Effect of the Growth Period of Tree Leaves and Needles on Their Fuel Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Examined Samples
2.2. Washing Procedure
2.3. Sample Preparation
2.4. Sample Characteristics
3. Results and Discussion
3.1. Changes in Moisture Content
3.2. Changes in Calorific Value
3.3. Changes in Ash Content
3.4. Changes in Organic Matter
3.5. Changes in Mercury Content
3.6. Implications from Observed Changes in Leaves and Needles During the Growth Period
3.7. Comparison of Leaves and Needles with Other Types of Waste Biomass
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalak, T. Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. Energies 2023, 16, 1783. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Vassilev, V.S. Advantages and Disadvantages of Composition and Properties of Biomass in Comparison with Coal: An Overview. Fuel 2015, 158, 330–350. [Google Scholar] [CrossRef]
- Králík, T.; Knápek, J.; Vávrová, K.; Outrata, D.; Horák, M.; Janota, L.; Jablonská, Š. Biomass Price as a Key Factor for the Further Development of Biogas and Biomethane Use—Methodology and Policy Implications. Sustain. Energy Technol. Assess. 2023, 60, 103492. [Google Scholar] [CrossRef]
- Ryšavý, J.; Čespiva, J.; Kuboňová, L.; Dej, M.; Szramowiat-Sala, K.; Molchanov, O.; Niedzwiecki, L.; Yan, W.-M.; Thangavel, S. Co-Gasification of Pistachio Shells with Wood Pellets in a Semi-Industrial Hybrid Cross/Updraft Reactor for Producer Gas and Biochar Production. Fire 2024, 7, 87. [Google Scholar] [CrossRef]
- Guo, S.; Kumar Awasthi, M.; Wang, Y.; Xu, P. Current Understanding in Conversion and Application of Tea Waste Biomass: A Review. Bioresour. Technol. 2021, 338, 125530. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-G.; Cho, E.-J.; Maskey, S.; Nguyen, D.-T.; Bae, H.-J. Value-Added Products from Coffee Waste: A Review. Molecules 2023, 28, 3562. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, F.L.F.; Martins, M.F.; Munajat, N.F.; Cruz, G.; Pan, R.; Silva, A.V.S.; Wu, Y.; Azevedo, H.A.M.; Lyrio, P.H.C.; Maciel, I.L.; et al. Waste-to-Energy from Marine Biomass and Processing Wastes: A Review. Biomass Bioenergy 2025, 198, 107835. [Google Scholar] [CrossRef]
- Kim, G.; Choi, S.-K.; Seok, J.H. Does Biomass Energy Consumption Reduce Total Energy CO2 Emissions in the US? J. Policy Model. 2020, 42, 953–967. [Google Scholar] [CrossRef]
- Cherubini, F.; Petwrs, G.P.; Berntsen, T.; Strømman, A.H.; Hertwich, E. CO2 Emissions from Biomass Combustion for Bioenergy: Atmospheric Decay and Contribution to Global Warming. GCB Bioenergy 2011, 3, 413–426. [Google Scholar] [CrossRef]
- Singh, R.; Das, R.; Sangwan, S.; Rohatgi, B.; Khanam, R.; Peera, S.K.P.G.; Das, S.; Lyngdoh, Y.A.; Langyan, S.; Shukla, A.; et al. Utilisation of Agro-Industrial Waste for Sustainable Green Production: A Review. Environ. Sustain. 2021, 4, 619–636. [Google Scholar] [CrossRef]
- Ryšavý, J.; Serenčíšová, J.; Horák, J.; Ochodek, T. The Co-Combustion of Pellets with Pistachio Shells in Residential Units Additionally Equipped by Pt-Based Catalyst. Biomass Convers. Biorefinery 2023, 13, 16511–16527. [Google Scholar] [CrossRef]
- Ryšavý, J.; Horák, J.; Kuboňová, L.; Jaroch, M.; Hopan, F.; Krpec, K.; Kubesa, P. Beech Leaves Briquettes as Fuel for a Home Combustion Unit. In Energy Production and Management in the 21st Century IV; Syngellakis, S., Magaril, E., Al-Kayiem, H., Eds.; WIT Press: Southampton, UK, 2020; pp. 75–85. [Google Scholar]
- Fernandes, E.R.K.; Marangoni, C.; Souza, O.; Sellin, N. Thermochemical Characterization of Banana Leaves as a Potential Energy Source. Energy Convers. Manag. 2013, 75, 603–608. [Google Scholar] [CrossRef]
