Antibiotic-Loaded Bioglass 45S5 for the Treatment and Prevention of Staphylococcus aureus Infections in Orthopaedic Surgery: A Novel Strategy Against Antimicrobial Resistance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of BG45S5
2.2.2. Formulation Preparation Using Trehalose as Crosslinker with BG45S5
2.2.3. Drug Loading in Blank Formulations
- DT = Total amount of drug in supernatant.
- DS1 = Amount of drug in supernatant 1.
- DS2 = Amount of drug in supernatant 2.
- DL = Total amount of drug loaded.
- Dsol = Drug dissolved in the loading solution.
- D (%) = Drug loading efficiency.
Drugs | Concentrations | Blank Formulations | Drug-Loaded Formulations |
---|---|---|---|
Vancomycin HCl | 0.5% (w/v) | F2l-BG45S5-T | F2l-BG45S5-T-V-0.5 |
1% (w/v) | F2l-BG45S5-T-V-1 | ||
1.5% (w/v) | F2l-BG45S5-T-V-1.5 | ||
Teicoplanin | 0.5% (w/v) | F2l-BG45S5-T | F2l-BG45S5-T-T-0.5 |
1% (w/v) | F2l-BG45S5-T-T-1 | ||
1.5% (w/v) | F2l-BG45S5-T-T-1.5 |
2.2.4. Particle Size Analysis of the Loaded BG45S5 Formulations
2.2.5. Zeta Potential (ZP) Analysis of the Blank and Drug-Loaded BG45S5 Formulations
2.2.6. Scanning Electron Microscopy (SEM)
2.2.7. In Vitro pH Analysis of the Drug-Loaded Formulations in SBF
2.2.8. In Vitro Drug Release Profiling of Antibiotic-Loaded Bioglass Microparticles
2.2.9. Antimicrobial Assay
Bacterial Strains
Culture Growth
Molecular Confirmation (16 S rDNA PCR)
Inoculum Standardisation
Zone of Inhibition Assay
Time-Kill Assay
2.2.10. Cell Culture and Viability Assay
2.2.11. Statistical Analysis
3. Results
3.1. Particle Size Distribution by Laser Diffraction (LD) and Surface Topography by SEM of Blank and Antibiotic-Loaded Formulations
3.2. Zeta Potential Analysis of the Blank and Drug-Loaded BG45S5 Formulations
3.3. Drug-Loading Efficiency
3.4. In Vitro pH Analysis of the Drug-Loaded Formulations in SBF
3.5. In Vitro Drug Release Profiling of Antibiotic-Loaded Bioglass Microparticles
3.6. Antimicrobial Assays
3.6.1. Bacterial Strains and Molecular Confirmation
- Methicillin-susceptible Staphylococcus aureus (MSSA)—ATCC 6538
- Methicillin-resistant Staphylococcus aureus (MRSA)—ATCC 43300
3.6.2. Zone of Inhibition Assay
3.6.3. Time-Kill Assay
3.7. Cell Viability Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
ATCC | American Type Culture Collection |
BG45S5 | Bioglass 45S5 |
CFU | Colony-forming units |
D | Diameter |
DMSO | Dimethyl sulfoxide |
EDTA | Ethylenediaminetetraacetic acid |
HPLC | High pressure liquid chromatography |
MRSA | Methicillin resistant staphylococcus aureus |
MSSA | Methicillin susceptible staphylococcus aureus |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
PMMA | Polymethylmethacrylate |
RSD | Relative standard deviation |
SA | Staphylococcus aureus |
SBF | Simulated body fluid |
SD | Standard deviation |
TKA | Time-kill assay |
ZOI | Zone of inhibition |
Appendix A
Ratio of Bioglass/Carbohydrate (w/w) | 45S5: Sucrose | 45S5: Trehalose |
---|---|---|
1:0.25 | F1a-BG45S5-S | F2a-BG45S5-T |
1:0.5 | F1b-BG45S5-S | F2b-BG45S5-T |
