Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = reference shear strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5297 KiB  
Article
The Validation and Discussion of a Comparative Method Based on Experiment to Determine the Effective Thickness of Composite Glass
by Dake Cao, Xiaogen Liu, Zhe Yang, Jiawei Huang, Ming Xu and Detian Wan
Buildings 2025, 15(14), 2542; https://doi.org/10.3390/buildings15142542 - 19 Jul 2025
Viewed by 156
Abstract
This study introduces and validates a comparative experiment-based method for determining the effective thickness of composite glass, including polymeric laminated glass (with polyvinyl butyral (PVB) and SentryGlas® (SGP) interlayers) and vacuum glazing. This method employs comparative four-point bending tests, defining effective thickness [...] Read more.
This study introduces and validates a comparative experiment-based method for determining the effective thickness of composite glass, including polymeric laminated glass (with polyvinyl butyral (PVB) and SentryGlas® (SGP) interlayers) and vacuum glazing. This method employs comparative four-point bending tests, defining effective thickness by equating the bending stress of a composite specimen to that of a reference monolithic glass specimen under identical loading and boundary conditions. Specimens with varying configurations (glass thicknesses of 5 mm, 6 mm and 8 mm) were tested using non-destructive four-point bending tests under a multi-stage loading protocol (100 N–1000 N). Strain rosettes measured maximum strains at each loading stage to calculate bending stress. Analysis of the bending stress state revealed that vacuum glazing and SGP laminated glass exhibit superior load-bearing capacity compared to PVB laminated glass. The proposed method successfully determined the effective thickness for both laminated glass and vacuum glazing. Furthermore, results demonstrate that employing a 12 mm monolithic reference glass provides the highest accuracy for effective thickness determination. Theoretical bending stress calculations using the effective thickness derived from the 12 mm reference glass showed less than 10% deviation from experimental values. Conversely, compared to established standards and empirical formulas, the proposed method offers superior accuracy, particularly for vacuum glazing. Additionally, the mechanical properties of the viscoelastic interlayers (PVB and SGP) were investigated through static tensile tests and dynamic thermomechanical analysis (DMA). Distinct tensile behaviors and differing time-dependent shear transfer capacities between the two interlayer materials are found out. Key factors influencing the reliability of the method are also discussed and analyzed. This study provides a universally practical and applicable solution for accurate and effective thickness estimation in composite glass design. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

14 pages, 1694 KiB  
Article
Elastic to Plastic Lattice Structure Homogenization via Finite Element Limit Analysis
by Renato Zona and Vincenzo Minutolo
Symmetry 2025, 17(7), 1120; https://doi.org/10.3390/sym17071120 - 12 Jul 2025
Viewed by 196
Abstract
This work focuses on characterizing structured metamaterials by assessing their elastic law and ultimate strength using finite elements and limit analysis applied to a representative volume element. The elastic and plastic behavior of a reference geometry—the octet truss lattice—is obtained by calculating the [...] Read more.
This work focuses on characterizing structured metamaterials by assessing their elastic law and ultimate strength using finite elements and limit analysis applied to a representative volume element. The elastic and plastic behavior of a reference geometry—the octet truss lattice—is obtained by calculating the response of the representative volume element subjected to prescribed tensor strain bases, namely pure normal strain and pure shear, along the cube symmetry directions. The geometry of the body centered cubic and pure cubic phases of the representative volume element has been analyzed, highlighting that the elastic isotropic behavior depends on the ratio between the stiffnesses of the two phases. The ultimate behavior of the structure has been analyzed through the direct application of the lower bound method of limit analysis. The method has been implemented in a direct finite element environment using the limit analysis procedure developed by the authors. The method was already used and described in previous publications and is briefly recalled. It is based on the identification of the linear operator linking the self-equilibrated stress set to a discrete parameter manifold, accounting for the piecewise continuous distribution of the permanent strain. In the paper, it is highlighted that for different aspect ratios between the body-centered cubic and the pure cubic phase geometry, different ratios between limit shear stress and normal stress arise, the isotropic one assumed to coincide with the von Mises result, where σ0τ0=3. Full article
Show Figures

