Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Keywords = reflective solar bands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5352 KB  
Article
CIGS Electrodeposition from Diluted Electrolyte: Effect of Current Density and Pulse Timing on Deposition Quality and Film Properties
by Mahfouz Saeed
Chemistry 2026, 8(1), 6; https://doi.org/10.3390/chemistry8010006 - 8 Jan 2026
Viewed by 96
Abstract
Among the most promising alloys for photovoltaic applications is copper–indium–gallium–selenide (CIGS) because of its enhanced optical properties. This study examines the influence of current density and pulse timing on the electrodeposition of Cu(In, Ga)Se2 (CIGS) thin films from a dilute electrolyte. It [...] Read more.
Among the most promising alloys for photovoltaic applications is copper–indium–gallium–selenide (CIGS) because of its enhanced optical properties. This study examines the influence of current density and pulse timing on the electrodeposition of Cu(In, Ga)Se2 (CIGS) thin films from a dilute electrolyte. It assesses how these parameters affect deposition quality, film characteristics, and device performance. CIGS absorber layers were electrodeposited using a pulsed-current method, with systematic variations in current density and pulse on/off durations in a low-concentration solution. The deposited precursors were subsequently selenized and incorporated into fully assembled CIGS solar cell architectures. Structural characteristics were analyzed by X-ray diffraction (XRD), whereas composition and elemental distribution were assessed by energy-dispersive X-ray spectroscopy (EDS). Optical properties pertinent to photovoltaic performance were evaluated through transmittance and reflectance measurements. The results indicate that moderate current densities, when combined with brief off-times, produce dense, microcrack-free films exhibiting enhanced crystallinity and near-stoichiometric Cu/(In + Ga) and Ga/(In + Ga) ratios, in contrast to films deposited at higher current densities and extended off-times. These optimized pulse parameters also produce absorber layers with advantageous optical band gaps and improved device performance. Overall, the study demonstrates that regulating pulse parameters in attenuated electrolytes is an effective strategy to optimize CIGS film quality and to facilitate the advancement of economical, solution-based fabrication methods for high-performance CIGS solar cells. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

27 pages, 3681 KB  
Article
Absolute Radiometric Calibration of CAS500-1/AEISS-C: Reflectance-Based Vicarious Calibration and Cross-Calibration with Sentinel-2/MSI
by Kyung-Bae Choi, Kyoung-Wook Jin, Dong-Hwan Cha, Jin-Hyeok Choi, Yong-Han Jo, Kwang-Nyun Kim, Gwui-Bong Kang, Ho-Yeon Shin, Ji-Yun Lee, Eun-Young Kim and Yun Gon Lee
Remote Sens. 2026, 18(1), 177; https://doi.org/10.3390/rs18010177 - 5 Jan 2026
Viewed by 178
Abstract
The absolute radiometric calibration of a satellite sensor is an essential process that determines the coefficients required to convert the radiometric quantities of satellite images. This procedure is crucial for ensuring the applicability and enhancing the reliability of optical sensors onboard satellites. This [...] Read more.
The absolute radiometric calibration of a satellite sensor is an essential process that determines the coefficients required to convert the radiometric quantities of satellite images. This procedure is crucial for ensuring the applicability and enhancing the reliability of optical sensors onboard satellites. This study performs the absolute radiometric calibration of the Compact Advanced Satellite 500-1 (CAS500-1) Advanced Earth Imaging Sensor System-C (AEISS-C), a low Earth orbit satellite developed independently by Republic of Korea for precise ground observation. Field campaign using a tarp, an Analytical Spectral Devices FieldSpecIII spectroradiometer, and a MicrotopsII sunphotometer was conducted. Additionally, reflectance-based vicarious calibration was performed using observational data and the MODerate resolution atmospheric TRANsmission model (version 6) radiative transfer model (RTM). Cross-calibration was also performed using data from the Sentinel-2 MultiSpectral Instrument, RadCalNet observations, and MODIS Bidirectional nReflectance Distribution Function (BRDF) products (MCD43A1) to account for differences in spectral response functions, viewing/solar geometry, and atmospheric conditions between the two satellites. From these datasets, two correction factors were derived: the Spectral Band Adjustment Factor and the BRDF Correction Factor. CAS500-1/AEISS-C acquires satellite imagery using two Time Delay Integration (TDI) modes, and the absolute radiometric calibration coefficients were derived considering these TDI modes. The coefficient of determination (R2) ranged from 0.70 to 0.97 for the reflectance-based vicarious calibration and from 0.90 to 0.99 for the cross-calibration. For reflectance-based vicarious calibration, aerosol optical depth was identified as the primary source of uncertainty among atmospheric factors. For cross-calibration, the reference satellite and RTMs were the primary sources of uncertainty. The results of this study will support the monitoring of CAS500-1/AEISS-C, which produces high-resolution imagery with a spatial resolution of 2 m, and can serve as foundational material for absolute radiometric calibration procedures for other CAS500 satellites. Full article
Show Figures