1:0.75 | F1c-BG45S5-S | F2c-BG45S5-T |
1:1 | F1d-BG45S5-S | F2d-BG45S5-T |
1:1.25 | F1e-BG45S5-S | F2e-BG45S5-T |
1:1.5 | F1f-BG45S5-S | F2f-BG45S5-T |
1.1.75 | F1g-BG45S5-S | F2g-BG45S5-T |
1:2 | F1h-BG45S5-S | F2h-BG45S5-T |
1:2.25 | F1i-BG45S5-S | F2i-BG45S5-T |
1:2.5 | F1j-BG45S5-S | F2j-BG45S5-T |
1:2.75 | F1k-BG45S5-S | F2k-BG45S5-T |
1:3 | F1l-BG45S5-S | F2l-BG45S5-T |
References
- Lew, D.P.; Waldvogel, F.A. Osteomyelitis. Lancet 2004, 364, 369–379. [Google Scholar] [CrossRef]
- Masquelet, A.-C.; Fitoussi, F.; Begue, T.; Muller, G.P. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann. Chir. Plast. Esthet. 2000, 45, 346–353. [Google Scholar] [PubMed]
- Gatti, M.; Barnini, S.; Guarracino, F.; Parisio, E.M.; Spinicci, M.; Viaggi, B.; D’arienzo, S.; Forni, S.; Galano, A.; Gemmi, F. Orthopaedic Implant-Associated Staphylococcal Infections: A Critical Reappraisal of Unmet Clinical Needs Associated with the Implementation of the Best Antibiotic Choice. Antibiotics 2022, 11, 406. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef]
- Trampuz, A. and W.; Zimmerli, Antimicrobial agents in orthopaedic surgery: Prophylaxis and treatment. Drugs 2006, 66, 1089–1105. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.G.; O’mahony, A.M.; Culligan, E.P.; O’driscoll, C.M.; Ryan, K.B. Strategies to Mitigate and Treat Orthopaedic Device-Associated Infections. Antibiotics 2022, 11, 1822. [Google Scholar] [CrossRef]
- Sabater-Martos, M.; Verdejo, M.A.; Morata, L.; Muñoz-Mahamud, E.; Guerra-Farfan, E.; Martinez-Pastor, J.C.; Soriano, A. Antimicrobials in polymethylmethacrylate: From prevention to prosthetic joint infection treatment: Basic principles and risk of resistance. Arthroplasty 2023, 5, 12. [Google Scholar] [CrossRef]
- Steadman, W.; Chapman, P.R.; Schuetz, M.; Schmutz, B.; Trampuz, A.; Tetsworth, K. Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics 2023, 12, 752. [Google Scholar] [CrossRef]
- van Vugt, T.A.G.; Arts, J.J.; Geurts, J.A.P. Antibiotic-Loaded Polymethylmethacrylate Beads and Spacers in Treatment of Orthopedic Infections and the Role of Biofilm Formation. Front. Microbiol. 2019, 10, 1626. [Google Scholar] [CrossRef]
- Hench, L.L. The story of Bioglass. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- Almasri, D.; Dahman, Y. Prosthetic Joint Infections: Biofilm Formation, Management, and the Potential of Mesoporous Bioactive Glass as a New Treatment Option. Pharmaceutics 2023, 15, 1401. [Google Scholar] [CrossRef]
- Oosthuysen, W.; Venter, R.; Tanwar, Y.; Ferreira, N. Bioactive glass as dead space management following debridement of type 3 chronic osteomyelitis. Int. Orthop. 2019, 44, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Begum, S. Evaluation of the Antibacterial and Cytotoxic Activity of Gallium Doped Bioactive Glass Versus 45S5 Bioglass®. Ph.D. Thesis, Aston University, Birmingham, UK, 2016. Available online: https://research.aston.ac.uk/en/studentTheses/evaluation-of-the-antibacterial-and-cytotoxic-activity-of-gallium (accessed on 9 July 2025).