- Tin, K.K.; Taweepreda, W.; Singh, A.; Wagri, N.K.; Kumar, A. Fallen Leaves to Sustainable Energy Solution: Review on Hydrogen Production. RSC Sustain. 2024, 2, 2751–2767. [Google Scholar] [CrossRef]
- Ryšavý, J.; Horák, J.; Kuboňová, L.; Jaroch, M.; Hopan, F.; Krpec, K.; Kubesa, P. Beech Leaves Briquettes’ and Standard Briquettes’ Combustion: Comparison of Flue Gas Composition. Int. J. Energy Prod. Manag. 2021, 6, 32–44. [Google Scholar] [CrossRef]
- Langsdorf, A.; Volkmar, M.; Holtmann, D.; Ulber, R. Material Utilization of Green Waste: A Review on Potential Valorization Methods. Bioresour. Bioprocess. 2021, 8, 19. [Google Scholar] [CrossRef]
- de Oliveira Maia, B.G.; Souza, O.; Marangoni, C.; Hotza, D.; Oliveira, A.P.N.; Sellin, N. Production and Characterization of Fuel Briquettes from Banana Leaves Waste. Chem. Eng. Trans. 2014, 37, 439–444. [Google Scholar] [CrossRef]
- Suyatno, S.; Ghazidin, H.; Putra, H.P.; Kuswa, F.M.; Prayoga, M.Z.E.; Setiyawan, A.; Prabowo, P.; Kusmiyati, K.; Supriatna, N.K.; Darmawan, A.; et al. Comprehensive Experimental Assessment of Samanea Saman Wood and Leaves Waste Combustion in the Aspect of Ash-Related Problem. Bioresour. Technol. Rep. 2024, 26, 101852. [Google Scholar] [CrossRef]
- Song, G.; Hou, J.; Li, Y.; Zhang, J.; He, N. Leaf Caloric Value from Tropical to Cold-Temperate Forests: Latitudinal Patterns and Linkage to Productivity. PLoS ONE 2016, 11, e0157935. [Google Scholar] [CrossRef]
- Mudryk, K.; Jewiarz, M.; Wróbel, M.; Niemiec, M.; Dyjakon, A. Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel. Energies 2021, 14, 818. [Google Scholar] [CrossRef]
- Dziok, T.; Kołodziejska, E.K.; Kołodziejska, E.L. Mercury Content in Woody Biomass and Its Removal in the Torrefaction Process. Biomass Bioenergy 2020, 143, 105832. [Google Scholar] [CrossRef]
- Cazzolla Gatti, R.; Reich, P.B.; Gamarra, J.G.P.; Crowther, T.; Hui, C.; Morera, A.; Bastin, J.-F.; de-Miguel, S.; Nabuurs, G.-J.; Svenning, J.-C.; et al. The Number of Tree Species on Earth. Proc. Natl. Acad. Sci. USA 2022, 119, e2115329119. [Google Scholar] [CrossRef]
- Riipi, M.; Ossipov, V.; Lempa, K.; Haukioja, E.; Koricheva, J.; Ossipova, S.; Pihlaja, K. Seasonal Changes in Birch Leaf Chemistry: Are There Trade-Offs between Leaf Growth and Accumulation of Phenolics? Oecologia 2002, 130, 380–390. [Google Scholar] [CrossRef]
- Terzaghi, E.; Wild, E.; Zacchello, G.; Cerabolini, B.E.L.; Jones, K.C.; Di Guardo, A. Forest Filter Effect: Role of Leaves in Capturing/Releasing Air Particulate Matter and Its Associated PAHs. Atmos. Environ. 2013, 74, 378–384. [Google Scholar] [CrossRef]
- Mediavilla, S.; Escudero, A. Relative Growth Rate of Leaf Biomass and Leaf Nitrogen Content in Several Mediterranean Woody Species. Plant Ecol. 2003, 168, 321–332. [Google Scholar] [CrossRef]
- Park, Y.J.; Lee, J.S.; Park, S.; Kim, Y.J.; Mani, V.; Lee, K.; Kwon, S.J.; Park, S.U.; Kim, J.K. Metabolite Changes in Soybean (Glycine Max) Leaves during the Entire Growth Period. ACS Omega 2023, 8, 41718–41727. [Google Scholar] [CrossRef]
- Hu, L.; Wang, C.; Guo, X.; Chen, D.; Zhou, W.; Chen, X.; Zhang, Q. Flavonoid Levels and Antioxidant Capacity of Mulberry Leaves: Effects of Growth Period and Drying Methods. Front. Plant Sci. 2021, 12, 684974. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.A.; Furuta, N.; Lim, H. Bin Quantitative Mapping of Elements in Basil Leaves (Ocimum Basilicum) Based on Cesium Concentration and Growth Period Using Laser Ablation ICP-MS. Chemosphere 2018, 190, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Krakow—LIFE URBANGREEN Discover the Trees of Krakow. Available online: https://krakow.lifeurbangreen.eu/en/tree-species/ (accessed on 23 July 2025).