Figure 1

28 pages, 26355 KB  
Article
Multi-Sensor Hybrid Modeling of Urban Solar Irradiance via Perez–Ineichen and Deep Neural Networks
by Zeenat Khadim Hussain, Congshi Jiang and Rana Waqar Aslam
Remote Sens. 2026, 18(1), 33; https://doi.org/10.3390/rs18010033 - 23 Dec 2025
Viewed by 464
Abstract
An accurate estimate of sun irradiance is important for solar energy management in urban areas with complicated atmospheric conditions. The urban solar irradiance (USI) can be predictively researched with a variety of models; however, basing this entirely on one model often leads to [...] Read more.
An accurate estimate of sun irradiance is important for solar energy management in urban areas with complicated atmospheric conditions. The urban solar irradiance (USI) can be predictively researched with a variety of models; however, basing this entirely on one model often leads to other important conditions being omitted. A hybrid framework is suggested in this study, integrating the Perez–Ineichen PI model with a Deep Neural Network (DNN) model for predicting USI in Wuhan, China. The PI model predicts clear-sky irradiance labels based on atmospheric parameters normalized against the National Solar Radiation Database for greater accuracy. The model is trained on the Clear Sky Index with real-time atmospheric parameters gained from ground station measurements and satellite images. Following correlation analysis using bands from Sentinel-2 to find suitable bands for the model, the algorithm was prepared for atmospheric parameters, including cloud cover, aerosol concentration, and surface reflectance, all of which impact solar radiation. The architecture incorporates attention methods for important atmospheric parameters and skip connections for greater training stability. Results from the Deep Neural Network-Selected bands (DNN-S) and Deep Neural Network-All bands (DNN-A) models gave different performances, with the DNN-S model yielding better accuracy with a RMSE of 69.49 W/m2 clear-sky, 87.60 W/m2 cloudy-sky, and 72.57 W/m2 all-sky. The results were validated using hyperspectral imagery, along with cloud mask, solar area, and surface albedo-derived products, confirming that the USI estimates are supported by the high precision and consistency of Sentinel-2-derived irradiance estimates. Full article
Show Figures

Figure 1

15 pages, 2523 KB  
Article
Shutter Speed Influences the Capability of a Low-Cost Multispectral Sensor to Estimate Turfgrass (Cynodon dactylon L.—Poaceae) Vegetation Vigor Under Different Solar Radiation Conditions
by Rosa M. Martínez-Meroño, Pedro F. Freire-García, Nicola Furnitto, Sebastian Lupica, Salvatore Privitera, Giuseppe Sottosanti, Maria Spagnuolo, Luciano Caruso, Emanuele Cerruto, Sabina Failla, Domenico Longo, Giuseppe Manetto, Giampaolo Schillaci and Juan Miguel Ramírez-Cuesta
Sensors 2026, 26(1), 47; https://doi.org/10.3390/s26010047 - 20 Dec 2025
Viewed by 380
Abstract
Radiometric calibration of multispectral imagery plays a critical role in the determination of vegetation-related features. This radiometric calibration strongly depends on a proper sensor configuration when acquiring images, the shutter speed being a critical parameter. The objective of the present study was to [...] Read more.
Radiometric calibration of multispectral imagery plays a critical role in the determination of vegetation-related features. This radiometric calibration strongly depends on a proper sensor configuration when acquiring images, the shutter speed being a critical parameter. The objective of the present study was to appraise the influence of shutter speed on the reflectance in the visible and near-infrared (NIR) spectral regions registered by a low-cost multispectral sensor (MAPIR Survey3) on a homogeneous field of turfgrass (Cynodon dactylon L.—Poaceae) and on the vegetation index (VI) values calculated from them, under different solar radiation conditions. For this purpose, 10 shutter speed configurations were tested in field campaigns with variable solar radiation values. The main results demonstrated that the reflectance in the green spectral region was more sensitive to shutter speed than that of the red and NIR spectral regions, particularly under high solar radiation conditions. Moreover, VIs calculated using the green band were more sensitive to slow shutter speeds, thus presenting a higher probability of providing meaningless artifact values. In conclusion, this study provides shutter speed recommendations under different illumination conditions to optimize the reflectance and the VI sensitivity within the image, which can be applied as a simple method to optimize image acquisition from unmanned aerial vehicles under varying solar radiation conditions. Full article
Show Figures