- Drago, L.; Romanò, D.; De Vecchi, E.; Vassena, C.; Logoluso, N.; Mattina, R.; Romanò, C.L. Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: An in vitroand prospective clinical study. BMC Infect. Dis. 2013, 13, 584. [Google Scholar] [CrossRef]
- Fernandes, J.S.; Gentile, P.; Pires, R.A.; Reis, R.L.; Hatton, P.V. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomater. 2017, 59, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Galarraga-Vinueza, M.E.; Mesquita-Guimarães, J.; Magini, R.S.; Souza, J.C.M.; Fredel, M.C.; Boccaccini, A.R. Anti-biofilm properties of bioactive glasses embedding organic active compounds. J. Biomed. Mater. Res. Part A 2017, 105, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.T.; Murça, M.A.; Nigro, S.; Klautau, G.B.; Salles, M.J.C. In vitro antibacterial activity of bioactive glass S53P4 on multiresistant pathogens causing osteomyelitis and prosthetic joint infection. BMC Infect. Dis. 2018, 18, 157. [Google Scholar] [CrossRef]
- Foster, A.L.; Moriarty, T.F.; Trampuz, A.; Jaiprakash, A.A.; Burch, M.; Crawford, R.; Paterson, D.L.; Metsemakers, W.-J.; Schuetz, M.; Richards, R.G. Fracture-related infection: Current methods for prevention and treatment. Expert Rev. Anti-Infect. Ther. 2020, 18, 307–321. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health-Syst. Pharm. 2020, 77, 835–864. [Google Scholar]
- Moojen, D.J.F.; Hentenaar, B.; Vogely, H.C.; Verbout, A.J.; Castelein, R.M.; Dhert, W.J. In vitro Release of Antibiotics from Commercial PMMA Beads and Articulating Hip Spacers. J. Arthroplast. 2008, 23, 1152–1156. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, W.-C.; Hsieh, P.-H.; Chen, D.W.; Lee, M.S.; Shih, H.-N.; Ueng, S.W.N. In vitro activities of daptomycin-, vancomycin-, and teicoplanin-loaded polymethylmethacrylate against methicillin-susceptible, methicillin-resistant, and vancomycin-intermediate strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 2011, 55, 5480–5484. [Google Scholar] [CrossRef]
- Arrieta, A.C.; Stutman, H.R.; Akaniro, J.C.; Vargas, O.M. In vitro activity of teicoplanin compared with vancomycin against methicillin-resistant Staphylococcus aureus derived from cystic fibrosis sputum. Diagn. Microbiol. Infect. Dis. 1992, 15, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Maple, P.A.; Hamilton-Miller, J.M.; Brumfitt, W. Comparative in-vitro activity of vancomycin, teicoplanin, ramoplanin (formerly A16686), paldimycin, DuP 721 and DuP 105 against methicillin and gentamicin resistant Staphylococcus aureus. J. Antimicrob. Chemother. 1989, 23, 517–525. [Google Scholar] [CrossRef]
- Yenice, I.; Caliş, S.; Atilla, B.; Kaş, H.S.; Ozalp, M.; Ekizoğlu, M.; Bilgili, H.; Hincal, A.A. In vitro/in vivo evaluation of the efficiency of teicoplanin-loaded biodegradable microparticles formulated for implantation to infected bone defects. J. Microencapsul. 2003, 20, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Wallin, R.F. A Practical Guide to ISO 10993-5: Cytotoxicity. MD+DI Online, 1 April 1998. Available online: https://www.mddionline.com/testing/a-practical-guide-to-iso-10993-5-cytotoxicity (accessed on 9 July 2025).
- Zhang, Y.; LING, P.; JI, B. Current status of research for trehalose and its prospective applications. Food Drug 2005, 3, 8–13. [Google Scholar]
- Tang, R.; Feng, Y.; Chen, R.; Yuan, M.; Yuan, M.; Li, H.; Jiang, D. Preparation and properties of vancomycin-loaded PLA-PEG-PLA microspheres by electrostatic spray technology. J. Polym. Eng. 2024, 44, 330–337. [Google Scholar] [CrossRef]
- Greule, A.; Cryle, M.J. 2.12-The Glycopeptide Antibiotics. In Comprehensive Natural Products III; Liu, H.-W., Begley, T.P., Eds.; Elsevier: Oxford, UK, 2020; pp. 247–283. [Google Scholar]