- Cincotta, C.L.; Adams, J.M.; Holzapfel, C. Testing the Enemy Release Hypothesis: A Comparison of Foliar Insect Herbivory of the Exotic Norway Maple (Acer Platanoides L.) and the Native Sugar Maple (A. Saccharum L.). Biol. Invasions 2009, 11, 379–388. [Google Scholar] [CrossRef]
- Ianovici, N.; Latis, A.; Radac, A. Foliar Traits of Juglans Regia, Aesculus Hippocastanum and Tilia Platyphyllos in Urban Habitat. Rom. Biotechnol. Lett. 2017, 22, 12400–12408. [Google Scholar]
- Fellner, H.; Dirnberger, G.F.; Sterba, H. Specific Leaf Area of European Larch (Larix Decidua Mill.). Trees 2016, 30, 1237–1244. [Google Scholar] [CrossRef]
- Dziewanowska, M.; Dobek, T. Energy-Related and Ecological Evaluation of Heat Acquisition Process during Combustion of Leaves Picked in Urban Areas. Agric. Eng. 2009, 110, 115–122. [Google Scholar]
- Zubkova, V.; Strojwas, A.; Bielecki, M. Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves. Energies 2021, 14, 2091. [Google Scholar] [CrossRef]
- Maj, G. Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector. Energies 2018, 11, 1516. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, V.; Thakur, M.; Singh, G.; Bhargava, B. A Systematic Review on Mitigation of Common Indoor Air Pollutants Using Plant-Based Methods: A Phytoremediation Approach. Air Qual. Atmos. Health 2023, 16, 1501–1527. [Google Scholar] [CrossRef]
- Janczak, D.; Lucejko, J.J.; Zborowska, M.; Francesconi, S.; Krupka, M.; Pochwatka, P.; Gikas, P.; Czekała, W.; Qiao, W.; Dach, J. Evaluation of Tree Leaf Properties for Potential Biogas Production. SSRN, 2025; prepub. [Google Scholar] [CrossRef]
- Hosokai, S.; Matsuoka, K.; Kuramoto, K.; Suzuki, Y. Modification of Dulong’s Formula to Estimate Heating Value of Gas, Liquid and Solid Fuels. Fuel Process. Technol. 2016, 152, 399–405. [Google Scholar] [CrossRef]
- Parzych, A. Urban Leaf Litters as a Potential Compost Component. J. Ecol. Eng. 2022, 23, 250–260. [Google Scholar] [CrossRef]
- Dziok, T.; Bury, M.; Bytnar, K.; Burmistrz, P. Possibility of Using Alternative Fuels in Polish Power Plants in the Context of Mercury Emissions. Waste Manag. 2021, 126, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, J.; Altimir, N.; Hakola, H.; Rostás, M.; Raivonen, M.; Vestenius, M.; Aaltonen, H.; Riederer, M.; Bäck, J. Role of Needle Surface Waxes in Dynamic Exchange of Mono- and Sesquiterpenes. Atmos. Chem. Phys. 2016, 16, 7813–7823. [Google Scholar] [CrossRef]
- Cahyanti, M.N.; Doddapaneni, T.R.K.C.; Kikas, T. Biomass Torrefaction: An Overview on Process Parameters, Economic and Environmental Aspects and Recent Advancements. Bioresour. Technol. 2020, 301, 122737. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, D.; Wei, L.; Zhang, X.; Song, B. Bioaccumulation of Heavy Metals in Plant Leaves from Yan׳an City of the Loess Plateau, China. Ecotoxicol Environ Saf 2014, 110, 82–88. [Google Scholar] [CrossRef]
- Tomašević, M.; Rajšić, S.; Đorđević, D.; Tasić, M.; Krstić, J.; Novaković, V. Heavy Metals Accumulation in Tree Leaves from Urban Areas. Environ. Chem. Lett. 2004, 2, 151–154. [Google Scholar] [CrossRef]
- European Parliament and of the Council Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 Amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652. 2023. Available online: https://eur-lex.europa.eu/eli/dir/2023/2413/oj/eng (accessed on 24 June 2025).
