Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,671)

Search Parameters:
Keywords = reduction of carbon dioxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1432 KiB  
Article
Optimizing Gear Selection and Engine Speed to Reduce CO2 Emissions in Agricultural Tractors
by Murilo Battistuzzi Martins, Jessé Santarém Conceição, Aldir Carpes Marques Filho, Bruno Lucas Alves, Diego Miguel Blanco Bertolo, Cássio de Castro Seron, João Flávio Floriano Borges Gomides and Eduardo Pradi Vendruscolo
AgriEngineering 2025, 7(8), 250; https://doi.org/10.3390/agriengineering7080250 (registering DOI) - 6 Aug 2025
Abstract
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring [...] Read more.
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring concern associated with agricultural intensification for food production. This study aimed to evaluate the optimization of tractor gears and engine speed during crop operations to minimize CO2 emissions and promote sustainability. The experiment was conducted using a strip plot design with subdivided sections and six replications, following a double factorial structure. The first factor evaluated was the type of agricultural implement (disc harrow, subsoiler, or sprayer), while the second factor was the engine speed setting (nominal or reduced). Operational and energy performance metrics were analyzed, including fuel consumption and CO2 emissions, travel speed, effective working time, wheel slippage, and working depth. Optimized gear selection and engine speeds resulted in a 20 to 40% reduction in fuel consumption and CO2 emissions. However, other evaluated parameters remain unaffected by the reduced engine speed, regardless of the implement used, ensuring the operation’s quality. Thus, optimizing operator training or configuring machines allows for environmental impact reduction, making agricultural practices more sustainable. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 (registering DOI) - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 787 KiB  
Systematic Review
Beyond Construction Waste Management: A Systematic Review of Strategies for the Avoidance and Minimisation of Construction and Demolition Waste in Australia
by Emma Heffernan and Leela Kempton
Sustainability 2025, 17(15), 7095; https://doi.org/10.3390/su17157095 - 5 Aug 2025
Abstract
The construction sector is responsible for over 40% of waste generated in Australia. Construction materials are responsible for around 11% of global carbon dioxide emissions, and a third of these materials can end up wasted on a construction site. Attention in research and [...] Read more.
The construction sector is responsible for over 40% of waste generated in Australia. Construction materials are responsible for around 11% of global carbon dioxide emissions, and a third of these materials can end up wasted on a construction site. Attention in research and industry has been directed towards waste management and recycling, resulting in 78% of construction and demolition waste being diverted from landfill. However, the waste hierarchy emphasises avoiding the generation of waste in the first place. In this paper, the PRISMA approach is used to conduct a systematic review with the objective of identifying waste reduction strategies employed across all stages of projects in the Australian construction industry. Scopus and Web of Science databases were used. The search returned 523 publications which were screened and reviewed; this resulted in 24 relevant publications from 1998 to 2025. Qualitative analysis identifies strategies categorised into five groupings: pre-demolition, design, culture, materials and procurement, and on-site activities. The review finds a distinct focus on strategies within the materials and procurement category. The reviewed literature includes fewer strategies for the avoidance of waste than for any of the other levels of the waste hierarchy, evidencing the need for further focus in this area. Full article
(This article belongs to the Special Issue Waste Management for Sustainability: Emerging Issues and Technologies)
Show Figures

Figure 1

16 pages, 3766 KiB  
Article
Evaluation of Energy and CO2 Reduction Through Envelope Retrofitting: A Case Study of a Public Building in South Korea Conducted Using Utility Billing Data
by Hansol Lee and Gyeong-Seok Choi
Energies 2025, 18(15), 4129; https://doi.org/10.3390/en18154129 - 4 Aug 2025
Abstract
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility [...] Read more.
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility billing data collected over one pre-retrofit year (2019) and two post-retrofit years (2023–2024). The retrofit included improvements to exterior walls, roofs, and windows, aiming to enhance thermal insulation and airtightness. The analysis revealed that monthly electricity consumption was reduced by 14.7% in 2023 and 8.0% in 2024 compared to that in the baseline year, with corresponding decreases in electricity costs and carbon dioxide emissions. Seasonal variations were evident: energy savings were significant in the winter due to reduced heating demand, while cooling energy use slightly increased in the summer, likely due to diminished solar heat gains resulting from improved insulation. By addressing both heating and cooling impacts, this study offers practical insights into the trade-offs of envelope retrofitting. The findings contribute to the body of knowledge by demonstrating the real-world performance of retrofit technologies and providing data-driven evidence that can inform policies and strategies for improving energy efficiency in public buildings. Full article
Show Figures