Figure 1

16 pages, 5423 KiB  
Article
Effect of Nonlinear Constitutive Models on Seismic Site Response of Soft Reclaimed Soil Deposits
by Sadiq Shamsher, Myoung-Soo Won, Young-Chul Park, Yoon-Ho Park and Mohamed A. Sayed
J. Mar. Sci. Eng. 2025, 13(7), 1333; https://doi.org/10.3390/jmse13071333 - 11 Jul 2025
Viewed by 194
Abstract
This study investigates the impact of nonlinear constitutive models on one-dimensional seismic site response analysis (SRA) for soft, reclaimed soil deposits in Saemangeum, South Korea. Two widely used models, MKZ and GQ/H, were applied to three representative soil profiles using the DEEPSOIL program. [...] Read more.
This study investigates the impact of nonlinear constitutive models on one-dimensional seismic site response analysis (SRA) for soft, reclaimed soil deposits in Saemangeum, South Korea. Two widely used models, MKZ and GQ/H, were applied to three representative soil profiles using the DEEPSOIL program. Ground motions were scaled to bedrock peak ground accelerations (PGAs) corresponding to annual return periods (ARPs) of 1000, 2400, and 4800 years. Seismic response metrics include the ratio of GQ/H to MKZ shear strain, effective PGA (EPGA), and short- and long-term amplification factors (Fa and Fv). The results highlight the critical role of the site-to-motion period ratio (Tg/Tm) in controlling seismic behavior. Compared to the MKZ, the GQ/H model, which features strength correction and improved stiffness retention, predicts lower shear strains and higher surface spectral accelerations, particularly under strong shaking and shallow conditions. Model differences are most pronounced at low Tg/Tm values, where MKZ tends to underestimate amplification and overestimate strain due to its limited ability to reflect site-specific shear strength. Relative to code-based amplification factors, the GQ/H model yields lower short-term estimates, reflecting the disparity between stiff inland reference sites and the soft reclaimed conditions at Saemangeum. These findings emphasize the need for strength-calibrated constitutive models to improve the accuracy of site-specific seismic hazard assessments. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

23 pages, 11085 KiB  
Article
Failure Mechanism and Movement Process Inversion of Rainfall-Induced Landslide in Yuexi Country
by Yonghong Xiao, Lu Wei and Xianghong Liu
Sustainability 2025, 17(12), 5639; https://doi.org/10.3390/su17125639 - 19 Jun 2025
Viewed by 309
Abstract
Shallow landslides are one of the main geological hazards that occur during heavy rainfall in Yuexi County every year, posing potential risks to the personal and property safety of local residents. A rainfall-induced shallow landslide named Baishizu No. 15 landslide in Yuexi Country [...] Read more.
Shallow landslides are one of the main geological hazards that occur during heavy rainfall in Yuexi County every year, posing potential risks to the personal and property safety of local residents. A rainfall-induced shallow landslide named Baishizu No. 15 landslide in Yuexi Country was taken as a case study. Based on the field geological investigation, combined with physical and mechanical experiments in laboratory as well as numerical simulation, the failure mechanism induced by rainfall infiltration was studied, and the movement process after landslide failure was inverted. The results show that the pore-water pressure within 2 m of the landslide body increases significantly and the factory of safety (Fs) has a good corresponding relationship with rainfall, which decreased to 0.978 after the heavy rainstorm on July 5 and July 6 in 2020. The maximum shear strain and displacement are concentrated at the foot and front edge of the landslide, which indicates a “traction type” failure mode of the Baishizu No. 15 landslide. In addition, the maximum displacement during landslide instability is about 0.5 m. The residual strength of soils collected from the soil–rock interface shows significant rate-strengthening, which ensures that the Baishizu No. 15 landslide will not exhibit high-speed and long runout movement. The rate-dependent friction coefficient of sliding surface was considered to simulate the movement process of the Baishizu No. 15 landslide by using PFC2D. The simulation results show that the movement velocity exhibited obvious oscillatory characteristics. After the movement stopped, the landslide formed a slip cliff at the rear edge and deposited as far as the platform at the front of the slope foot but did not block the road ahead. The final deposition state is basically consistent with the on-site investigation. The research results of this paper can provide valuable references for the disaster prevention, mitigation, and risk assessment of shallow landslides on residual soil slopes in the Dabie mountainous region. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