Figure 1

26 pages, 10195 KB  
Article
Regional Characteristics of Geomagnetic Activity: Comparative Analysis of Local K and Global Kp Indices
by Vitaliy Kapytin, Alexey Andreyev, Vyacheslav Somsikov, Beibit Zhumabayev, Saule Mukasheva, Yekaterina Chsherbulova and Stanislav Utebayev
Atmosphere 2025, 16(12), 1319; https://doi.org/10.3390/atmos16121319 - 22 Nov 2025
Viewed by 565
Abstract
Geomagnetic activity reflects the complex coupling between the solar wind, magneto-sphere and ionosphere. While the global Kp index serves as a standard proxy for geo-magnetic disturbances, it obscures regional variations linked to local current systems and ionospheric conductivity. This study investigates regional features [...] Read more.
Geomagnetic activity reflects the complex coupling between the solar wind, magneto-sphere and ionosphere. While the global Kp index serves as a standard proxy for geo-magnetic disturbances, it obscures regional variations linked to local current systems and ionospheric conductivity. This study investigates regional features of geomagnetic activity using the local K index from the Almaty (AAA) observatory and compares its temporal dynamics with Kp for 2007–2025. A combination of statistical, spectral, wavelet, and nonlinear methods was applied, including power spectral density, continuous and cross-wavelet transforms, multifractal detrended fluctuation analysis, and permutation entropy. These approaches capture both linear and nonlinear features of variability and reveal scale-dependent structures in geomagnetic fluctuations. The results show a high correlation (r ≈ 0.84) between K (AAA) and Kp, but with a consistent positive offset of the local index, indicating sensitivity to regional ionospheric processes. Wavelet coherence highlights strong coupling in the 13–27-day band associated with solar rotation. Multifractal spectra reveal broader, more heterogeneous scaling in Kp and narrower, more intermittent dynamics in K during disturbed periods. Local indices, like K (AAA), thus provide essential insight into mid-latitude electrodynamics, complementing global measures in characterizing the nonlinear spatio-temporal complexity of geomagnetic activity. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

21 pages, 8900 KB  
Article
Photocatalytic Evaluation of Fe2O3–TiO2 Nanocomposites: Influence of TiO2 Content on Their Structure and Activity
by Israel Águila-Martínez, Pablo Eduardo Cardoso-Avila, Isaac Zarazúa, Héctor Pérez Ladrón de Guevara, José Antonio Pérez-Tavares, Efrén González-Aguiñaga and Rita Patakfalvi
Molecules 2025, 30(21), 4309; https://doi.org/10.3390/molecules30214309 - 5 Nov 2025
Viewed by 774
Abstract
In this study, Fe2O3–TiO2 nanocomposites with different TiO2 contents (1–50%) were synthesized via a solvothermal method using pre-formed α-Fe2O3 nanoparticles as cores. We systematically evaluated the influence of TiO2 loading on the nanocomposites’ [...] Read more.
In this study, Fe2O3–TiO2 nanocomposites with different TiO2 contents (1–50%) were synthesized via a solvothermal method using pre-formed α-Fe2O3 nanoparticles as cores. We systematically evaluated the influence of TiO2 loading on the nanocomposites’ structural, morphological, optical, and photocatalytic properties. X-ray diffraction revealed the coexistence of hematite and anatase phases, with an increase in TiO2 content inducing reduced crystallite size, enhanced dislocation density, and microstrain, indicating interfacial lattice distortion. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) showed a uniform elemental distribution at low TiO2 contents, evolving into irregular agglomerates at higher loadings. Fourier-transform infrared (FTIR) spectra indicated the suppression of Fe–O vibrations and the appearance of hydroxyl-related bands with TiO2 enrichment. Diffuse reflectance spectroscopy (DRS) analysis confirmed the simultaneous presence of hematite (~2.0 eV) and anatase (3.2–3.35 eV) absorption edges, with a slight blue shift in the TiO2 band gap at higher concentrations. Photocatalytic activity, assessed using methylene blue degradation under xenon lamp irradiation, demonstrated a strong dependence on the TiO2 fraction. The composite containing 33% TiO2 achieved the best performance, with 98% dye removal and a pseudo-first-order rate constant of 0.045 min−1, outperforming both pure hematite and commercial P25 TiO2. These results highlight that intermediate TiO2 content (~33%) provides an optimal balance between structural integrity and photocatalytic efficiency, making Fe2O3–TiO2 heterostructures promising candidates for water purification under simulated solar irradiation. Full article
Show Figures