Figure 1

20 pages, 10502 KiB  
Article
Strengthening Mechanism of Char in Thermal Reduction Process of Silicon Dioxide
by Xiuli Xu, Peng Yu, Jinxiao Dou and Jianglong Yu
Materials 2025, 18(15), 3651; https://doi.org/10.3390/ma18153651 - 3 Aug 2025
Viewed by 194
Abstract
This study investigates the strengthening mechanisms of char in silicon dioxide thermal reduction through systematic high-temperature experiments using three char types (YQ1, CW1, HY1) characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. HY1 char demonstrated superior reactivity due [...] Read more.
This study investigates the strengthening mechanisms of char in silicon dioxide thermal reduction through systematic high-temperature experiments using three char types (YQ1, CW1, HY1) characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. HY1 char demonstrated superior reactivity due to its highly ordered microcrystalline structure, characterized by the largest aromatic cluster size (La) and lowest defect ratio (ID/IG = 0.37), which directly correlated with enhanced reaction completeness. The carbon–silicon reaction reactivity increased progressively with temperature, achieving optimal performance at 1550 °C. Addition of Fe and Fe2O3 significantly accelerated the reduction process, with Fe2O3 exhibiting superior catalytic performance by reducing activation energy and optimizing reaction kinetics. The ferrosilicon formation mechanism proceeds through a two-stage pathway: initial char-SiO2 reaction producing SiC and CO, followed by SiC–iron interaction generating FeSi, which catalytically promotes further reduction. These findings establish critical structure–performance relationships for char selection in industrial silicon production, where microcrystalline ordering emerges as the primary performance determinant. The identification of optimal temperature and additive conditions provides practical pathways to enhance energy efficiency and product quality in silicon metallurgy, enabling informed raw material selection and process optimization to reduce energy consumption and improve operational stability. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

14 pages, 2082 KiB  
Article
Effect of the Growth Period of Tree Leaves and Needles on Their Fuel Properties
by Tadeusz Dziok, Justyna Łaskawska and František Hopan
Energies 2025, 18(15), 4109; https://doi.org/10.3390/en18154109 - 2 Aug 2025
Viewed by 235
Abstract
The main advantage of using biomass for energy generation is the reduction in carbon dioxide emissions. For a fast reduction effect, it is important to use biomass characterised by an annual growth cycle. These may be fallen leaves. The fuel properties of the [...] Read more.
The main advantage of using biomass for energy generation is the reduction in carbon dioxide emissions. For a fast reduction effect, it is important to use biomass characterised by an annual growth cycle. These may be fallen leaves. The fuel properties of the leaves can change during the growth period. These changes can result from both the natural growth process and environmental factors—particulate matter adsorption. The main objective was to determine changes in the characteristics of leaves and needles during the growth period (from May to October). Furthermore, to determine the effect of adsorbed particulate matter, the washing process was carried out. Studies were carried out for three tree species: Norway maple, horse chestnut and European larch. Proximate and ultimate analysis was performed and mercury content was determined. During the growth period, beneficial changes were observed: an increase in carbon content and a decrease in hydrogen and sulphur content. The unfavourable change was a significant increase in ash content, which caused a decrease in calorific value. The increase in ash content was caused by adsorbed particulate matter. They were mostly absorbed by the tissues of the needle and leaves and could not be removed by washing the surface. Full article
Show Figures

Figure 1

36 pages, 4554 KiB  
Review
Lithium Slag as a Supplementary Cementitious Material for Sustainable Concrete: A Review
by Sajad Razzazan, Nuha S. Mashaan and Themelina Paraskeva
Materials 2025, 18(15), 3641; https://doi.org/10.3390/ma18153641 - 2 Aug 2025
Viewed by 189
Abstract
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes [...] Read more.
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes experimental findings on LS replacement levels, fresh-state behavior, mechanical performance (compressive, tensile, and flexural strengths), time-dependent deformation (shrinkage and creep), and durability (sulfate, acid, abrasion, and thermal) of LS-modified concretes. Statistical analysis identifies an optimal LS dosage of 20–30% (average 24%) for maximizing compressive strength and long-term durability, with 40% as a practical upper limit for tensile and flexural performance. Fresh-state tests show that workability losses at high LS content can be mitigated via superplasticizers. Drying shrinkage and creep strains decrease in a dose-dependent manner with up to 30% LS. High-volume (40%) LS blends achieve up to an 18% gain in 180-day compressive strength and >30% reduction in permeability metrics. Under elevated temperatures, 20% LS mixes retain up to 50% more residual strength than controls. In advanced systems—autoclaved aerated concrete (AAC), one-part geopolymers, and recycled aggregate composites—LS further enhances both microstructural densification and durability. In particular, LS emerges as a versatile SCM that optimizes mechanical and durability performance, supports material circularity, and reduces the carbon footprint. Full article
Show Figures