19 pages, 10596 KiB  
Article
Research on a Damage Assessment Method for Concrete Components Based on Material Damage
by Hongjun Wang, Xiaodan Ren, Zhi Li and Mingsheng Tang
Buildings 2025, 15(11), 1844; https://doi.org/10.3390/buildings15111844 - 27 May 2025
Viewed by 285
Abstract
With the popularization of the concept of seismic performance-based design, the correct and quantitative evaluation of post-earthquake damage to structural components has become a research focus. Referring to the concrete constitutive relationship mentioned in the Chinese national standard GB/T 50010-2010, this study proposes [...] Read more.
With the popularization of the concept of seismic performance-based design, the correct and quantitative evaluation of post-earthquake damage to structural components has become a research focus. Referring to the concrete constitutive relationship mentioned in the Chinese national standard GB/T 50010-2010, this study proposes a damage assessment method for concrete components based on material damage. According to the value of the uniaxial damage evolution parameter of concrete (dc(t)), the damage grades of concrete components are defined. It is specified that, when the value of dc(t) is less than the dc(t),r value corresponding to the peak concrete strain (εc(t),r), the concrete component is in a non-damaged state (Level L1). When the value of dc(t) is greater than the dc(t)u value corresponding to the concrete strain (εc(t)u), the concrete component is in a severely damaged state (Level L6). When the value of dc(t) is between these two values, the damage grade of the concrete component (levels L2 to L5) is determined using linear interpolation. To promote its engineering application, this study also proposes a quantitative expression for the damage assessment method for concrete components based on dc(t). To verify the rationality of the damage assessment method for concrete components based on dc(t), a refined model of rectangular, T-shaped, and L-shaped concrete shear wall components was established using ABAQUS software, and a nonlinear finite element analysis was carried out. The simulation results show that (a) the damage assessment method for concrete components based on dc(t) can better characterize damage to concrete shear wall components; (b) when defining the damage grades of concrete shear wall components, using dc is more reasonable than using dt; and (c), from a macroscopic perspective, the damage assessment method for concrete components based on dc(t) is more in line with actual expectations and has a higher safety factor compared with the damage assessment method for concrete components based on the concrete compressive strain (εc) mentioned in the Chinese association standard T/CECA 20024-2022. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 5676 KiB  
Article
Research on Rheological Behavior and Strength Characteristics of Cement-Based Grouting Materials
by Xuewei Liu, Hao Qu, Bin Liu, Yuan Zhou, Jinlan Li, Wei Deng and Weilong Tao
Buildings 2025, 15(11), 1796; https://doi.org/10.3390/buildings15111796 - 23 May 2025
Viewed by 367
Abstract
The mechanical properties of grouting materials and their cured grouts significantly impact the reinforcement effectiveness in deep coal mine roadways. This study employed shear rheology tests of slurry, structural tests, NMR (nuclear magnetic resonance), and uniaxial compression tests to comparatively analyze the mechanical [...] Read more.
The mechanical properties of grouting materials and their cured grouts significantly impact the reinforcement effectiveness in deep coal mine roadways. This study employed shear rheology tests of slurry, structural tests, NMR (nuclear magnetic resonance), and uniaxial compression tests to comparatively analyze the mechanical characteristics of a composite cement-based grouting material (HGC), ordinary Portland cement (OPC), and sulfated aluminum cement (SAC) slurry and their cured grouts. The HGC (High-performance Grouting Composite) slurry is formulated with 15.75% sulfated aluminum cement (SAC), 54.25% ordinary Portland cement (OPC), 10% fly ash, and 20% mineral powder, achieving a water/cement ratio of 0.26. The results indicate that HGC slurry more closely follows power-law flow characteristics, while OPC and SAC slurries fit better with the Bingham model. The structural recovery time for HGC slurry after high-strain disturbances is 52 s, significantly lower than the 312 s for OPC and 121 s for SAC, indicating that HGC can quickly produce hydration products that re-bond the flocculated structure. NMR T2 spectra show that HGC cured grouts have the lowest porosity, predominantly featuring inter-nanopores, whereas OPC and SAC have more super-nanopores. Uniaxial compression tests show that the uniaxial compressive strength of HGC, SAC, and OPC samples at various curing ages gradually decreases. Compared to traditional cementitious materials, HGC exhibits a rapid increase in uniaxial compressive strength within the first seven days, with an increase rate of approximately 77.97%. Finally, the relationship between micropore distribution and strength is analyzed, and the micro-mechanisms underlying the strength differences of different grouting materials are discussed. This study aids in developing a comparative analysis system of mechanical properties for deep surrounding rock grouting materials, providing a reference for selecting grouting materials for various engineering fractured rock masses. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