Graphical abstract

25 pages, 10121 KB  
Article
Bidirectional Reflectance Sensitivity to Hemispherical Samplings: Implications for Snow Surface BRDF and Albedo Retrieval
by Jing Guo, Ziti Jiao, Anxin Ding, Zhilong Li, Chenxia Wang, Fangwen Yang, Ge Gao, Zheyou Tan, Sizhe Chen and Xin Dong
Remote Sens. 2025, 17(21), 3614; https://doi.org/10.3390/rs17213614 - 31 Oct 2025
Viewed by 535
Abstract
Multi-angular remote sensing plays a critical role in the study domains of ecological monitoring, climate change, and energy balance. The successful retrieval of the surface Bidirectional Reflectance Distribution Function (BRDF) and albedo from multi-angular remote sensing observations for various applications relies on the [...] Read more.
Multi-angular remote sensing plays a critical role in the study domains of ecological monitoring, climate change, and energy balance. The successful retrieval of the surface Bidirectional Reflectance Distribution Function (BRDF) and albedo from multi-angular remote sensing observations for various applications relies on the sensitivity of an appropriate BRDF model to both the number and the sampling distribution of multi-angular observations. In this study, based on selected high-quality multi-angular datasets, we designed three representative angular sampling schemes to systematically analyze different illuminating–viewing configurations of the retrieval results in a kernel-driven BRDF model framework. We first proposed an angular information index (AII) by incorporating a weighting mechanism and information effectiveness to quantify the angular information content for the angular sampling distribution schemes. In accordance with the principle that observations on the principal plane (PP) provide the most representative anisotropic scattering features, the assigned weight gradually decreases from the PP towards the cross-principal plane (CPP). The information effectiveness is determined based on the cosine similarity between the observations, effectively reducing the information redundancy. With such a method, we assess the AII of the different sampling schemes and further analyze the impact of angular distribution on both BRDF inversion and the estimation of snow surface albedo, including White-Sky Albedo (WSA) and Black-Sky Albedo (BSA) based on the RossThick-LiSparseReciprocal-Snow (RTLSRS) BRDF model. The main conclusions are as follows: (1) The AII approach can serve as a robust indicator of the efficiency of different sampling schemes in BRDF retrieval, which indicates that the RTLSRS model can provide a robust inversion when the AII value exceeds a threshold of −2. (2) When the AII value reaches such a reliable level, different sampling schemes can reproduce the BRDF shapes of snow across different bands to somehow varying degrees. Specifically, observations with smaller view zenith angle (VZA) ranges can reconstruct a BRDF shape that amplifies the anisotropic effect of snow; in addition, the forward scattering tends to be more pronounced at larger solar zenith angles (SZAs), while the variations in BRDF shape reconstructed from off-PP observations depend on both wavelength and SZAs. (3) The relative differences in both BSA and WSA grow with increasing wavelength for all these sampling schemes, mostly within 5% for short bands but up to 30% for longer wavelengths. With this novel AII method to quantify the information contribution of multi-angular sampling distributions, this study offers valuable insights into several main multi-angular BRDF sampling strategies in satellite sensor missions, which relate to most of the fields of multi-angular remote sensing applications in engineering. Full article
Show Figures

