Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (906)

Search Parameters:
Keywords = regeneration efficacy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 650 KiB  
Review
Not All Platelets Are Created Equal: A Review on Platelet Aging and Functional Quality in Regenerative Medicine
by Fábio Ramos Costa, Joseph Purita, Rubens Martins, Bruno Costa, Lucas Villasboas de Oliveira, Stephany Cares Huber, Gabriel Silva Santos, Luyddy Pires, Gabriel Azzini, André Kruel and José Fábio Lana
Cells 2025, 14(15), 1206; https://doi.org/10.3390/cells14151206 - 6 Aug 2025
Abstract
Platelet-rich plasma (PRP) is widely used in regenerative medicine, yet clinical outcomes remain inconsistent. While traditional strategies have focused on platelet concentration and activation methods, emerging evidence suggests that the biological age of platelets, especially platelet senescence, may be a critical but overlooked [...] Read more.
Platelet-rich plasma (PRP) is widely used in regenerative medicine, yet clinical outcomes remain inconsistent. While traditional strategies have focused on platelet concentration and activation methods, emerging evidence suggests that the biological age of platelets, especially platelet senescence, may be a critical but overlooked factor influencing therapeutic efficacy. Senescent platelets display reduced granule content, impaired responsiveness, and heightened pro-inflammatory behavior, all of which can compromise tissue repair and regeneration. This review explores the mechanisms underlying platelet aging, including oxidative stress, mitochondrial dysfunction, and systemic inflammation, and examines how these factors influence PRP performance across diverse clinical contexts. We discuss the functional consequences of platelet senescence, the impact of comorbidities and aging on PRP quality, and current tools to assess platelet functionality, such as HLA-I–based flow cytometry. In addition, we present strategies for pre-procedural optimization, advanced processing techniques, and adjunctive therapies aimed at enhancing platelet quality. Finally, we challenge the prevailing emphasis on high-volume blood collection, highlighting the limitations of quantity-focused protocols and advocating for a shift toward biologically precise, function-driven regenerative interventions. Recognizing and addressing platelet senescence is a key step toward unlocking the full therapeutic potential of PRP-based interventions. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

26 pages, 769 KiB  
Review
Immunomodulatory and Regenerative Functions of MSC-Derived Exosomes in Bone Repair
by Manorathna Arun, Sheeja Rajasingh, Parani Madasamy and Johnson Rajasingh
Bioengineering 2025, 12(8), 844; https://doi.org/10.3390/bioengineering12080844 (registering DOI) - 5 Aug 2025
Abstract
Bone integrity is maintained through continuous remodeling, orchestrated by the coordinated actions of osteocytes, osteoblasts, and osteoclasts. Once considered passive bystanders, osteocytes are now recognized as central regulators of this process, mediating biochemical signaling and mechanotransduction. Malfunctioning osteocytes contribute to serious skeletal disorders [...] Read more.
Bone integrity is maintained through continuous remodeling, orchestrated by the coordinated actions of osteocytes, osteoblasts, and osteoclasts. Once considered passive bystanders, osteocytes are now recognized as central regulators of this process, mediating biochemical signaling and mechanotransduction. Malfunctioning osteocytes contribute to serious skeletal disorders such as osteoporosis. Mesenchymal stromal cells (MSCs), multipotent stem cells capable of differentiating into osteoblasts, have emerged as promising agents for bone regeneration, primarily through the paracrine effects of their secreted exosomes. MSC-derived exosomes are nanoscale vesicles enriched with proteins, lipids, and nucleic acids that promote intercellular communication, osteoblast proliferation and differentiation, and angiogenesis. Notably, they deliver osteoinductive microRNAs (miRNAs) that influence osteogenic markers and support bone tissue repair. In vivo investigations validate their capacity to enhance bone regeneration, increase bone volume, and improve biomechanical strength. Additionally, MSC-derived exosomes regulate the immune response, creating pro-osteogenic and pro-angiogenic factors, boosting their therapeutic efficacy. Due to their cell-free characteristics, MSC-derived exosomes offer benefits such as diminished immunogenicity and minimal risk of off-target effects. These properties position them as promising and innovative approaches for bone regeneration, integrating immunomodulatory effects with tissue-specific regenerative capabilities. Full article
Show Figures