15 pages, 3559 KiB  
Article
Evaluation of the Shear Modulus Degradation by a Modified Hyperbolic Function for Unconventional Geomaterials
by Hernán Patiño, Fausto Molina-Gómez and Rubén Ángel Galindo-Aires
Geosciences 2025, 15(5), 176; https://doi.org/10.3390/geosciences15050176 - 14 May 2025
Cited by 1 | Viewed by 375
Abstract
The characterisation of shear modulus degradation is essential for understanding the dynamic response of geomaterials. This article presents a modified hyperbolic model that evaluates the shear modulus for various angular strains and effective confining stresses. The model has been calibrated and validated using [...] Read more.
The characterisation of shear modulus degradation is essential for understanding the dynamic response of geomaterials. This article presents a modified hyperbolic model that evaluates the shear modulus for various angular strains and effective confining stresses. The model has been calibrated and validated using data from 108 resonant-column tests conducted on three different types of tailings from the Riotinto mines in Huelva, Spain. These tests were conducted on saturated samples that were consolidated at effective stresses of 50, 100, 150, 200, 250, and 300 kPa, accompanied by various combinations of torsional excitations to induce distinct angular strains. The results show that the hyperbolic model effectively predicts the shear modulus degradation in unconventional geomaterials, characterising the shear modulus under the testing conditions for the three types of Riotinto tailings. Additionally, the model can identify and confirm both the initial (or maximum) shear modulus and the reference angular strain as functions of the effective confining stress. The findings and model presented in this article contribute to enhancing the stability and resilience of geotechnical structures, including tailings storage facilities, that are subjected to dynamic loading, leading to safer designs and improved infrastructure performance. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