- Suzuki, T.; Nakajima, H.; Ikenaga, N.; Oda, H.; Miyake, T. Effect of Mineral Matters in Biomass on the Gasification Rate of Their Chars. Biomass Convers. Biorefinery 2011, 1, 17–28. [Google Scholar] [CrossRef]
- Piepenschneider, M.; Nurmatov, N.; Bühle, L.; Hensgen, F.; Wachendorf, M. Chemical Properties and Ash Slagging Characteristics of Solid Fuels from Urban Leaf Litter. Waste Biomass Valorization 2016, 7, 625–633. [Google Scholar] [CrossRef]
- Dhaundiyal, A.; Gupta, V.K. The Analysis of Pine Needles as a Substrate for Gasification. Hydro Nepal J. Water Energy Environ. 2014, 15, 73–81. [Google Scholar] [CrossRef]
- Kumar, S.; MuthuDineshkumar, R.; Angkayarkan Vinayakaselvi, M.; Ramanathan, A. Enhancing Environmental Sustainability through Waste to Energy Conversion of Neem Leaves. Mater. Today Proc. 2021, 46, 10060–10064. [Google Scholar] [CrossRef]
- Malak, K.; de la Seiglière, C.; Fernández, C.; Swaminathan, M.; Sebastián, A.; Arora, D. Green Coal: A New Energy Source from Leaves. Energy Procedia 2016, 100, 484–491. [Google Scholar] [CrossRef]
- Pottmaier, D.; Costa, M.; Farrow, T.; Oliveira, A.A.M.; Alarcon, O.; Snape, C. Comparison of Rice Husk and Wheat Straw: From Slow and Fast Pyrolysis to Char Combustion. Energy Fuels 2013, 27, 7115–7125. [Google Scholar] [CrossRef]
- Dziok, T.; Bury, M.; Adamczak, J.; Palka, J.; Borovec, K. Utilization of Used Textiles for Solid Recovered Fuel Production. Environ. Sci. Pollut. Res. 2024, 31, 28835–28845. [Google Scholar] [CrossRef] [PubMed]
- Hopan, F.; Chmelář, M.; Kremer, J.; Dej, M.; Vojtíšek-Lom, M.; Vicente, E.D.; Ryšavý, J.; Krpec, K.; Kuboňová, L.; Molčanov, A.; et al. In-Situ Investigation of Real-World Emissions from 111 Measurements on Solid Fuel Household Boilers. Sci. Total Environ. 2025, 981, 179564. [Google Scholar] [CrossRef] [PubMed]
- Koppejan, J.; van Loo, S. The Handbook of Biomass Combustion and Co-Firing; Routledge: London, UK, 2012; ISBN 9781136553783. [Google Scholar]
- Zink, J. Combustion Handbook (Industrial Combustion); Baukal, C., Ed.; CPR Press: Tulsa, OK, USA, 2021; Volume 1, ISBN 0-8493-2337-1. [Google Scholar]
Tree Species | Month of Sampling | Mad [%] | Aad [%] | LHVad [kJ/kg] | Cad [%] | Had [%] | St.ad [%] | Hgad [µg/kg] |
---|---|---|---|---|---|---|---|---|
Norway maple | V | 6.7 | 6.5 | 16,820 | 44.4 | 6.41 | 0.20 | 12 |
VI | 6.8 | 6.6 | 17,020 | 44.8 | 6.47 | 0.16 | 16 | |
VII | 6.6 | 8.5 | 16,606 | 44.1 | 6.15 | 0.16 | 26 | |
VIII | 6.8 | 9.2 | 16,357 | 43.6 | 6.05 | 0.15 | 30 | |