Figure 1

15 pages, 786 KiB  
Review
Motor Function in the Setting of Nerve Allografts: Is This the Future of Facial Nerve Reconstruction?
by Léna G. Dietrich, Adriaan O. Grobbelaar and Ioana Lese
J. Clin. Med. 2025, 14(15), 5510; https://doi.org/10.3390/jcm14155510 - 5 Aug 2025
Abstract
Background: Peripheral nerve injuries, especially involving the facial nerve, present unique reconstructive challenges due to their complex functional demands and limited regenerative potential. While autografts remain the gold standard, their drawbacks—such as donor-site morbidity and limited availability—have driven interest in processed nerve [...] Read more.
Background: Peripheral nerve injuries, especially involving the facial nerve, present unique reconstructive challenges due to their complex functional demands and limited regenerative potential. While autografts remain the gold standard, their drawbacks—such as donor-site morbidity and limited availability—have driven interest in processed nerve allografts. Acellular grafts, in particular, offer promising off-the-shelf alternatives without the need for immunosuppression. Methods: We conducted a narrative review of the literature (1990–2023), identifying 55 peer-reviewed studies via PubMed, Embase, and Cochrane Library. The studies included clinical and preclinical work on motor nerve regeneration using processed nerve allografts, with particular attention to outcomes in facial nerve repair. Two independent reviewers conducted abstract screening, full-text review, and data extraction. Results: Processed nerve allografts show encouraging motor recovery in gaps under 50 mm, with recovery rates of up to 85% reported. Outcomes decrease significantly in longer gaps (>50–60 mm) and in complex cases, including facial nerve repairs, where evidence remains sparse and largely extrapolated from broader motor nerve data. Registry data (e.g., RANGER) support their use but are limited by heterogeneity and lack of randomization. Conclusions: Processed nerve allografts represent a viable alternative to autografts in selected cases—especially short to mid-length motor nerve defects. However, their role in facial nerve reconstruction remains insufficiently studied. Further trials are needed to address specific anatomical and functional challenges in this subgroup and to clarify long-gap efficacy. Full article
Show Figures

Figure 1

23 pages, 11168 KiB  
Article
Persistent Inflammation, Maladaptive Remodeling, and Fibrosis in the Kidney Following Long COVID-like MHV-1 Mouse Model
by Rajalakshmi Ramamoorthy, Anna Rosa Speciale, Emily M. West, Hussain Hussain, Nila Elumalai, Klaus Erich Schmitz Abe, Madesh Chinnathevar Ramesh, Pankaj B. Agrawal, Arumugam R. Jayakumar and Michael J. Paidas
Diseases 2025, 13(8), 246; https://doi.org/10.3390/diseases13080246 - 5 Aug 2025
Abstract
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and [...] Read more.
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and to evaluate the therapeutic efficacy of SPIKENET (SPK). Methods: A/J mice were infected with MHV-1. Renal tissues were collected and subjected to immunofluorescence analysis and Next Generation RNA Sequencing to identify differentially expressed genes associated with acute and chronic infection. Bioinformatic analyses, including PCA, volcano plots, and GO/KEGG pathway enrichment, were performed. A separate cohort received SPK treatment, and comparative transcriptomic profiling was conducted. Gene expression profile was further confirmed using real-time PCR. Results: Acute infection showed the upregulation of genes involved in inflammation and fibrosis. Long-term MHV-1 infection led to the sustained upregulation of genes involved in muscle regeneration, cytoskeletal remodeling, and fibrotic responses. Notably, both expression and variability of SLC22 and SLC22A8, key proximal tubule transporters, were reduced, suggesting a loss of segment-specific identity. Further, SLC12A1, a critical regulator of sodium reabsorption and blood pressure, was downregulated and is associated with the onset of polyuria and hydronephrosis. SLC transporters exhibited expression patterns consistent with tubular dysfunction and inflammation. These findings suggest aberrant activation of myogenic pathways and structural proteins in renal tissues, consistent with a pro-fibrotic phenotype. In contrast, SPK treatment reversed the expression of most genes, thereby restoring the gene profiles to those observed in control mice. Conclusions: MHV-1-induced long COVID is associated with persistent transcriptional reprogramming in the kidney, indicative of chronic inflammation, cytoskeletal dysregulation, and fibrogenesis. SPK demonstrates robust therapeutic potential by normalizing these molecular signatures and preventing long-term renal damage. These findings underscore the relevance of the MHV-1 model and support further investigation of SPK as a candidate therapy for COVID-19-associated renal sequelae. Full article
(This article belongs to the Special Issue COVID-19 and Global Chronic Disease 2025: New Challenges)
Show Figures