Figure 1

21 pages, 5609 KiB  
Article
Carbonation and Corrosion Durability Assessment of Reinforced Concrete Beam in Heavy-Haul Railways by Multi-Physics Coupling-Based Analytical Method
by Wu-Tong Yan, Lei Yuan, Yong-Hua Su, Long-Biao Yan and Zi-Wei Song
Materials 2025, 18(15), 3622; https://doi.org/10.3390/ma18153622 - 1 Aug 2025
Viewed by 235
Abstract
The operation of heavy-haul railway trains with large loads results in significant cracking issues in reinforced concrete beams. Atmospheric carbon dioxide, oxygen, and moisture from the atmosphere penetrate into the beam interior through these cracks, accelerating the carbonation of the concrete and the [...] Read more.
The operation of heavy-haul railway trains with large loads results in significant cracking issues in reinforced concrete beams. Atmospheric carbon dioxide, oxygen, and moisture from the atmosphere penetrate into the beam interior through these cracks, accelerating the carbonation of the concrete and the corrosion of the steel bars. The rust-induced expansion of steel bars further exacerbates the cracking of the beam. The interaction between environmental factors and beam cracks leads to a rapid decline in the durability of the beam. To address this issue, a multi-physics field coupling durability assessment method was proposed, considering concrete beam cracking, concrete carbonation, and steel bar corrosion. The interaction among these three factors is achieved through sequential coupling, using crack width, carbonation passivation time, and steel bar corrosion rate as interaction parameters. Using this method, the deterioration morphology and stiffness degradation laws of 8 m reinforced concrete beams under different load conditions, including those of heavy and light trains in heavy-haul railways, are compared and assessed. The analysis reveals that within a 100-year service cycle, the maximum relative stiffness reduction for beams on the heavy train line is 20.0%, whereas for the light train line, it is only 7.4%. The degree of structural stiffness degradation is closely related to operational load levels, and beam cracking plays a critical role in this difference. Full article
Show Figures

Figure 1

28 pages, 2732 KiB  
Article
Carbon Dioxide Reduction Effect Based on Carbon Quota Analysis of Public Buildings: Comparative Analysis of Chinese Emission Trading Pilots
by Weina Zhu, Linghan Wang, Zhi Sun, Li Zhang and Xiaodong Li
Buildings 2025, 15(15), 2650; https://doi.org/10.3390/buildings15152650 - 27 Jul 2025
Viewed by 239
Abstract
Chinese public building carbon emissions trading system (CETS) pilots have employed different carbon quota methods over more than ten years. However, there are few quantitative comparisons on CETS emission reduction effects in different pilots based on the carbon quota analysis. This paper first [...] Read more.
Chinese public building carbon emissions trading system (CETS) pilots have employed different carbon quota methods over more than ten years. However, there are few quantitative comparisons on CETS emission reduction effects in different pilots based on the carbon quota analysis. This paper first calculates the annual carbon quotas of public buildings based on carbon quota allocation methodologies from municipal policy documents. Then, the factors affecting the carbon quotas of public buildings are analyzed. Finally, the emission reduction effects are analyzed and compared between the pilots. The findings are concluded as follows: (1) Public building stock area and energy efficiency demonstrate significant effects on the carbon quota. (2) The average annual carbon quota deficits of public buildings were 929,800 tons in Beijing and 596,000 tons in Shanghai, while the carbon quota was an annual surplus of 296,400 tons in Shenzhen, indicating that carbon quota allocations in Beijing and Shanghai pilots are more conducive to promoting the active participation of high-emission enterprises. (3) The emission reduction effect in Beijing is most pronounced, followed by Shanghai and finally Shenzhen. Accordingly, the reasons for the difference in emission reduction effects are analyzed. This study contributes to the carbon quota allocation and emission reduction of public buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 3251 KiB  
Article
Effect of H2–CO Ratio on Reduction Disintegration Behavior and Kinetics of Vanadium–Titanium Magnetite Pellets
by Feng Chen, Hao Li, Shuai Wang, Mao Chen, Wenbo Tang, Yufeng Guo, Yuekai Wen and Lingzhi Yang
Metals 2025, 15(8), 823; https://doi.org/10.3390/met15080823 - 23 Jul 2025
Viewed by 242
Abstract
There are many advantages of the smelting of vanadium–titanium magnetite pellets by hydrogen-based shaft furnace pre-reduction and electric arc furnace process, including high reduction efficiency, low carbon dioxide emission and high recovery of titanium and so on. However, vanadium–titanium magnetite pellets are highly [...] Read more.
There are many advantages of the smelting of vanadium–titanium magnetite pellets by hydrogen-based shaft furnace pre-reduction and electric arc furnace process, including high reduction efficiency, low carbon dioxide emission and high recovery of titanium and so on. However, vanadium–titanium magnetite pellets are highly susceptible to severe reduction disintegration when reduced in the gas-based shaft furnaces. H2 and CO are the primary reducing gas components in the gas-based shaft furnace process, which significantly influences the reduction behavior of vanadium–titanium magnetite pellets. In this study, the reduction disintegration behavior and reduction kinetics of vanadium–titanium magnetite under mixed H2–CO atmospheres at low temperatures (450–600 °C) were investigated. The differences in the reduction capacities and rates of H2 and CO on iron oxides and titanium–iron oxides were revealed, along with their impact on the reduction disintegration behavior of the pellets at low temperatures. At lower temperatures, CO exhibited a greater reducing capability for vanadium–titanium magnetite. As the reduction temperature increased, the reduction capacities of both H2 and CO improved; however, the reduction capacity of H2 was more significantly influenced by the temperature. The disparity in the reduction capacities of H2 and CO for vanadium–titanium magnetite pellets caused an inconsistent expansion rate in different regions of the pellet, increasing internal stress, contributing to a more severe reduction disintegration of vanadium–titanium magnetite pellets in the mixed H2–CO atmospheres. Full article
(This article belongs to the Special Issue Innovation in Efficient and Sustainable Blast Furnace Ironmaking)
Show Figures