12 pages, 3932 KiB  
Article
Experimental Study on Shear Mechanical Properties of Pile–Soil Interface Under Freezing Conditions
by Tuo Chen, Qianqian Song, Jianzhou Wang and Zhijian Wu
Appl. Sci. 2025, 15(10), 5457; https://doi.org/10.3390/app15105457 - 13 May 2025
Viewed by 300
Abstract
In order to explore the rules for the variation in the adfreeze shear strength at the interface between frozen soil and a pile foundation, and their influencing factors, a measuring system was developed to estimate the freezing strength at the interface by utilizing [...] Read more.
In order to explore the rules for the variation in the adfreeze shear strength at the interface between frozen soil and a pile foundation, and their influencing factors, a measuring system was developed to estimate the freezing strength at the interface by utilizing a pile-pressing method under a cryogenic environment. Experimental results demonstrate that the maximum vertical pressure on the pile top increased significantly with the decrease in temperature under the same moisture content. The shear stress–shear displacement curves, at the bottom part of the interface, presented strain-softening characteristics, while the strain-hardening phenomenon was observed at the upper part of the interface. The strength parameters of the interface decreased with the increase in the pile depth. Moreover, the influence of temperature on the shear strength of the interface was more significant compared with that of the moisture content. The research results can provide references for the construction of pile foundations, structural design optimization, and for frozen damage prevention and treatment in permafrost regions. Full article
Show Figures

Figure 1

15 pages, 2368 KiB  
Article
A Study on the Creep Characteristics of Gassy Clay Mixed with Silt
by Aiwu Yang, Tianli Liu, Hao Zhang and Boqu Zhang
Appl. Sci. 2025, 15(9), 5106; https://doi.org/10.3390/app15095106 - 4 May 2025
Viewed by 320
Abstract
As the economy evolves, there has been an increasing interest in exploring oceanic resources. However, the complex marine environment poses several geological challenges for offshore engineering endeavors. The presence of gassy soil significantly influences the deformation properties and integrity of the soil, significantly [...] Read more.
As the economy evolves, there has been an increasing interest in exploring oceanic resources. However, the complex marine environment poses several geological challenges for offshore engineering endeavors. The presence of gassy soil significantly influences the deformation properties and integrity of the soil, significantly impacting offshore engineering construction. Triaxial shear tests and creep tests were conducted on gassy clay with silt content, prepared using the laboratory “zeolite method”, to analyze its shear deformation characteristics and long-term resilience. We proposed a prediction model for calculating the long-term resilience of silt-containing clay, accounting for confining pressure and gas content, and verified its efficacy through experimentation. Our findings reveal the following: The stress–strain relationship curve of silt-containing gassy clay is a typical strain hardening curve. The greater the confining pressure or the smaller the gas content, the greater the stress under the same strain and the greater the yield stress; when the gas content is the same, the greater the confining pressure, the greater the long-term strength of the soil; and when the confining pressure is the same, the smaller the gas content, the greater the long-term strength of the soil. The research results can provide theoretical reference for actual complex engineering. Full article
Show Figures

Figure 1

16 pages, 5778 KiB  
Article
Influence of Aging and Salt–Alkali Coupling on the Fatigue and Self-Healing Behavior of Graphene Oxide-Modified Asphalt
by Ruixia Li, Wei Zhu, Hailong Chen, Xiao Li, Linhao Sun and Jinchao Yue
Materials 2025, 18(8), 1808; https://doi.org/10.3390/ma18081808 - 15 Apr 2025
Cited by 1 | Viewed by 480
Abstract
The harsh environments in saline–alkaline areas and high-altitude regions with intense ultraviolet radiation pose great challenges to the durability of asphalt pavements. The fatigue performance of asphalt binder significantly determines the actual service life of asphalt pavements. Existing studies have predominantly focused on [...] Read more.
The harsh environments in saline–alkaline areas and high-altitude regions with intense ultraviolet radiation pose great challenges to the durability of asphalt pavements. The fatigue performance of asphalt binder significantly determines the actual service life of asphalt pavements. Existing studies have predominantly focused on the impact of individual environmental factors (e.g., aging and saline–alkaline erosion) on asphalt performance, yet there remains a notable research gap in the systematic analysis of asphalt’s fatigue and self-healing behavior under coupled multi-factor interactions, particularly regarding the synergistic effects of UV aging and saline–alkaline conditions. Therefore, it is of great importance to understand the influence rules of the coupling effect of aging and salt–alkaline characteristics on the properties of asphalt materials. In this study, 70# base asphalt and GO-modified asphalt were taken as the research objects. Frequency sweep tests, linear amplitude sweep (LAS) tests, and LAS-based healing tests were conducted using a dynamic shear rheometer. The fatigue and self-healing properties of the two asphalt materials under different aging conditions and aging and salt–alkali coupling effects were analyzed based on the viscoelastic continuum damage theory. The results showed that the degree of aging can increase the stress peak of asphalt materials under small strains and also increase their stress attenuation rate. Except for short-term aging and salt–alkali effects, the aging and salt–alkali coupling effects generally further reduce the stress peaks of asphalt materials. Aging can increase the fatigue life of asphalt and increase the fatigue life attenuation rate of asphalt. The aging and salt–alkali coupling effects will reduce the fatigue life of asphalt and increase the decline rate of the asphalt fatigue life. The self-healing efficiency of asphalt is affected by the degree of aging, and the aging and salt–alkali coupling effects further reduce the self-healing efficiency of asphalt materials. This paper elucidates the influence mechanisms of intense UV irradiation and saline–alkaline environments on GO-modified asphalt, providing theoretical and practical references for its future engineering applications in harsh environmental conditions. Full article
Show Figures