Figure 1

37 pages, 22351 KiB  
Article
The Extract of Periplaneta americana (L.) Promotes Hair Regrowth in Mice with Alopecia by Regulating the FOXO/PI3K/AKT Signaling Pathway and Skin Microbiota
by Tangfei Guan, Xin Yang, Canhui Hong, Zehao Zhang, Peiyun Xiao, Yongshou Yang, Chenggui Zhang and Zhengchun He
Curr. Issues Mol. Biol. 2025, 47(8), 619; https://doi.org/10.3390/cimb47080619 - 4 Aug 2025
Abstract
Alopecia, a prevalent dermatological disorder affecting over half of the global population, is strongly associated with psychological distress. Extracts from Periplaneta americana (L. PA), a medicinal insect resource, exhibit pharmacological activities (e.g., antioxidant, anti-inflammatory, microcirculation improvement) that align with core therapeutic targets for [...] Read more.
Alopecia, a prevalent dermatological disorder affecting over half of the global population, is strongly associated with psychological distress. Extracts from Periplaneta americana (L. PA), a medicinal insect resource, exhibit pharmacological activities (e.g., antioxidant, anti-inflammatory, microcirculation improvement) that align with core therapeutic targets for alopecia. This study aimed to systematically investigate the efficacy and mechanisms of PA extracts in promoting hair regeneration. A strategy combining network pharmacology prediction and in vivo experiments was adopted. The efficacy of a Periplaneta americana extract was validated by evaluating hair regrowth status and skin pathological staining in C57BL/6J mice. Transcriptomics, metabolomics, RT-qPCR, and 16s rRNA techniques were integrated to dissect the underlying mechanisms of its hair-growth-promoting effects. PA-011 significantly promoted hair regeneration in depilated mice via multiple mechanisms: enhanced skin superoxide dismutase activity and upregulated vascular endothelial growth factor expression; modulated FOXO/PI3K/AKT signaling pathway and restored skin microbiota homeostasis; and accelerated transition of hair follicles from the telogen to anagen phase. PA-011 exerts hair-promoting effects through synergistic modulation of FOXO/PI3K/AKT signaling and the skin microbiome. As a novel therapeutic candidate, it warrants further systematic investigation for clinical translation. Full article
Show Figures

