Optimizing Gear Selection and Engine Speed to Reduce CO2 Emissions in Agricultural Tractors
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fuel Consumption and Pollutant Emissions
3.2. Operational Speed and Efficiency
3.3. Working Depth and Slippage
4. Conclusions
- (a)
- Fuel consumption and CO2 emissions were reduced by 20 to 40% by optimizing gears and working speeds based on technical standards, but the other parameters evaluated did not differ with the reduction in engine agricultural tractor speed regardless of the implement used, ensuring operational quality.
- (b)
- The reduced gears must follow technical recommendations for operator training and best practices for machine driving.
- (c)
- The correct selection of working gears in the field and diesel engine speeds is crucial for sustainability and reduced environmental impact.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stewart, K.; Balmford, A.; Scheelbeek, P.; Doherty, A.; Garnett, E.E. Changes in greenhouse gas emissions from food supply in the United Kingdom. J. Clean. Prod. 2023, 410, 137273. [Google Scholar] [CrossRef]
- Moinfar, A.M.; Shahgholi, G.; Gilandeh, Y.A.; Gundoshmian, T.M. The Effect of the Tractor Driving System on Its Performance and Fuel Consumption. Energy 2020, 202, 117803. [Google Scholar] [CrossRef]
- Melo, R.R.; Tofoli, F.L.; Daher, S.; Antunes, F.L.M. Wheel Slip Control Applied to an Electric Tractor for Improving Tractive Efficiency and Reducing Energy Consumption. Sensors 2022, 22, 4527. [Google Scholar] [CrossRef]
- Mocera, F.; Somà, A.; Martelli, S.; Martini, V. Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications. Energies 2023, 16, 6601. [Google Scholar] [CrossRef]
- Kim, W.S.; Baek, S.M.; Baek, S.Y.; Jeon, H.H.; Siddique, M.A.A.; Kim, T.J.; Lim, R.G.; Kim, Y.J. Evaluation of exhaust emissions of agricultural tractors using portable emissions measurement system in Korean paddy field. Sci. Rep. 2024, 14, 3491. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Xu, C.; Li, J.; Liu, S.; Zhang, X. Evaluating agricultural tractors emissions using remote monitoring and emission tests in Beijing China. Biosyst. Eng. 2022, 213, 105–118. [Google Scholar] [CrossRef]
- Moreno, F.G.; Zimmermann, G.G.; Jasper, S.P.; Ferraz, R.S.; Savi, D. Sensors installation position and its interference on the precision of monitoring maize sowing. Smart Agric. Technol. 2023, 4, 100150. [Google Scholar] [CrossRef]
- Luz, F.B.; Gonzaga, L.C.; Castioni, G.A.F.; de Lima, R.P.; Carvalho, J.L.N.; Cherubin, M.R. Controlled traffic farming maintains soil physical functionality in sugarcane fields. Geoderma 2023, 432, 116427. [Google Scholar] [CrossRef]
- Gallo, W.M.; Santos, J.S.G.; Júnior, H.M.; Garcia, A.P.; Albiero, D. Maneuvers: Operational performance of sugarcane harvesters. Rev. Agric. Neotrop. 2023, 1, 10. [Google Scholar] [CrossRef]
- Jaworski, C.C.; Krzywoszynska, A.; Leake, J.R.; Dicks, L.V. Sustainable soil management in the United Kingdom: A survey of current practices and how they relate to the principles of regenerative agriculture. Soil Use Manag. 2024, 40, e12908. [Google Scholar] [CrossRef]
- Júnnyor, W.S.G.; De Maria, I.C.; Araujo-Junior, C.F.; Diserens, E.; Severiano, E.C.; Farhate, C.V.V.; Souza, Z.M. Conservation systems change soil resistance to compaction caused by mechanised harvesting. Ind. Crops Prod. 2022, 177, 114532. [Google Scholar] [CrossRef]
- Jung, E.A.; Zimmermann, G.G.; Mendonça, W.S.; Jasper, S.P.; Gracietti, E.A. Operational and Energy Performance of a Powershift Transmission Tractor During Tillage at Different Speeds. Rev. Bras. Eng. Agrícola Ambient. 2025, 12, e287659. Available online: https://www.agriambi.com.br/revista/v29n12/v29n12a05.pdf (accessed on 25 May 2025).