IX | 6.9 | 10.0 | 16,279 | 43.4 | 5.84 | 0.14 | 46 | |
X | 8.0 | 11.9 | 16,158 | 43.2 | 5.69 | 0.08 | 47 | |
Horse chestnut | V | 6.6 | 6.4 | 16,760 | 45.0 | 6.37 | 0.18 | 12 |
VI | 7.2 | 7.3 | 16,277 | 44.0 | 5.93 | 0.16 | 24 | |
VII | 7.1 | 7.5 | 16,103 | 43.7 | 5.83 | 0.13 | 29 | |
VIII | 7.2 | 8.0 | 16,290 | 44.0 | 5.86 | 0.13 | 38 | |
IX | 7.7 | 8.1 | 16,097 | 43.6 | 5.80 | 0.11 | 41 | |
X | 9.2 | 9.1 | 16,537 | 44.3 | 5.24 | 0.08 | 58 | |
European larch | V | 5.3 | 4.1 | 17,662 | 47.2 | 7.63 | 0.16 | 15 |
VI | 6.0 | 3.9 | 18,019 | 47.8 | 6.78 | 0.15 | 19 | |
VII | 5.7 | 4.5 | 17,804 | 47.1 | 6.85 | 0.14 | 31 | |
VIII | 5.9 | 5.3 | 17,688 | 46.8 | 6.9 | 0.14 | 36 | |
IX | 6.5 | 6.5 | 17,552 | 46.2 | 6.51 | 0.14 | 41 | |
X | 8.3 | 8.3 | 17,162 | 44.7 | 5.76 | 0.12 | 57 |
Type of Biomass | Mad [%] | Aad [%] | LHVad [kJ/kg] | Cad [%] | Had [%] | St.ad [%] | Ref. |
---|---|---|---|---|---|---|---|
Leaves (avg.) | 8.6 | 10.5 | 16,695 | 43.7 | 5.50 | 0.08 | from this work |
Needles | 8.3 | 8.3 | 17,162 | 44.7 | 5.76 | 0.12 | from this work |
Beech leaves (briquetted) | 8.9 | 12.9 | 15,640 | 42.6 | 4.62 | 0.09 | [15] |
Pine needles | 4.0 | 3.4 | 17,550 | 53.7 | 5.52 | 0.20 | [48] |
Neem leaves | 12.1 | 18.0 | 15,580 | 29.3 | 4.38 | 0.22 | [49] |
Banana leaves (briquetted) | 7.2 | 10.7 | 16,150 | 44.3 | 6.23 | <0.30 | [17] |
Willow leaves | 3.5 | 0.7 | 18,140 | 45.8 | 6.24 | n.d. | [50] |
Bark | 7.9 | 4.7 | 15,975 | 50.0 | 6.28 | 0.04 | [21] |
Rice husks | 6.7 | 13.0 | n.d. | 39.3 | 5.70 | n.d. | [51] |
Wheat straw | 6.3 | 16.5 | n.d. | 36.7 | 5.10 | n.d. | [51] |
Used cotton | 3.4 | 0.6 | 15,357 | 43.2 | 7.64 | 0.10 | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziok, T.; Łaskawska, J.; Hopan, F. Effect of the Growth Period of Tree Leaves and Needles on Their Fuel Properties. Energies 2025, 18, 4109. https://doi.org/10.3390/en18154109
Dziok T, Łaskawska J, Hopan F. Effect of the Growth Period of Tree Leaves and Needles on Their Fuel Properties. Energies. 2025; 18(15):4109. https://doi.org/10.3390/en18154109
Chicago/Turabian StyleDziok, Tadeusz, Justyna Łaskawska, and František Hopan. 2025. "Effect of the Growth Period of Tree Leaves and Needles on Their Fuel Properties" Energies 18, no. 15: 4109. https://doi.org/10.3390/en18154109
APA StyleDziok, T., Łaskawska, J., & Hopan, F. (2025). Effect of the Growth Period of Tree Leaves and Needles on Their Fuel Properties. Energies, 18(15), 4109. https://doi.org/10.3390/en18154109