Figure 1

10 pages, 277 KiB  
Systematic Review
Autologous Fat Grafting for the Treatment of Non-Enteric Cutaneous Fistulas: A Systematic Literature Review
by Francesca Bonomi, Ettore Limido, Yves Harder, Ken Galetti and Marco De Monti
Surg. Tech. Dev. 2025, 14(3), 26; https://doi.org/10.3390/std14030026 - 4 Aug 2025
Viewed by 79
Abstract
Background: Autologous fat grafting is increasingly used in daily clinical practice across various surgical fields, including the treatment of chronic wounds, scars, burns, and non-healing perianal fistulas. Recently, some studies have shown that non-enteric cutaneous fistulas can also benefit from adipose tissue injections, [...] Read more.
Background: Autologous fat grafting is increasingly used in daily clinical practice across various surgical fields, including the treatment of chronic wounds, scars, burns, and non-healing perianal fistulas. Recently, some studies have shown that non-enteric cutaneous fistulas can also benefit from adipose tissue injections, but the efficacy remains unclear. This study aims to systematically review the literature on fat grafting in the context of non-enteric cutaneous fistulas and to assess treatment outcomes. Methods: A comprehensive search of the PubMed/Medline database was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines up to January 2024 without restrictions on the time period or the language of publication. Results: Seven studies meeting the inclusion criteria were analyzed, encompassing 13 patients with non-healing cutaneous fistulas treated with injections of autologous fat. The mean age of the patients was 58 ± 3 years, of which 85% had comorbidities. Fat grafting resulted in complete healing in 92% of the cases, with a mean fistula persistence of 158 days before treatment. Treatment protocols varied among patients, including preparation of the fistulous tract, fat processing techniques, and suturing of the fistulous orifice. Conclusions: The results highlight the potential of autologous fat grafting in promoting tissue regeneration and healing of non-enteric cutaneous fistulas. Standardized protocols are essential to confirm and optimize treatment efficacy and, eventually, improve patient outcomes. Further research with a larger sample size and standardization is needed to confirm fat graft efficacy. Full article
Show Figures

Figure 1

33 pages, 8604 KiB  
Article
Sulforaphane-Rich Broccoli Sprout Extract Promotes Hair Regrowth in an Androgenetic Alopecia Mouse Model via Enhanced Dihydrotestosterone Metabolism
by Laxman Subedi, Duc Dat Le, Eunbin Kim, Susmita Phuyal, Arjun Dhwoj Bamjan, Vinhquang Truong, Nam Ah Kim, Jung-Hyun Shim, Jong Bae Seo, Suk-Jung Oh, Mina Lee and Jin Woo Park
Int. J. Mol. Sci. 2025, 26(15), 7467; https://doi.org/10.3390/ijms26157467 - 1 Aug 2025
Viewed by 332
Abstract
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on [...] Read more.
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on keratinocytes, dermal fibroblasts, and dermal papilla cells, showing greater in vitro activity than sulforaphane (SFN) and minoxidil under the tested conditions, while maintaining low cytotoxicity. In a testosterone-induced AGA mouse model, oral BSE significantly accelerated hair regrowth, with 20 mg/kg achieving 99% recovery by day 15, alongside increased follicle length, density, and hair weight. Mechanistically, BSE upregulated hepatic and dermal DHT-metabolizing enzymes (Akr1c21, Dhrs9) and activated Wnt/β-catenin signaling in the skin, suggesting dual actions via androgen metabolism modulation and follicular regeneration. Pharmacokinetic analysis revealed prolonged SFN plasma exposure following BSE administration, and in silico docking showed strong binding affinities of key BSE constituents to Akr1c2 and β-catenin. No systemic toxicity was observed in liver histology. These findings indicate that BSE may serve as a safe, effective, and multitargeted natural therapy for AGA. Further clinical studies are needed to validate its efficacy in human populations. Full article
Show Figures