Figure 1

16 pages, 7234 KiB  
Article
SnBi Catalytic Grown on Copper Foam by Co-Electrodeposition for Efficient Electrochemical Reduction of CO2 to Formate
by Zhuoqi Liu, Hangxin Xie, Li Lv, Jialin Xu, Xinbo Li, Chunlai Wang and Aijing Ma
Catalysts 2025, 15(8), 698; https://doi.org/10.3390/catal15080698 - 22 Jul 2025
Viewed by 360
Abstract
The efficient electrochemical reduction of carbon dioxide to formate under mild conditions is a promising approach to mitigate the energy crisis, but requires the use of high-performance catalysts. The selectivity and activity of catalysts can be enhanced through multi-metal doping, further advancing the [...] Read more.
The efficient electrochemical reduction of carbon dioxide to formate under mild conditions is a promising approach to mitigate the energy crisis, but requires the use of high-performance catalysts. The selectivity and activity of catalysts can be enhanced through multi-metal doping, further advancing the electrochemical reduction of CO2 to formate. This study demonstrates a co-electrodeposition strategy for synthesizing SnBi electrocatalysts on pretreated copper foam substrates, systematically evaluating how the Sn2+/Bi3+ molar ratio in the electrodeposition solution and the applied current density affect the catalytic performance for CO2-to-formate conversion. Optimal performance was achieved with a molar ratio of Sn2+ to Bi3+ of 1:0.5 and a deposition current density of 3 mA cm−2, resulting in a formate Faradaic efficiency (FEformate) of 97.80% at −1.12 V (vs. RHE) and a formate current density of 26.9 mA·cm−2. Furthermore, the Sn1Bi0.50-3 mA·cm−2 electrode demonstrated stable operation at the specified potential for 9 h, maintaining a FEformate above 90%. Compared to previously reported metal catalysts, the SnBi catalytic electrode exhibits superior performance for the electrochemical reduction of CO2 to HCOOH. The study highlights the significant impact of the metal ion molar ratio and deposition current density in the electrodeposition process on the characteristics and catalytic performance of the electrode. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