- Caballero-Florán, I.H.; Cortés, H.; Borbolla-Jiménez, F.V.; Florán-Hernández, C.D.; Del Prado-Audelo, M.L.; Magaña, J.J.; Florán, B.; Leyva-Gómez, G. PEG 400: Trehalose Coating Enhances Curcumin-Loaded PLGA Nanoparticle Internalization in Neuronal Cells. Pharmaceutics 2023, 15, 1594. [Google Scholar] [CrossRef]
- Zhou, J.; Jayawardana, K.W.; Kong, N.; Ren, Y.; Hao, N.; Yan, M.; Ramström, O. Trehalose-Conjugated, Photofunctionalized Mesoporous Silica Nanoparticles for Efficient Delivery of Isoniazid into Mycobacteria. ACS Biomater. Sci. Eng. 2015, 1, 1250–1255. [Google Scholar] [CrossRef]
- Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop. J. Pharm. Res. 2013, 12, 255–264. [Google Scholar]
- Bhattacharjee, S. DLS and zeta potential-What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle–cell interactions. Small 2010, 6, 12–21. [Google Scholar] [CrossRef]
- Doostmohammadi, A.; Monshi, A.; Salehi, R.; Fathi, M.H.; Golniya, Z.; Daniels, A.U. Bioactive glass nanoparticles with negative zeta potential. Ceram. Int. 2011, 37, 2311–2316. [Google Scholar] [CrossRef]
- Elahpour, N.; Niesner, I.; Abdellaoui, N.; Holzapfel, B.M.; Gritsch, L.; Jallot, E.; Mayer-Wagner, S.; Lao, J. Antibacterial Therapeutic Ions Incorporation into Bioactive Glasses as a Winning Strategy against Antibiotic Resistance. Adv. Mater. Interfaces 2024, 11, 2400068. [Google Scholar] [CrossRef]
- Lu, H.H.; Pollack, S.R.; Ducheyne, P. Temporal zeta potential variations of 45S5 bioactive glass immersed in an electrolyte solution. J. Biomed. Mater. Res. 2000, 51, 80–87. [Google Scholar] [CrossRef]
- Hench, L.L.; Polak, J.M. Third-Generation Biomedical Materials. Science 2002, 295, 1014–1017. [Google Scholar] [CrossRef]
- Jones, J.R. Review of bioactive glass: From Hench to hybrids. Acta Biomater. 2013, 9, 4457–4486. [Google Scholar] [CrossRef]
- Galow, A.-M.; Rebl, A.; Koczan, D.; Bonk, S.M.; Baumann, W.; Gimsa, J. Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochem. Biophys. Rep. 2017, 10, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Lamret, F.; Colin, M.; Mongaret, C.; Gangloff, S.C.; Reffuveille, F. Antibiotic Tolerance of Staphylococcus aureus Biofilm in Periprosthetic Joint Infections and Antibiofilm Strategies. Antibiotics 2020, 9, 547. [Google Scholar] [CrossRef] [PubMed]
- Fuglsang-Madsen, A.J.; Henriksen, N.L.; Chávez, E.S.; Kvich, L.A.; Birch, J.K.M.; Hartmann, K.T.; Eriksen, T.; Bjarnsholt, T.; Gottlieb, H.; Andresen, T.L.; et al. Eradication of Staphylococcus aureus in Implant-Associated Osteomyelitis by an Injectable In Situ-Forming Depot Antibiotics Delivery System. J. Infect. Dis. 2024, 230, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Li, W.; Nooeaid, P.; Roether, J.A.; Schubert, D.W.; Boccaccini, A.R. Preparation and characterization of vancomycin releasing PHBV coated 45S5 Bioglass®-based glass–ceramic scaffolds for bone tissue engineering. J. Eur. Ceram. Soc. 2014, 34, 505–514. [Google Scholar] [CrossRef]
- Huang, C.-L.; Fang, W.; Huang, B.-R.; Wang, Y.-H.; Dong, G.-C.; Lee, T.-M. Bioactive Glass as a Nanoporous Drug Delivery System for Teicoplanin. Appl. Sci. 2020, 10, 2595. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef]
- Bunea, A. Antibiotic Elution from Vancomycin Embedded Polymethyl Methacrylate Cement used in Orthopedic Surgery. In Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019; pp. 1–4. [Google Scholar]
- Rai, S.; Dash, D.; Agarwal, N. Introducing the new face of CLSI M100 in 2023: An explanatory review. Indian J. Med. Microbiol. 2023, 46, 100432. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2024; Available online: https://clsi.org/shop/standards/m100/ (accessed on 9 July 2025).