Figure 1

25 pages, 9193 KiB  
Article
Antibiotic-Loaded Bioglass 45S5 for the Treatment and Prevention of Staphylococcus aureus Infections in Orthopaedic Surgery: A Novel Strategy Against Antimicrobial Resistance
by Humera Sarwar, Richard A. Martin, Heather M. Coleman, Aaron Courtenay and Deborah Lowry
Pathogens 2025, 14(8), 760; https://doi.org/10.3390/pathogens14080760 - 1 Aug 2025
Viewed by 270
Abstract
This study explores the potential of biodegradable Bioglass 45S5 formulations as a dual-function approach for preventing and treating Staphylococcus aureus infections in orthopaedic surgery while addressing the growing concern of antimicrobial resistance (AMR). The research focuses on the development and characterisation of antibiotic-loaded [...] Read more.
This study explores the potential of biodegradable Bioglass 45S5 formulations as a dual-function approach for preventing and treating Staphylococcus aureus infections in orthopaedic surgery while addressing the growing concern of antimicrobial resistance (AMR). The research focuses on the development and characterisation of antibiotic-loaded BG45S5 formulations, assessing parameters such as drug loading efficiency, release kinetics, antimicrobial efficacy, and dissolution behaviour. Key findings indicate that the F2l-BG45S5-T-T-1.5 and F2l-BG45S5-T-V-1.5 formulations demonstrated controlled antibiotic release for up to seven days, with size distributions of D(10): 7.11 ± 0.806 µm, 4.96 ± 0.007 µm; D(50): 25.34 ± 1.730 µm, 25.20.7 ± 0.425 µm; and D(90): 53.7 ± 7.95 µm, 56.10 ± 0.579 µm, respectively. These formulations facilitated hydroxyapatite formation on their surfaces, indicative of osteogenic potential. The antimicrobial assessments revealed zones of inhibition against methicillin-susceptible Staphylococcus aureus (MSSA, ATCC-6538) measuring 20.3 ± 1.44 mm and 24.6 ± 1.32 mm, while for methicillin-resistant Staphylococcus aureus (MRSA, ATCC-43300), the inhibition zones were 21.6 ± 1.89 mm and 22 ± 0.28 mm, respectively. Time-kill assay results showed complete bacterial eradication within eight hours. Additionally, biocompatibility testing via MTT assay confirmed cell viability of >75%. In conclusion, these findings highlight the promise of antibiotic-loaded BG45S5 as a multifunctional biomaterial capable of both combating bone infections and supporting bone regeneration. These promising results suggest that in vivo studies should be undertaken to expedite these materials into clinical applications. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in the Post-COVID Era: A Silent Pandemic)
Show Figures

Figure 1

20 pages, 8914 KiB  
Article
Assessment of Low-Dose rhBMP-2 and Vacuum Plasma Treatments on Titanium Implants for Osseointegration and Bone Regeneration
by Won-Tak Cho, Soon Chul Heo, Hyung Joon Kim, Seong Soo Kang, Se Eun Kim, Jong-Ho Lee, Gang-Ho Bae and Jung-Bo Huh
Materials 2025, 18(15), 3582; https://doi.org/10.3390/ma18153582 - 30 Jul 2025
Viewed by 280
Abstract
This study evaluated the effects of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) coating in combination with vacuum plasma treatment on titanium implants, aiming to enhance osseointegration and bone regeneration while minimizing the adverse effects associated with high-dose rhBMP-2. In vitro analyses demonstrated [...] Read more.
This study evaluated the effects of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) coating in combination with vacuum plasma treatment on titanium implants, aiming to enhance osseointegration and bone regeneration while minimizing the adverse effects associated with high-dose rhBMP-2. In vitro analyses demonstrated that plasma treatment increased surface energy, promoting cell adhesion and proliferation. Additionally, it facilitated sustained rhBMP-2 release by enhancing protein binding to the implant surface. In vivo experiments using the four-beagle mandibular defect model were conducted with the following four groups: un-treated implants, rhBMP-2–coated implants, plasma-treated implants, and implants treated with both rhBMP-2 and plasma. Micro-computed tomography (micro-CT) and medical CT analyses revealed a significantly greater volume of newly formed bone in the combined treatment group (p < 0.05). Histological evaluation further confirmed superior outcomes in the combined group, showing significantly higher bone-to-implant contact (BIC), new bone area (NBA), and inter-thread bone density (ITBD) compared to the other groups (p < 0.05). These findings indicate that vacuum plasma treatment enhances the biological efficacy of low-dose rhBMP-2, representing a promising strategy to improve implant integration in compromised conditions. Further studies are warranted to determine the optimal clinical dosage. Full article
Show Figures