Figure 1

18 pages, 18055 KiB  
Article
Creep Mechanism and Microstructure Evolution of a Directionally Solidified Ni-Based Superalloy with Different Orientations at 850 °C
by Anping Long, Jiangying Xiong, Bing Wei, Gaoxiang Zhang, Ganjiang Feng, Jianzheng Guo and Rutie Liu
Materials 2025, 18(7), 1540; https://doi.org/10.3390/ma18071540 - 28 Mar 2025
Cited by 3 | Viewed by 693
Abstract
The creep properties of directionally solidified superalloys are largely influenced by the degradation rate of the γ/γ’ microstructure and the dislocation motion, which exhibit distinct mechanisms under varying temperature and stress conditions. In this study, the creep deformation mechanisms and microstructural evolution of [...] Read more.
The creep properties of directionally solidified superalloys are largely influenced by the degradation rate of the γ/γ’ microstructure and the dislocation motion, which exhibit distinct mechanisms under varying temperature and stress conditions. In this study, the creep deformation mechanisms and microstructural evolution of a directionally solidified nickel-based superalloy in the longitudinal (L) and transverse (T) orientations at 850 °C are comprehensively investigated. Creep testing and characterization of the dislocation structure revealed superior creep properties in the L direction compared to the T direction. The creep mechanism in the L direction involves the activation of multiple {111}<110> slip systems, shearing the γ’ precipitates through antiphase boundaries (APBs). Conversely, the creep mechanism in the T direction involves the activation of {111}<112> slip systems, shearing the γ’ precipitates through a superlattice intrinsic stacking fault (SISF) and forming slip bands inclined to the stress axis. Aluminum was identified as the controlling element for the γ’ rafting. The longitudinal specimens exhibited P-type rafting due to the activation of multiple slip systems and sufficient plastic strain flow from the dislocation motion. In contrast, the transverse specimens show little rafting due to limited slip system activation. These findings can serve as a reference for better understanding the anisotropy of directionally solidified superalloys and provide a basis for their broader application. Full article
Show Figures