- Gould, I.M. Clinical relevance of increasing glycopeptide MICs against Staphylococcus aureus. Int. J. Antimicrob. Agents 2008, 31, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, B.A.; Al-Johani, I.; Al-Shamrani, J.M.; Alshamrani, H.M.; Al-Otaibi, B.G.; Almazmomi, K.; Yusof, N. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi J. Biol. Sci. 2023, 30, 103604. [Google Scholar] [CrossRef] [PubMed]
- Parvinnasab, A.; Rostami, S.; Namdar, A.; Salahinejad, E.; Taghvaei, A.H.; Abdi, S.; Rajabi, S.; Tayebi, L. Balanced enhancement of antibacterial activity and biocompatibility in chitosan-vancomycin 3D-printed scaffolds through mesoporous bioactive glass addition. J. Drug Deliv. Sci. Technol. 2025, 105, 106637. [Google Scholar] [CrossRef]
- Iglesias-Mejuto, A.; Magariños, B.; Ferreira-Gonçalves, T.; Starbird-Pérez, R.; Álvarez-Lorenzo, C.; Reis, C.P.; Ardao, I.; García-González, C.A. Vancomycin-loaded methylcellulose aerogel scaffolds for advanced bone tissue engineering. Carbohydr. Polym. 2024, 324, 121536. [Google Scholar] [CrossRef]
- Nostro, A.; Cellini, L.; Di Giulio, M.; D’ARrigo, M.; Marino, A.; Blanco, A.R.; Favaloro, A.; Cutroneo, G.; Bisignano, G. Effect of alkaline pH on staphylococcal biofilm formation. APMIS 2012, 120, 733–742. [Google Scholar] [CrossRef]
- Khanmohammadi, S.; Aghajani, H.; Farrokhi-Rad, M. Vancomycin loaded-mesoporous bioglass/hydroxyapatite/chitosan coatings by electrophoretic deposition. Ceram. Int. 2022, 48, 20176–20186. [Google Scholar] [CrossRef]
- Chung, H.-S.; Lee, M. Different antimicrobial susceptibility testing methods to determine vancomycin susceptibility and MIC for Staphylococcus aureus with reduced vancomycin susceptibility. Diagnostics 2022, 12, 845. [Google Scholar] [CrossRef] [PubMed]
- Kovrlija, I.; Menshikh, K.; Abreu, H.; Cochis, A.; Rimondini, L.; Marsan, O.; Rey, C.; Combes, C.; Locs, J.; Loca, D. Challenging applicability of ISO 10993-5 for calcium phosphate biomaterials evaluation: Towards more accurate in vitro cytotoxicity assessment. Mater. Sci. Eng. C 2024, 160, 213866. [Google Scholar] [CrossRef] [PubMed]
Parameter | Vancomycin HCl | Teicoplanin |
---|---|---|
Instrument | Shimadzu (Shimadzu Corporation, Kyoto, Japan) LC-20AT pump, SIL-20A autosampler, SPD-M20A UV detector; software: LC LabSolutions (Version: 1.23 SP1) | Shimadzu LC-20AT pump, SIL-20A autosampler, SPD-M20A UV detector; software: LC LabSolutions |
Column/guard | Phenomenex Luna® C18(2) (150 × 4.6 mm, 5 µm) + Phenomenex K10-4282 guard | Phenomenex Luna® C18(2) (150 × 4.6 mm, 5 µm) + Phenomenex K10-4282 guard |
Mobile phase (v/v) | Ultrapure water: Methanol: Acetonitrile (80:15:5) + 0.05 M Orthophosphoric acid | Acetonitrile: ultrapure H2O (90:10) |
Flow rate | 0.9 mL min−1 | 0.9 mL min−1 |
Detection wavelength | 280 nm | 280 nm |
Injection volume | 100 µL | 50 µL |
Retention time (≈) | 5.5 min | 2 min |
Isolate | Best GenBank Hit (16S rRNA) | Identity (%) | Query Cover (%) | Accession |
---|---|---|---|---|
MSSA ATCC 6538 | Staphylococcus aureus strain ATCC 6538 | 99.7 | 100 | MT573388.1 |
MRSA ATCC 43300 | Staphylococcus aureus strain ATCC 43300 | 99.5 | 100 | MW464217.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, H.; Martin, R.A.; Coleman, H.M.; Courtenay, A.; Lowry, D. Antibiotic-Loaded Bioglass 45S5 for the Treatment and Prevention of Staphylococcus aureus Infections in Orthopaedic Surgery: A Novel Strategy Against Antimicrobial Resistance. Pathogens 2025, 14, 760. https://doi.org/10.3390/pathogens14080760
Sarwar H, Martin RA, Coleman HM, Courtenay A, Lowry D. Antibiotic-Loaded Bioglass 45S5 for the Treatment and Prevention of Staphylococcus aureus Infections in Orthopaedic Surgery: A Novel Strategy Against Antimicrobial Resistance. Pathogens. 2025; 14(8):760. https://doi.org/10.3390/pathogens14080760
Chicago/Turabian StyleSarwar, Humera, Richard A. Martin, Heather M. Coleman, Aaron Courtenay, and Deborah Lowry. 2025. "Antibiotic-Loaded Bioglass 45S5 for the Treatment and Prevention of Staphylococcus aureus Infections in Orthopaedic Surgery: A Novel Strategy Against Antimicrobial Resistance" Pathogens 14, no. 8: 760. https://doi.org/10.3390/pathogens14080760
APA StyleSarwar, H., Martin, R. A., Coleman, H. M., Courtenay, A., & Lowry, D. (2025). Antibiotic-Loaded Bioglass 45S5 for the Treatment and Prevention of Staphylococcus aureus Infections in Orthopaedic Surgery: A Novel Strategy Against Antimicrobial Resistance. Pathogens, 14(8), 760. https://doi.org/10.3390/pathogens14080760