Graphical abstract

14 pages, 1259 KiB  
Review
Engineered Hydrogels for Musculoskeletal Regeneration: Advanced Synthesis Strategies and Therapeutic Efficacy in Preclinical Models
by Gabriela Calin, Mihnea Costescu, Marcela Nour (Cârlig), Tudor Ciuhodaru, Batîr-Marin Denisa, Letitia Doina Duceac, Cozmin Mihai, Melania Florina Munteanu, Svetlana Trifunschi, Alexandru Oancea and Daniela Liliana Damir
Polymers 2025, 17(15), 2094; https://doi.org/10.3390/polym17152094 - 30 Jul 2025
Viewed by 255
Abstract
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial [...] Read more.
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial for musculoskeletal tissue regeneration. This is due to their high water content (70–99%), ECM-like structure, injectability, and controllable degradation rates. Recent preclinical studies indicate that they can enhance regeneration by modulating the release of bioactive compounds, growth factors, and stem cells. Composite hydrogels that combine natural and synthetic polymers, like chitosan and collagen, have compressive moduli that are advantageous for tendon–bone healing. Some of these hydrogels can even hold up to 0.8 MPa of tensile strength. In osteoarthritis models, functionalized systems such as microspheres responsive to matrix metalloproteinase-13 have demonstrated disease modulation and targeted drug delivery, while intelligent in situ hydrogels have exhibited a 43% increase in neovascularization and a 50% enhancement in myotube production. Hydrogel-based therapies have been shown to restore contractile force by as much as 80%, increase myofiber density by 65%, and boost ALP activity in bone defects by 2.1 times in volumetric muscle loss (VML) models. Adding TGF-β3 or MSCs to hydrogel systems improved GAG content by about 60%, collagen II expression by 35–50%, and O’Driscoll scores by 35–50% in cartilage regeneration. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 1562 KiB  
Review
Electrospun Molecularly Imprinted Polymers for Environmental Remediation: A Mini Review
by Sisonke Sigonya, Bakang Mo Mothudi, Olayemi J. Fakayode, Teboho C. Mokhena, Paul Mayer, Thabang H. Mokhothu, Talent R. Makhanya and Katekani Shingange
Polymers 2025, 17(15), 2082; https://doi.org/10.3390/polym17152082 - 30 Jul 2025
Viewed by 269
Abstract
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency [...] Read more.
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency in removing various pollutants, including dyes, heavy metals, and pharmaceutical residues such as NSAIDs and antiretroviral drugs. The synthesis methodologies are explored in detail, focusing on the choice of monomers, templates, and polymerization conditions that influence the structural and functional properties of the membranes. Characterization techniques used to assess morphology, surface area, porosity, and imprinting efficacy are also examined, providing insights into how these parameters affect adsorption performance. Furthermore, the review evaluates the performance metrics of electrospun MIPs, including adsorption capacities, selectivity, reusability, and stability in complex environmental matrices. Practical considerations, such as scalability, regeneration, and long-term operational stability, are discussed to assess their potential for real-world applications. The article concludes with an outline of future research directions, emphasizing the need for multi-template imprinting, integration with existing treatment technologies, and field-scale validation to address current limitations. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