Figure 1

19 pages, 2469 KB  
Article
Tuning Multi-Wavelength Reflection Properties of Porous Silicon Bragg Reflectors Using Silver-Nanoparticle-Assisted Electrochemical Etching
by Sheng-Yang Huang, Hsiao-Han Hsu, Amal Muhammed Musthafa, I-An Lin, Chia-Man Chou and Vincent K. S. Hsiao
Micromachines 2025, 16(11), 1198; https://doi.org/10.3390/mi16111198 - 22 Oct 2025
Cited by 1 | Viewed by 709
Abstract
This study proposes an innovative silver-nanoparticle-assisted electrochemical etching method for the fabrication of porous silicon Bragg reflectors with multi-wavelength reflection characteristics. By introducing silver nanoparticles at varying concentrations (0.1–10 mg/mL) into the conventional HF–ethanol electrolyte and applying periodically modulated current densities (40/100 mA/cm [...] Read more.
This study proposes an innovative silver-nanoparticle-assisted electrochemical etching method for the fabrication of porous silicon Bragg reflectors with multi-wavelength reflection characteristics. By introducing silver nanoparticles at varying concentrations (0.1–10 mg/mL) into the conventional HF–ethanol electrolyte and applying periodically modulated current densities (40/100 mA/cm2), the transition from single-peak to multi-peak reflection spectra was successfully achieved. The results demonstrate that at a concentration of 10 mg/mL silver nanoparticles, up to four distinct reflection bands can be obtained. A systematic investigation was conducted on the influence of etching cycles (4–20 cycles) and silver nanoparticle concentration on the optical performance and microstructure. SEM analysis revealed well-defined periodic multilayer structures, while XPS analysis confirmed the presence of metallic silver on the porous silicon surface. This work provides a simple, controllable, and cost-effective approach to the development of multifunctional photonic devices, with promising applications in laser optics, solar cells, chemical sensing, and surface-enhanced Raman scattering. Full article
(This article belongs to the Special Issue Micro-Nano Photonics: From Design and Fabrication to Application)
Show Figures

Figure 1

18 pages, 5239 KB  
Article
Hybrid Reflection/Transmission Diffraction Grating Solar Sail
by Ryan M. Crum, Prateek R. Srivastava, Qing X. Wang, Tasso R. M. Sales and Grover A. Swartzlander
Photonics 2025, 12(10), 972; https://doi.org/10.3390/photonics12100972 - 30 Sep 2025
Viewed by 708
Abstract
Diffractive sail components may be used in part or whole for in-space propulsion and attitude control. A sun-facing hybrid diffractive solar sail having reflective front facets and transmissive side facets is described. This hybrid design seeks to minimize the undesirable scattering from side [...] Read more.
Diffractive sail components may be used in part or whole for in-space propulsion and attitude control. A sun-facing hybrid diffractive solar sail having reflective front facets and transmissive side facets is described. This hybrid design seeks to minimize the undesirable scattering from side facets. Predictions of radiation pressure are compared for analytical geometrical optics and numerical finite difference time domain approaches. Our calculations across a spectral irradiance band from 0.5 to 3 μm suggest the transverse force in a sun facing configuration reaches 48% when the refractive index of the sail material is 1.5. Diffraction measurements at a representative optical wavelength of 633 nm support our predictions. Full article
(This article belongs to the Special Issue Diffractive Optics and Its Emerging Applications)
Show Figures

Figure 1

25 pages, 6525 KB  
Article
Regional Characterization of Deep Convective Clouds for Enhanced Imager Stability Monitoring and Methodology Validation
by David Doelling, Prathana Khakurel, Conor Haney, Arun Gopalan and Rajendra Bhatt
Remote Sens. 2025, 17(18), 3258; https://doi.org/10.3390/rs17183258 - 21 Sep 2025
Viewed by 572
Abstract
The NASA CERES project conducts an independent assessment of the calibration stability of MODIS and VIIRS reflective solar bands to ensure consistency in CERES-derived clouds and radiative flux products. The assessment includes the use of tropical deep convective cloud invariant targets (DCC-IT), identified [...] Read more.
The NASA CERES project conducts an independent assessment of the calibration stability of MODIS and VIIRS reflective solar bands to ensure consistency in CERES-derived clouds and radiative flux products. The assessment includes the use of tropical deep convective cloud invariant targets (DCC-IT), identified using a simple brightness temperature threshold. For visible bands, the collective DCC pixel radiance probability density function (PDF) was negatively skewed. By tracking the bright inflection point, rather than the PDF mode, and applying an anisotropic adjustment suited for the brightest DCC radiances, the lowest trend standard errors were obtained within 0.26% for NPP-VIIRS and within 0.36% for NOAA20-VIIRS and Aqua-MODIS. A kernel density estimation function was used to infer the PDF, which avoided discretization noise caused by sparse sampling. The near 10° regional consistency of the anisotropic corrected PDF inflection point radiances validated the DCC-IT approach. For the shortwave infrared (SWIR) bands, the DCC radiance variability is dependent on the ice particle scattering and absorption and is band-specific. The DCC radiance varies regionally, diurnally, and seasonally; however, the inter-annual variability is much smaller. Empirical bidirectional reflectance distribution functions (BRDFs), constructed from multi-year records, were most effective in characterizing the anisotropic behavior. Due to the distinct land and ocean as well as regional radiance differences, land, ocean, and regional BRDFs were evaluated. The regional radiance variability was mitigated by normalizing the individual regional radiances to the tropical mean radiance. Because the DCC pixel radiances have a Gaussian distribution, the mean radiance was used to track the DCC response. The regional BRDF-adjusted DCC-IT mean radiance trend standard errors were within 0.38%, 0.46%, and 1% for NOAA20-VIIRS, NPP-VIIRS, and Aqua-MODIS, respectively. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

