.80% lower than the control), and its durability threshold (RDEM > 60%) extended to 200 cycles. Mechanistic analysis revealed two synergistic effects for improved performance: (1) FA optimized pore structure by filling capillaries, reducing space for pore water freezing and salt penetration; (2) PPF enhanced crack resistance by bridging microcracks, suppressing crack initiation/propagation from freeze-thaw expansion and salt crystallization. A “pore optimization–ion blocking–fiber crack resistance” triple synergistic protection model was proposed, which clarifies admixture-modified RCAC’s salt freeze damage mechanism and provides theoretical/technical guidance for its application in extreme seasonally freezing saline-soil environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 7359 KB  
Article
Least Squares Collocation for Estimating Terrestrial Water Storage Variations from GNSS Vertical Displacement on the Island of Haiti
by Renaldo Sauveur, Sajad Tabibi and Olivier Francis
Geosciences 2025, 15(8), 322; https://doi.org/10.3390/geosciences15080322 - 19 Aug 2025
Viewed by 899
Abstract
Water masses are continuously redistributing across the Earth, so accurately estimating their availability is essential. Global Navigation Satellite Systems (GNSSs) have demonstrated potential for observing vertical deformations, which is partly driven by terrestrial water storage (TWS) variations. This capability has been used in [...] Read more.
Water masses are continuously redistributing across the Earth, so accurately estimating their availability is essential. Global Navigation Satellite Systems (GNSSs) have demonstrated potential for observing vertical deformations, which is partly driven by terrestrial water storage (TWS) variations. This capability has been used in hydrogeodesy to estimate TWS variations. However, GNSS data inversions are often ill-posed, requiring regularization for stable solutions. This study considers the Least Squares Collocation (LSC) statistical method as an alternative. LSC uses covariance functions to characterize observations, parameters, and their interdependence. By incorporating additional physical information into inverse models, LSC allows ill-posed problems stabilization. To assess LSC effectiveness, we apply it to observed and simulated GNSS vertical displacement on Haiti island. Hydrological signals are modeled using Global Land Data Assimilation (GLDAS) data. In sparse GNSS data regions, findings indicate poor agreement between TWS and hydrological input, with a Root-Mean-Square-Error (RMSE) of 115 kg/m2, a correlation of 0.3, and a reduction of 73%. However, in dense simulated GNSS areas, TWS and hydrological input show strong agreement, with an RMSE of 41 kg/m2, a correlation of 0.83, and a reduction of 92%. The results confirm LSC potentiality for assessing TWS changes and improving water quantification in dense GNSS station region. Full article
(This article belongs to the Special Issue Geophysical Inversion)
Show Figures

Figure 1

28 pages, 8933 KB  
Article
Clays as Dual-Function Materials for TNT Adsorption and Catalytic Degradation: An Experimental Approach
by Raluca Florenta Doroftei, Diana Mirila, Mihaela Silion, Daniela Ionita, Ana-Maria Rosu, Corneliu Munteanu, Bogdan Istrate, Gabriela Muntianu, Ana-Maria Georgescu and Ileana-Denisa Nistor
Materials 2025, 18(16), 3824; https://doi.org/10.3390/ma18163824 - 14 Aug 2025
Viewed by 3484
Abstract
This study explores the adsorption and catalytic degradation of 2,4,6-trinitrotoluene (TNT) from aqueous solutions, using montmorillonite-based catalysts. Commercially, montmorillonite K10 was modified through aluminum pillaring (K10-Al-PILC), followed by vanadium intercalation (K10-Al-PILC-V) and ozone activation. A novel aspect of this work is the use [...] Read more.
This study explores the adsorption and catalytic degradation of 2,4,6-trinitrotoluene (TNT) from aqueous solutions, using montmorillonite-based catalysts. Commercially, montmorillonite K10 was modified through aluminum pillaring (K10-Al-PILC), followed by vanadium intercalation (K10-Al-PILC-V) and ozone activation. A novel aspect of this work is the use of naturally contaminated water as the TNT source. The selected sample, collected from the Plaiul Arșiței–Cireșu–Leșunț region (Oituz, Bacau, Romania), originated from an area historically exposed to explosive residues, where TNT traces were previously identified. The adsorption performance of the materials was evaluated by varying adsorbent dosage, contact time, and solution pH. Catalytic ozonation experiments were conducted under different catalyst masses, ozone concentrations, and reaction times to assess degradation efficiency. The results demonstrated that aluminum pillaring significantly enhanced the adsorption capacity of the clay, while vanadium incorporation further improved both adsorption and catalytic activity. The vanadium-modified material exhibited superior performance in TNT removal, both through adsorption and oxidative degradation. Additionally, the catalytic ozonation process led to the formation of degradation products with reduced toxicity, confirming the potential of these materials for environmental remediation of nitroaromatic pollutants in real water systems. Full article
Show Figures