18 pages, 3577 KiB  
Article
Smart Thermoresponsive Sol–Gel Formulation of Polyhexanide for Rapid and Painless Burn and Wound Management
by Levent Alparslan, Gülşah Torkay, Ayca Bal-Öztürk, Çinel Köksal Karayıldırım and Samet Özdemir
Polymers 2025, 17(15), 2079; https://doi.org/10.3390/polym17152079 - 30 Jul 2025
Viewed by 447
Abstract
Traditional wound and burn treatments often fall short in balancing antimicrobial efficacy, patient comfort, and ease of application. This study introduces a novel, transparent, thermoresponsive sol–gel formulation incorporating polyhexamethylene biguanide (PHMB) for advanced topical therapy. Utilizing Poloxamer 407 as a biocompatible carrier, the [...] Read more.
Traditional wound and burn treatments often fall short in balancing antimicrobial efficacy, patient comfort, and ease of application. This study introduces a novel, transparent, thermoresponsive sol–gel formulation incorporating polyhexamethylene biguanide (PHMB) for advanced topical therapy. Utilizing Poloxamer 407 as a biocompatible carrier, the formulation remains a sprayable liquid at room temperature and instantly gels upon contact with body temperature, enabling painless, pressure-free application on sensitive, injured skin. Comprehensive in vitro and in vivo evaluations confirmed the formulation’s broad-spectrum antimicrobial efficacy (≥5 log10 reduction in 30 s), high biocompatibility (viability > 70% in fibroblasts), non-irritancy (OECD 425-compliant), and physical stability across three months. Importantly, the formulation maintained fibroblast migration capacity—crucial for wound regeneration—while exhibiting rapid sol-to-gel transition at ~34 °C. These findings highlight the system’s potential as a next-generation wound dressing with enhanced user compliance, transparent monitoring capability, and rapid healing support, particularly in disaster or emergency scenarios. Full article
(This article belongs to the Special Issue Functional Polymers and Novel Applications)
Show Figures

Graphical abstract

9 pages, 1013 KiB  
Article
Continuous Radiofrequency for Morton’s Neuroma: Is There Complete Ablation? A Preliminary Report
by Gabriel Camuñas-Nieves, Alejandro Fernández-Gibello, Simone Moroni, Felice Galluccio, Mario Fajardo-Pérez, Francisco Martínez-Pérez, Eduardo Simón-Pérez and Alfonso Martínez-Nova
Healthcare 2025, 13(15), 1838; https://doi.org/10.3390/healthcare13151838 - 28 Jul 2025
Viewed by 371
Abstract
Background and Objectives: Morton’s neuroma is a painful foot condition that can be treated with continuous radiofrequency. However, its efficacy is not always optimal, with failure rates of 15–20%. It has been suggested that these failures may be due to incomplete nerve ablation, [...] Read more.
Background and Objectives: Morton’s neuroma is a painful foot condition that can be treated with continuous radiofrequency. However, its efficacy is not always optimal, with failure rates of 15–20%. It has been suggested that these failures may be due to incomplete nerve ablation, allowing for nerve regeneration and persistent pain. So, the aim of this study was to assess the histological effects of continuous radiofrequency on the nerves affected by Morton’s neuroma. Materials and Methods: The effect of continuous radiofrequency was evaluated in two patients with Morton’s neuroma, which required open surgery excision. In both cases, radiofrequency with a standard protocol was applied ex vivo, following the surgical excision of the neuroma. A TLG10 RF generator (90 °C, 90 s) with a monopolar needle with a 0.5 cm active tip was used. Subsequently, the samples were histologically analyzed to determine the degree of nerve ablation. Results: Histological analysis showed homogeneous focal necrosis in both cases, with lesion depths of 2.4 mm and 3.18 mm. However, areas of intact nerve tissue were identified at the periphery of the neuroma, suggesting incomplete ablation. Conclusions: The findings indicate that continuous radiofrequency does not guarantee total nerve ablation, which could explain recurrence in some cases. Intraoperative neurophysiological monitoring could be key to optimizing the procedure, ensuring complete interruption of nerve conduction and improving treatment efficacy. Full article
Show Figures