Figure 1

30 pages, 5700 KiB  
Article
Comparison of Seismic Site Factor Models Based on Equivalent Linear and Nonlinear Analyses and Correction Factors for Updating Equivalent Linear Results for Charleston, South Carolina
by Nadarajah Ravichandran, Md. Ariful H. Bhuiyan, Vishnu Saketh Jella, Ashish Bahuguna and Jatheesan Sundararajan
Geosciences 2025, 15(4), 115; https://doi.org/10.3390/geosciences15040115 - 24 Mar 2025
Viewed by 538
Abstract
In practice, site-specific one-dimensional (1D) seismic site response analyses are conducted to compute surface acceleration time histories considering shear wave velocity profile, modulus reduction, damping, and site-specific ground motions. The computed surface responses depend not only on the geologic and seismic characteristics but [...] Read more.
In practice, site-specific one-dimensional (1D) seismic site response analyses are conducted to compute surface acceleration time histories considering shear wave velocity profile, modulus reduction, damping, and site-specific ground motions. The computed surface responses depend not only on the geologic and seismic characteristics but also on the type of 1D analysis (i.e., equivalent linear or nonlinear) and the software. Equivalent linear analysis (EQLA) is preferred by practicing engineers because the analysis procedure is well defined, but the accuracy of the results is questionable for certain geologic and input motion characteristics. On the other hand, nonlinear analysis (NNLA) is accurate for any geologic and input motion characteristics, but it is complicated because certain steps in the analysis procedure are complicated and not well defined. The objective of this study is to compare the responses computed from EQLA and NNLA procedures and make recommendations on when to use EQLA and NNLA, considering Charleston, South Carolina; geology; and seismicity. About 18,000 NNLAs (DMOD2000 and DEEPSOIL) and EQLAs (SHAKE2000) were performed, considering variations in shear wave velocity profiles, shear modulus reduction curves, damping curves, and ground motions. Based on the results from each software, three seismic site factor models were developed and compared with the published models. Results show that the EQLAs produced conservative estimates compared to the NNLAs. It is also observed that the site factor model based on EQLA diverges from the models based on NNLA even at the lowest amplitude shaking considered in the study (0.05 g), particularly for profiles with low shear wave velocity. This indicates that soils behave nonlinearly even at low amplitude shaking. Although a similar shear stress/shear strain model is used in DMOD2000 and DEEPSOIL, the site factor models show significant differences. Finally, an easy-to-use chart was developed to select suitable software and analysis types for accurately computing the surface responses based on the peak ground acceleration (PGA) of the input motion at the reference rock outcrop and average shear wave velocity in the top 30 m. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

17 pages, 4908 KiB  
Article
The Enhanced Measurement Method Based on Fiber Bragg Grating Sensor for Structural Health Monitoring
by Shengtao Niu and Ru Li
Micromachines 2025, 16(4), 368; https://doi.org/10.3390/mi16040368 - 24 Mar 2025
Viewed by 645
Abstract
The effective measurement method plays a vital role in the structural health monitoring (SHM) field, which provides accurate and real-time information concerning structural conditions and performance. The innovative measurement approach based on strain sensors, referred to as the inverse finite element method (iFEM), [...] Read more.
The effective measurement method plays a vital role in the structural health monitoring (SHM) field, which provides accurate and real-time information concerning structural conditions and performance. The innovative measurement approach based on strain sensors, referred to as the inverse finite element method (iFEM), has been considered the most promising and versatile technology for meeting the requirements of the SHM system. However, the existing iFEM for shape sensing of thick plate structures has the drawback that the transverse shear effect makes no contribution to the three-dimensional deformation of thick plate structures. Therefore, this study proposed an enhanced inverse finite element method (iFEM) based on single-surface fiber Bragg grating strain sensors for reconstructing thick plate structures coupled with an analytical formulation. The method characterized the explicit relationship between transverse shear and bending displacement field on the mid-plane, which presents the sixth-order differential equation based on a variational approach. The three-dimensional deformation field can be obtained along the thickness direction, expanding the SHM application of iFEM for composite structures based on strain measurement. By performing shape sensing analysis of the thick plate model, the exactness and applicability of the present method are numerically and experimentally validated for different loading cases. Full article
(This article belongs to the Topic Distributed Optical Fiber Sensors)
Show Figures