Figure 1

24 pages, 4061 KB  
Article
The Impact of Hydrogeological Properties on Mass Displacement in Aquifers: Insights from Implementing a Mass-Abatement Scalable System Using Managed Aquifer Recharge (MAR-MASS)
by Mario Alberto Garcia Torres, Alexandra Suhogusoff and Luiz Carlos Ferrari
Water 2025, 17(15), 2239; https://doi.org/10.3390/w17152239 - 27 Jul 2025
Viewed by 736
Abstract
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in [...] Read more.
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in coastal regions, agricultural areas, and contaminated sites, where variable-density flow poses a challenge. Numerical simulations assessed hydrogeological properties such as hydraulic conductivity, anisotropy, specific yield, mechanical dispersion, and molecular diffusion. A conceptual model integrated hydraulic conditions with spatial and temporal discretization using the FLOPY API for MODFLOW 6 and the IFM API for FEFLOW 10. Python algorithms were run within the high-performance computing (HPC) server, executing simulations in parallel to efficiently process a large number of scenarios, including both preprocessing input data and post-processing results. The study simulated 6950 scenarios, each modeling flow and transport processes over 3000 days of method implementation and focusing on mass extraction efficiency under different initial salinity conditions (3.5 to 35 kg/m3). The results show that the MAR-MASS effectively removed salts from aquifers, with higher hydraulic conductivity prolonging mass removal efficiency. Of the scenarios, 88% achieved potability (0.5 kg/m3) in under five years; among these, 79% achieved potability within two years, and 92% of cases with initial concentrations of 3.5–17.5 kg/m3 reached potability within 480 days. This study advances scientific knowledge by providing a robust model for optimizing managed aquifer recharge, with practical applications in rehabilitating salinized aquifers and improving water quality. Future research may explore MAR-MASS adaptation for diverse hydrogeological contexts and its long-term performance. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

16 pages, 1877 KB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Cited by 3 | Viewed by 2148
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

32 pages, 2412 KB  
Review
Bio-Based Nanomaterials for Groundwater Arsenic Remediation: Mechanisms, Challenges, and Future Perspectives
by Md. Mahbubur Rahman, Md. Nizam Uddin, Md Mahadi Hassan Parvez, Md. Abdullah Al Mohotadi and Jannatul Ferdush
Nanomaterials 2025, 15(12), 933; https://doi.org/10.3390/nano15120933 - 16 Jun 2025
Cited by 7 | Viewed by 2740
Abstract
Arsenic contamination in water poses a significant global health risk, necessitating efficient and sustainable remediation strategies. Arsenic contamination affects groundwater in at least 106 countries, potentially exposing over 200 million people to elevated levels, primarily through contaminated drinking water. Among the most affected [...] Read more.
Arsenic contamination in water poses a significant global health risk, necessitating efficient and sustainable remediation strategies. Arsenic contamination affects groundwater in at least 106 countries, potentially exposing over 200 million people to elevated levels, primarily through contaminated drinking water. Among the most affected regions, Bangladesh remains a critical case study, where widespread reliance on shallow tubewells has resulted in one of the largest mass poisonings in history. Bio-based nanomaterials have emerged as promising solutions due to their eco-friendly nature, cost-effectiveness, and high adsorption capabilities. These nanomaterials offer a sustainable approach to arsenic remediation, utilizing materials like biochar, modified biopolymers, and bio-based aerogels, which can effectively adsorb arsenic and other pollutants. The use of environmentally friendly nanostructures provides a potential option for improving the efficiency and sustainability of arsenic remediation from groundwater. This review explores the mechanisms underlying arsenic remediation using such nanomaterials, including adsorption, filtration/membrane technology, photocatalysis, redox reactions, complexation, ion exchange, and coagulation–flocculation. Despite their potential, challenges such as scalability, stability, and regeneration hinder widespread application. We discuss recent advancements in material design, surface modifications, and hybrid systems that enhance performance. Finally, future perspectives are highlighted, including the integration of these bio-derived systems with smart sensing technologies, sustainable water-treatment frameworks, smart design, and life-cycle integration strategies, particularly for use in resource-constrained regions like Bangladesh and other globally impacted areas. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Graphical abstract