27 pages, 2736 KiB  
Article
Estimation of Tree Diameter at Breast Height (DBH) and Biomass from Allometric Models Using LiDAR Data: A Case of the Lake Broadwater Forest in Southeast Queensland, Australia
by Zibonele Mhlaba Bhebhe, Xiaoye Liu, Zhenyu Zhang and Dev Raj Paudyal
Remote Sens. 2025, 17(14), 2523; https://doi.org/10.3390/rs17142523 - 20 Jul 2025
Viewed by 593
Abstract
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast [...] Read more.
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast height (DBH), an important input into allometric equations to estimate biomass. The main objective of this study is to estimate tree DBH using existing allometric models. Specifically, it compares three global DBH pantropical models to calculate DBH and to estimate the aboveground biomass (AGB) of the Lake Broadwater Forest located in Southeast (SE) Queensland, Australia. LiDAR data collected in mid-2022 was used to test these models, with field validation data collected at the beginning of 2024. The three DBH estimation models—the Jucker model, Gonzalez-Benecke model 1, and Gonzalez-Benecke model 2—all used tree H, and the Jucker and Gonzalez-Benecke model 2 additionally used CD and CA, respectively. Model performance was assessed using five statistical metrics: root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), percentage bias (MBias), and the coefficient of determination (R2). The Jucker model was the best-performing model, followed by Gonzalez-Benecke model 2 and Gonzalez-Benecke model 1. The Jucker model had an RMSE of 8.7 cm, an MAE of −13.54 cm, an MAPE of 7%, an MBias of 13.73 cm, and an R2 of 0.9005. The Chave AGB model was used to estimate the AGB at the tree, plot, and per hectare levels using the Jucker model-calculated DBH and the field-measured DBH. AGB was used to estimate total biomass, dry weight, carbon (C), and carbon dioxide (CO2) sequestered per hectare. The Lake Broadwater Forest was estimated to have an AGB of 161.5 Mg/ha in 2022, a Total C of 65.6 Mg/ha, and a CO2 sequestered of 240.7 Mg/ha in 2022. These findings highlight the substantial carbon storage potential of the Lake Broadwater Forest, reinforcing the opportunity for landholders to participate in the carbon credit systems, which offer financial benefits and enable contributions to carbon mitigation programs, thereby helping to meet national and global carbon reduction targets. Full article
Show Figures

Graphical abstract

35 pages, 2722 KiB  
Review
Harnessing Ferrocene for Hydrogen and Carbon Dioxide Transformations: From Electrocatalysis to Capture
by Angel A. J. Torriero
Inorganics 2025, 13(7), 244; https://doi.org/10.3390/inorganics13070244 - 17 Jul 2025
Viewed by 460
Abstract
Ferrocene (Fc) is a redox-active organometallic scaffold whose unique electronic properties, stability, and modularity have enabled a broad range of catalytic and sensing applications. This review critically examines recent advances in Fc-based systems for hydrogen evolution and carbon dioxide (CO2) conversion, [...] Read more.
Ferrocene (Fc) is a redox-active organometallic scaffold whose unique electronic properties, stability, and modularity have enabled a broad range of catalytic and sensing applications. This review critically examines recent advances in Fc-based systems for hydrogen evolution and carbon dioxide (CO2) conversion, encompassing electrochemical, photochemical, and thermochemical strategies. Fc serves diverse functions: it operates as a reversible redox mediator, an electron reservoir, a ligand framework, and a structural modulator. Each role contributes differently to enhancing catalytic performance, improving selectivity, or increasing operational stability. We highlight how Fc integration facilitates proton-coupled electron transfer in hydrogen evolution, supports selective CO2 reduction in molecular and hybrid catalysts, and promotes efficient CO2 fixation and capture within functionalised frameworks. Emerging applications in electrosynthetic organic transformations are also discussed. Together, these findings position Fc as a foundational motif for designing future electrocatalytic and carbon management platforms. Full article
Show Figures

Figure 1

7 pages, 1785 KiB  
Proceeding Paper
Optimizing a Cu-Ni Nanoalloy-Coated Mesoporous Carbon for Efficient CO2 Electroreduction
by Manal B. Alhamdan, Ahmed Bahgat Radwan and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 2; https://doi.org/10.3390/materproc2025022002 - 16 Jul 2025
Viewed by 271
Abstract
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. [...] Read more.
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. By synthesizing copper–nickel nanoparticles through chemical reduction and depositing them on porous carbon, this research aimed to optimize catalyst loading and understand the structure–activity relationships. Catalyst performance was evaluated using chronoamperometry and linear sweep voltammetry (LSV). The results showed that 12 wt% catalyst loading achieved optimal CO2 reduction, outperforming its 36 wt% counterpart by balancing the catalyst quantity. This study reveals that 12 wt% Cu-Ni loading provides a higher CO2 reduction current density and greater long-term stability than 36 wt% loading, owing to better nanoparticle dispersion and reduced aggregation. Unlike previous Cu-Ni/mesoporous carbon studies, this work uniquely compares different loadings to directly correlate the structure, electrochemical performance, and catalyst durability. Full article
Show Figures

Figure 1

Back to TopTop