26 pages, 10577 KB  
Article
Optimizing Inorganic Cs4CuSb2Cl12/Cs2TiI6 Dual-Absorber Solar Cells: SCAPS-1D Simulations and Machine Learning
by Xiangde Li, Yuming Fang and Jiang Zhao
Nanomaterials 2025, 15(16), 1245; https://doi.org/10.3390/nano15161245 - 14 Aug 2025
Cited by 3 | Viewed by 2168
Abstract
Perovskite solar cells (PSCs) have emerged as a promising contender in photovoltaics, owing to their rapidly advancing power conversion efficiencies (PCEs) and compatibility with low-temperature solution processing techniques. Single-junction architectures reveal inherent limitations imposed by the Shockley–Queisser (SQ) limit, motivating adoption of a [...] Read more.
Perovskite solar cells (PSCs) have emerged as a promising contender in photovoltaics, owing to their rapidly advancing power conversion efficiencies (PCEs) and compatibility with low-temperature solution processing techniques. Single-junction architectures reveal inherent limitations imposed by the Shockley–Queisser (SQ) limit, motivating adoption of a dual-absorber structure comprising Cs4CuSb2Cl12 (CCSC) and Cs2TiI6 (CTI)—lead-free perovskite derivatives valued for environmental benignity and intrinsic stability. Comprehensive theoretical screening of 26 electron/hole transport layer (ETL/HTL) candidates identified SrTiO3 (STO) and CuSCN as optimal charge transport materials, producing an initial simulated PCE of 16.27%. Subsequent theoretical optimization of key parameters—including bulk and interface defect densities, band gap, layer thickness, and electrode materials—culminated in a simulated PCE of 30.86%. Incorporating quantifiable practical constraints, including radiative recombination, resistance, and FTO reflection, revised simulated efficiency to 26.60%, while qualitative analysis of additional factors follows later. Furthermore, comparing multiple algorithms within this theoretical framework demonstrated eXtreme Gradient Boosting (XGBoost) possesses superior predictive capability, identifying CTI defect density as the dominant impact on PCE—thereby underscoring its critical role in analogous architectures and offering optimization guidance for experimental studies. Collectively, this theoretical research delineates a viable pathway toward developing stable, environmentally sustainable PSCs with high properties. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Graphical abstract

22 pages, 6689 KB  
Article
Design and Implementation of a Sun Outage Simulation System with High Uniformity and Stray Light Suppression Capability
by Zhen Mao, Zhaohui Li, Yong Liu, Limin Gao and Jianke Zhao
Sensors 2025, 25(15), 4655; https://doi.org/10.3390/s25154655 - 27 Jul 2025
Viewed by 896
Abstract
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable [...] Read more.
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable output, based on high irradiance and spectral uniformity. A compound beam homogenization structure—combining a multimode fiber and an apodizator—achieves 85.8% far-field uniformity over a 200 mm aperture. A power–spectrum co-optimization strategy is introduced for filter design, achieving a spectral matching degree of 78%. The system supports a tunable output from 2.5 to 130 mW with a 50× dynamic range and maintains power control accuracy within ±0.9%. To suppress internal background interference, a BRDF-based optical scattering model is established to trace primary and secondary stray light paths. Simulation results show that by maintaining the surface roughness of key mirrors below 2 nm and incorporating a U-shaped reflective light trap, stray light levels can be reduced to 5.13 × 10−12 W, ensuring stable detection of a 10−10 W signal at a 10:1 signal-to-background ratio. Experimental validation confirms that the system can faithfully reproduce solar outage conditions within a ±3° field of view, achieving consistent performance in spectrum shaping, irradiance uniformity, and background suppression. The proposed platform provides a standardized and practical testbed for ground-based anti-interference assessment of optical communication terminals. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