Figure 1

31 pages, 4179 KiB  
Review
Plant-Derived Vesicle-like Nanoparticles: Pioneering Sustainable and Effective Approaches for Tissue Repair and Regeneration
by Qinjing Wang, Zhijie Huang, Jiming Guo, Weixing Chen, Min Wang, Yue Ming, Hongyu Liu, Mingshu Huang, Yisheng Huang, Zhengming Tang and Bo Jia
Biomolecules 2025, 15(8), 1055; https://doi.org/10.3390/biom15081055 - 22 Jul 2025
Viewed by 464
Abstract
Plant-derived vesicle-like nanoparticles (PDVLNs) are bioactive nanovesicles secreted by plant cells, emerging as a novel therapeutic tool for tissue repair and regeneration due to their low immunogenicity, intrinsic bioactivity, and potential as drug delivery carriers. This review examines PDVLNs’ biogenesis mechanisms, isolation techniques, [...] Read more.
Plant-derived vesicle-like nanoparticles (PDVLNs) are bioactive nanovesicles secreted by plant cells, emerging as a novel therapeutic tool for tissue repair and regeneration due to their low immunogenicity, intrinsic bioactivity, and potential as drug delivery carriers. This review examines PDVLNs’ biogenesis mechanisms, isolation techniques, and compositional diversity, emphasizing their roles in promoting essential regenerative processes—cell proliferation, differentiation, migration, immune modulation, and angiogenesis. We explore their therapeutic applications across multiple tissue types, including skin, bone, neural, liver, gastrointestinal, cardiovascular, and dental tissues, using both natural and engineered PDVLNs in various disease models. Compared to mammalian exosomes, PDVLNs offer advantages such as reduced immune rejection and ethical concerns, enhancing their sustainability and appeal for regenerative medicine. However, challenges in clinical translation, including scalability, standardization, and safety remain. This paper consolidates current knowledge on PDVLNs, highlighting their versatility and providing insights into engineering strategies to optimize efficacy, ultimately outlining future research directions to advance their clinical potential. Plant vesicle-like nanoparticles (PDVLNs) may become a new avenue for the treatment of tissue injury, promoting tissue repair and regeneration through their intrinsic bioactivity or as drug delivery carriers. In addition, PDVLNs can be engineered and modified to achieve better results. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

29 pages, 15018 KiB  
Article
Investigating the Osteoregenerative Properties of Juglans regia L. Extract on Mesenchymal Stem Cells and Osteoblasts Through Evaluation of Bone Markers: A Pilot Study
by Alina Hanga-Fărcaș, Gabriela Adriana Filip, Simona Valeria Clichici, Laura Grațiela Vicaș, Olga Şoritău, Otilia Andercou, Luminița Fritea and Mariana Eugenia Mureșan
J. Funct. Biomater. 2025, 16(7), 268; https://doi.org/10.3390/jfb16070268 - 21 Jul 2025
Viewed by 479
Abstract
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) [...] Read more.
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) is rich in polyphenols with demonstrated osteoregeneration effects. In the present study, we investigated the extract’s effects on three types of cells with various stages of differentiation: adult mesenchymal stem cells (MSCs), osteoblasts at low passage (O6) and osteoblasts at advanced passage (O10). To assess the efficacy of the walnut leaf extract, in vitro treatments were performed in comparison with ellagic acid (EA) and catechin (CAT). The osteoregenerative properties of the leaf extract were evaluated in terms of cell viability, bone mineralization (by staining with alizarin red) and the expression of osteogenesis markers such as osteocalcin (OC), osteopontin (OPN), dentin matrix acidic phosphoprotein 1 (DMP1) and collagen type 1A. Another compound implicated in oxidative stress response, but also a bone homeostasis regulator, nuclear factor erythroid 2-related factor 2 (NRF2), was studied by immunocytochemistry. Together with collagen amount, alkaline phosphatase (ALP) activity and NF-kB levels were measured in cell lysates and supernatants. The obtained results demonstrate that JR treatment induced osteogenic differentiation and bone mineralization, and it showed protective effects against oxidative stress. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Figure 1

Back to TopTop