Figure 1

22 pages, 8918 KiB  
Article
Fragility Analysis of Overturning Resistance of Hybrid Base-Isolated Structures in Diesel Engine Buildings of Nuclear Power Plants
by Yunhui Xiao, Xiangyu Gao, Kuang Xu and Jinlai Zhou
Appl. Sci. 2025, 15(7), 3508; https://doi.org/10.3390/app15073508 - 23 Mar 2025
Viewed by 432
Abstract
This paper validates the effectiveness of the modeling approach based on the finite element analysis of shaking table tests, establishing finite element models for both a base-isolated structure and a hybrid base-isolated structure designed to address overturning issues in the diesel engine building [...] Read more.
This paper validates the effectiveness of the modeling approach based on the finite element analysis of shaking table tests, establishing finite element models for both a base-isolated structure and a hybrid base-isolated structure designed to address overturning issues in the diesel engine building of a nuclear power plant. By using the Incremental Dynamic Analysis (IDA) method, a fragility analysis of the overturning resistance was conducted for both isolation systems. This study demonstrates that the hybrid base isolation scheme, which incorporates additional dampers, effectively enhances the structure’s overturning resistance and reduces the probability of failure. When evaluating the seismic fragility of the structure by using the TP value, which is related to the tensile stress of the isolation bearings, as a damage index, the results are more conservative compared with those obtained by using shear strain (γ). This highlights the importance of improving the tensile capacity of the isolation bearings in structural design. Furthermore, fragility assessment using γ as a damage index can provide design references for the collision limit of the isolation moat in the base-isolated structure of the diesel engine building in nuclear power plants. Full article
Show Figures

Graphical abstract

12 pages, 4497 KiB  
Article
Experimental Study on the Strength Characteristics of Organic-Matter-Contaminated Red Soil in Yulin
by Jinbin Long, Hangyu Yan, Haofeng Zhou, Zhigao Xie and Bai Yang
Buildings 2025, 15(6), 853; https://doi.org/10.3390/buildings15060853 - 9 Mar 2025
Viewed by 925
Abstract
In order to study the strength characteristics of organic-matter-contaminated red soil and the improvement effects of different modifiers, the red soil in the Yulin area was taken as the research object, and triaxial compression tests were carried out to study the effects of [...] Read more.
In order to study the strength characteristics of organic-matter-contaminated red soil and the improvement effects of different modifiers, the red soil in the Yulin area was taken as the research object, and triaxial compression tests were carried out to study the effects of different mass fractions (0%, 2%, 4%, 6%, 8%) of organic matter (sodium humate) on the strength characteristics of red soil. Unconfined compressive strength (UCS) tests and scanning electron microscopy (SEM) tests were carried out to study the improvement effects of different amounts of lignin, fly ash, and xanthan gum on organic-matter-contaminated red soil (organic matter content of 8%). The results of the tests showed that the cohesion and internal friction angle of red soil both tended to decrease with the increase in organic matter content. When the organic matter content increased from 0% to 8%, the cohesion of the red soil decreased from 60.98 kPa to 40.07 kPa, a decrease of 34.29%; and the internal friction angle decreased from 17.42° to 7.28°, a decrease of 58.21%. The stress–strain relationship curves of organic-matter-contaminated red soil all show a hardening type. Under different confining pressures, as the organic matter content increased, the shear strength of the red soil decreased continuously. The unconfined compressive strength of organic-matter-contaminated red soil increased with the increase in lignin content, and increased first and then decreased with the increase in fly ash content and xanthan gum content. Through comparative analysis, it was found that the fly ash with a content of 15% had the best improvement effect. The lignin-amended red soil enhanced the connection of soil particles through reinforcement, reduced pores, and improved soil strength. Fly ash improved the acidification reaction, and the hydrates filled the pores and enhanced the soil strength. Xanthan gum improved the red soil by absorbing water and promoting microbial growth, further enhancing the bonding force between soil particles. This study can provide a reference for engineering construction and red soil improvement in red soil areas. Full article
(This article belongs to the Special Issue Foundation Treatment and Building Structural Performance Enhancement)
Show Figures

Figure 1

Back to TopTop