20 pages, 9232 KB  
Article
Design, Fabrication, and Electromagnetic Characterization of a Feed Horn of the Linear-Polarized Multi-Beam Cryogenic S-Band Receiver for the Sardinia Radio Telescope
by Tonino Pisanu, Paolo Maxia, Alessandro Navarrini, Giuseppe Valente, Renzo Nesti, Luca Schirru, Pasqualino Marongiu, Pierluigi Ortu, Adelaide Ladu, Francesco Gaudiomonte, Silvio Pilia, Roberto Caocci, Paola Di Ninni, Luca Cresci and Aldo Sonnini
Electronics 2025, 14(11), 2301; https://doi.org/10.3390/electronics14112301 - 5 Jun 2025
Viewed by 1544
Abstract
The S-band (i.e., 2–4 GHz) is essential in multiple fields of radio astronomy, ranging from pulsar and solar studies to investigations of the early universe. The Italian 64 m fully steerable Sardinia Radio Telescope (SRT) is a system designed to operate in a [...] Read more.
The S-band (i.e., 2–4 GHz) is essential in multiple fields of radio astronomy, ranging from pulsar and solar studies to investigations of the early universe. The Italian 64 m fully steerable Sardinia Radio Telescope (SRT) is a system designed to operate in a wide frequency band ranging from 300 MHz to 116 GHz. Recently, the Astronomical Observatory of Cagliari (OAC) has been developing a new cryogenic seven-beam S-band radio receiver. This paper describes the design, fabrication and electromagnetic characterization of the feed horn for this new receiver. It has been designed to observe the sky in the 3–4.5 GHz frequency range and it will be composed of seven feed horns arranged in a regular hexagonal layout with a central element. The feed horns are optimized for placement in the primary focus and consequently illuminate the 64 m primary mirror of the SRT. The electromagnetic characterization of the single feed horn is crucial to verify the receiver’s performance; for this reason, a single feed horn has been manufactured to compare the measured reflection coefficient and the radiated far-field diagram with the results of the electromagnetic simulations, performed using the CST® Suite Studio 2024 and Ansys HFSS® Electromagnetics Suite 2021 R1 (To make the S-parameters and the radiation diagram measurement procedure feasible, the single feed horn has been connected to two adapters: a circular-to-rectangular waveguide adapter and a coax-to-rectangular waveguide adapter. The results of the measurements performed in the anechoic chamber are in very good agreement with the simulated results. Additionally, the feed horn phase center position is evaluated, merging the measurements and simulations results for an optimal installation on the primary focus of the SRT. Full article
(This article belongs to the Special Issue Microwave Devices: Analysis, Design, and Application)
Show Figures

Figure 1

21 pages, 9841 KB  
Article
Influence of Different Precursors on Properties and Photocatalytic Activity of g-C3N4 Synthesized via Thermal Polymerization
by Debora Briševac, Ivana Gabelica, Floren Radovanović-Perić, Kristina Tolić Čop, Gordana Matijašić, Davor Ljubas and Lidija Ćurković
Materials 2025, 18(11), 2522; https://doi.org/10.3390/ma18112522 - 27 May 2025
Cited by 4 | Viewed by 1510
Abstract
In this research, an emerging, non-metallic photocatalyst was prepared by the thermal polymerization method from three different precursors: urea, melamine, and three mixtures of melamine and cyanuric acid. Graphitic carbon nitride (g-C3N4) samples from urea and melamine were synthesized [...] Read more.
In this research, an emerging, non-metallic photocatalyst was prepared by the thermal polymerization method from three different precursors: urea, melamine, and three mixtures of melamine and cyanuric acid. Graphitic carbon nitride (g-C3N4) samples from urea and melamine were synthesized in a muffle furnace at three different temperatures: 450°, 500°, and 550 °C for 2 h, while the samples made of a mixture of melamine and cyanuric acid (with mass ratios of 1:1, 1:2, and 2:1) were synthesized at 550 °C for 2 h. All the samples were characterized in order to determine their chemical and physical properties, such as crystallite size and structure, and phase composition by the following techniques: Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). Nitrogen adsorption/desorption isotherms were used to investigate the Brunauer, Emmett, and Teller (BET) specific surface area and Barrett–Joyner–Halenda (BJH) pore size distribution. Band gap values were determined by diffuse reflectance spectroscopy (DRS). Furthermore, adsorption and photocatalytic degradation of the local anesthetic drug procaine were monitored under UV-A, visible, and simulated solar irradiation in a batch reactor. Kinetic parameters, as well as photocatalytic mechanisms using scavengers, were determined and analyzed. The results of the photocatalysis experiments were compared to the benchmark TiO2 Evonik Aeroxide P25. The results indicated that the g-C3N4 sample synthesized from urea at 500 °C for 2 h exhibited the highest degradation rate of procaine under visible light. Full article
Show Figures