31 pages, 17047 KB  
Article
Performance Analysis of Solar-Integrated Vapour Compression Air Conditioning System for Multi-Story Residential Buildings in Hot Climates: Energy, Exergy, Economic, and Environmental Insights
by Hussein A. Al Khiro and Rabah Boukhanouf
Energies 2025, 18(11), 2781; https://doi.org/10.3390/en18112781 - 27 May 2025
Cited by 1 | Viewed by 888
Abstract
Decarbonisation in hot climates demands innovative cooling solutions that minimise environmental impact through renewable energy integration and advanced system optimisation. This study investigates the energetic and economic feasibility of a thermo-mechanical vapour compression (TMVC) cooling system that integrates a conventional vapour compression cycle [...] Read more.
Decarbonisation in hot climates demands innovative cooling solutions that minimise environmental impact through renewable energy integration and advanced system optimisation. This study investigates the energetic and economic feasibility of a thermo-mechanical vapour compression (TMVC) cooling system that integrates a conventional vapour compression cycle with an ejector and a thermally driven second-stage compressor powered by solar-heated water from evacuated flat-plate collectors. The system is designed to reduce mechanical compressor work and enhance cooling performance in hot climates. A comprehensive 4E (energy, exergy, economic, and environmental) analysis is conducted for a multi-story residential building in Baghdad, Iraq, with a total floor area of approximately 8000 m2 and a peak cooling demand of 521.75 kW. Numerical simulations were conducted to evaluate various configurations of solar collector areas, thermal storage tank volumes, and collector mass flow rate, aiming to identify the most energy-efficient combinations. These optimal configurations were then assessed from economic and environmental perspectives. Among them, the system featuring a 600 m2 collector area and a 34 m3 storage tank was selected as the optimal case based on its superior electricity savings and energy performance. Specifically, this configuration achieved a 28.28% improvement in the coefficient of performance, a 22.05% reduction in energy consumption, and an average of 15.3 h of daily solar-assisted operation compared to a baseline vapour compression system. These findings highlight the potential of the TMVC system to significantly reduce energy usage and environmental impact, thereby supporting the deployment of sustainable cooling technologies in hot climate regions. Full article
Show Figures

Figure 1

25 pages, 6816 KB  
Article
Mechanisms of Cu2+ Immobilization Using Carbonyl Iron Powder–Biochar Composites for Remediating Acidic Soils from Copper Sulfide Mining Areas
by Shuting Wang, Jinchun Xue, Min He, Xiaojuan Wang and Hui Qi
Sustainability 2025, 17(10), 4281; https://doi.org/10.3390/su17104281 - 8 May 2025
Cited by 2 | Viewed by 1291
Abstract
Soil heavy metal contamination poses critical challenges to ecological sustainability in mining regions, particularly in acidic soils from copper sulfide mines. This study developed a sustainable remediation strategy using a carbonyl iron powder–biochar composite (CIP@BC) derived from agricultural waste (rice husk) and industrial [...] Read more.
Soil heavy metal contamination poses critical challenges to ecological sustainability in mining regions, particularly in acidic soils from copper sulfide mines. This study developed a sustainable remediation strategy using a carbonyl iron powder–biochar composite (CIP@BC) derived from agricultural waste (rice husk) and industrial byproducts. The composite was synthesized through an energy-efficient mechanical grinding method at a 10:1 mass ratio of biochar to carbonyl iron powder, aligning with circular economy principles. Material characterization revealed CIP particles uniformly embedded within biochar’s porous structure, synergistically enhancing surface functionality and redox activity. CIP@BC demonstrated exceptional Cu2+ immobilization capacity (910.5 mg·g−1), achieved through chemisorption and monolayer adsorption mechanisms. Notably, the remediation process concurrently improved key soil health parameters. Soil incubation trials demonstrated that 6% CIP@BC application elevated soil pH from 4.27 to 6.19, reduced total Cu content by 29.43%, and decreased DTPA-extractable Cu by 67.26%. This treatment effectively transformed Cu speciation from bioavailable to residual fractions. Concurrent improvements in electrical conductivity (EC), cation exchange capacity (CEC), soil organic matter (OM), and soil water content (SWC) collectively highlighted the composite’s multifunctional remediation potential. This study bridges environmental remediation with sustainable land management through an innovative waste-to-resource approach that remediates acidic mine soils. The dual functionality of CIP@BC in contaminant immobilization and soil quality restoration provides a scalable solution. Full article
Show Figures

Figure 1

Back to TopTop