Figure 1

21 pages, 4967 KB  
Article
Evaluation of MODIS and VIIRS BRDF Parameter Differences and Their Impacts on the Derived Indices
by Chenxia Wang, Ziti Jiao, Yaowei Feng, Jing Guo, Zhilong Li, Ge Gao, Zheyou Tan, Fangwen Yang, Sizhe Chen and Xin Dong
Remote Sens. 2025, 17(11), 1803; https://doi.org/10.3390/rs17111803 - 22 May 2025
Cited by 2 | Viewed by 1296
Abstract
Multi-angle remote sensing observations play an important role in the remote sensing of solar radiation absorbed by land surfaces. Currently, the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) teams have successively applied the Ross–Li kernel-driven bidirectional reflectance distribution [...] Read more.
Multi-angle remote sensing observations play an important role in the remote sensing of solar radiation absorbed by land surfaces. Currently, the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) teams have successively applied the Ross–Li kernel-driven bidirectional reflectance distribution function (BRDF) model to integrate multi-angle observations to produce long time series BRDF model parameter products (MCD43 and VNP43), which can be used for the inversion of various surface parameters and the angle correction of remote sensing data. Even though the MODIS and VIIRS BRDF products originate from sensors and algorithms with similar designs, the consistency between BRDF parameters for different sensors is still unknown, and this likely affects the consistency and accuracy of various downstream parameter inversions. In this study, we applied BRDF model parameter time-series data from the overlapping period of the MODIS and VIIRS services to systematically analyze the temporal and spatial differences between the BRDF parameters and derived indices of the two sensors from the site scale to the region scale in the red band and NIR band, respectively. Then, we analyzed the sensitivity of the BRDF parameters to variations in Normalized Difference Hotspot–Darkspot (NDHD) and examined the spatiotemporal distribution of zero-valued pixels in the BRDF parameter products generated by the constraint method in the Ross–Li model from both sensors, assessing their potential impact on NDHD derivation. The results confirm that among the three BRDF parameters, the isotropic scattering parameters of MODIS and VIIRS are more consistent, whereas the volumetric and geometric-optical scattering parameters are more sensitive and variable; this performance is more pronounced in the red band. The indices derived from the MODIS and VIIRS BRDF parameters were compared, revealing increasing discrepancies between the albedo and typical directional reflectance and the NDHD. The isotropic scattering parameter and the volumetric scattering parameter show responses that are very sensitive to increases in the equal interval of the NDHD, indicating that the differences between the MODIS and VIIRS products may strongly influence the consistency of NDHD estimation. In addition, both MODIS and VIIRS have a large proportion of zero-valued pixels (volumetric and geometric-optical parameter layers), whereas the spatiotemporal distribution of zero-valued pixels in VIIRS is more widespread. While the zero-valued pixels have a minor influence on reflectance and albedo estimation, such pixels should be considered with attention to the estimation accuracy of the vegetation angular index, which relies heavily on anisotropic characteristics, e.g., the NDHD. This study reveals the need in optimizing the Clumping Index (CI)-NDHD algorithm to produce VIIRS CI product and highlights the importance of considering BRDF product quality flags for users in their specific applications. The method used in this study also helps improve the theoretical framework for cross-sensor product consistency assessment and clarify the uncertainty in high-precision ecological monitoring and various remote sensing applications. Full article
(This article belongs to the Special Issue Remote Sensing of Solar Radiation Absorbed by Land Surfaces)
Show Figures

Figure 1

Back to TopTop