- A Al-Sager, S.M.; Almady, S.S.; Marey, S.A.; Al-Hamed, S.A.; Aboukarima, A.M. Prediction of Specific Fuel Consumption of a Tractor during the Tillage Process Using an Artificial Neural Network Method. Agronomy 2024, 14, 492. [Google Scholar] [CrossRef]
- Bruno, F.; Luigi, F.; Giulia, P.; Valda, R. Influence of Ballast and Tyre Inflation Pressure on Traction Performance of Agricultural Tractors Evaluated in Trials on Concrete Track. AgriEngineering 2025, 7, 109. [Google Scholar] [CrossRef]
- Renius, K.T. Fundamentals of Tractor Design; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Corrêa Júnior, D.; Barbosa, B.H.G.; Marques Filho, A.C.; Volpato, C.E.S.; Paula, F.O.D.; Andrade, D.H.C.; Fontes, G.H.O.; Magalhães, R.R.; Ferreira, D.D. Embedded system for real-time monitoring of agricultural tractors slipping and fuel consumption. Eng. Agríc. 2024, 44, e20240038. [Google Scholar] [CrossRef]
- Paciolla, F.; Łyp-Wrońska, K.; Quartarella, T.; Pascuzzi, S. Simulation Analysis of Energy Inputs Required by Agricultural Machines to Perform Field Operations. AgriEngineering 2025, 7, 7. [Google Scholar] [CrossRef]
- Sayed, H.A.; Abdelhamid, M.A.; Abdelkader, T.K.; Lai, Q.; Mousa, A.M.; Refai, M. Machine learning and analytic hierarchy process integration for selecting a sustainable tractor. Sci. Rep. 2024, 14, 26735. [Google Scholar] [CrossRef]
- Herranz-Matey, I. Tractor Power Take-Off and Drawbar Pull Performance and Efficiency Evolution Analysis Methodology and Model: A Case Study. Agriculture 2025, 15, 354. [Google Scholar] [CrossRef]
- Dallmann, T.; Menon, A. Technology Pathways for Diesel Engines Used in Non-Road Vehicles and Equipment; International Council on Clean Transportation (ICCT): Washington, DC, USA, 2016. [Google Scholar]
- Kushwah, A.; Chouriya, A.; Tewari, V.K.; Gupta, C.; Chowdhury, M.; Shrivastava, P.; Bhagat, P. A novel embedded system for tractor implement performance mapping. Cogent Eng. 2024, 11, 2311093. [Google Scholar] [CrossRef]
- Oliveira, D.M.S.; Santos, R.S.; Chizzotti, F.H.M.; Bretas, I.L.; Franco, A.L.C.; Lima, R.P.; Freitas, D.A.F.; Cherubin, M.R.; Cerri, C.E.P. Crop, livestock, and forestry integration to reconcile soil health, food production, and climate change mitigation in the Brazilian Cerrado: A review. Geoderma Reg. 2024, 37, e00796. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Wal, T.V.d.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Kamyab, H.; SaberiKamarposhti, M.; Hashim, H.; Yusuf, M. Carbon dynamics in agricultural greenhouse gas emissions and removals: A comprehensive review. Carbon Lett. 2024, 34, 265–289. [Google Scholar] [CrossRef]
- Sun, C.; Xia, E.; Huang, J.; Tong, H. Coupling and coordination of food security and agricultural carbon emission efficiency: Changing trends, influencing factors, and different government priority scenarios. J. Environ. Manag. 2024, 370, 122533. [Google Scholar] [CrossRef]
- Savcı, S.; Özoğul, G. The Effects of Agricultural Machinery and End of Its Economic Life Tractors on The Environment. Bozok J. Sci. 2025, 3, 1–9. Available online: https://dergipark.org.tr/en/pub/bjs/issue/92106/1618918#article_cite (accessed on 25 May 2025).
- Damanauskas, V.; Janulevičius, A. Validation of Criteria for Predicting Tractor Fuel Consumption and CO2 Emissions When Ploughing Fields of Different Shapes and Dimensions. AgriEngineering 2023, 5, 2408–2422. [Google Scholar] [CrossRef]
- Janulevičius, A.; Damanauskas, V. Validation of relationships between tractor performance indicators, engine control unit data and field dimensions during tillage. Mech. Syst. Signal Process. 2023, 191, 110201. [Google Scholar] [CrossRef]
- Jensen, T.A.; Antille, D.L.; Tullberg, J.N. Improving On-farm Energy Use Efficiency by Optimizing Machinery Operations and Management: A Review. Agric. Res. 2025, 14, 15–33. [Google Scholar] [CrossRef]
- Grisso, R.D. “Gear Up and Throttle Down” to Save Fuel; Virginia Cooperative Extension, Virginia Tech: Petersburg, VA, USA, 2020; pp. 1–8. Available online: https://www.pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/442/442-450/BSE-326.pdf (accessed on 28 May 2025).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.Á.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; de Filho, J.C.A.; Oliveira, J.B.; Cunha, T.J.F. Brazilian Soil Classification System; National Center for Soil Research: Rio de Janeiro, Brazil, 2018; ISBN 978-85-7035-198-2. [Google Scholar]
- IUSS Working Group. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Manzone, M.; Calvo, A. Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy. Renew. Energy 2016, 86, 675–681. [Google Scholar] [CrossRef]
- Šarauskis, E.; Vaitauskienė, K.; Romaneckas, K.; Jasinskas, A.; Butkus, V.; Kriaučiūnienė, Z. Fuel consumption and CO2 emission analysis in different strip tillage scenarios. Energy 2017, 118, 957–968. [Google Scholar] [CrossRef]
- Gozubuyuk, Z.; Sahin, U.; Celik, A. Operational and yield performances and fuel-related CO2 emissions under different tillage-sowing practices in a rainfed crop rotation. Int. J. Environ. Sci. Technol. 2020, 17, 4563–4576. [Google Scholar] [CrossRef]
- Górski, D.; Gaj, R.; Ulatowska, A.; Miziniak, W. Effect of Strip-Till and Variety on Yield and Quality of Sugar Beet against Conventional Tillage. Agriculture 2022, 12, 166. [Google Scholar] [CrossRef]
- Stošić, M.; Ivezić, V.; Tadić, V. Cultivation systems according to greenhouse gas (GHG) emissions and fuel consumption mitigation. Environ. Sci. Pollut. Res. 2021, 28, 16492–16503. [Google Scholar] [CrossRef]
- Mamkagh, A.M. Effect of Tillage Speed, Depth, Ballast Weight and Tire Inflation Pressure on the Fuel Consumption of the Agricultural Tractor: A Review. J. Eng. Res. Rep. 2018, 3, 1–7. [Google Scholar] [CrossRef]
- Martins, M.B.; Marques Filho, A.C.; Seron, C.C.; Guimarães Júnnyor, W.S.; Vendruscolo, E.P.; Bortolheiro, F.P.A.P.; Blanco Bertolo, D.M.; Lopes, A.G.C.; Santana, L.S. Controlled Traffic Farm: Fuel Demand and Carbon Emissions in Soybean Sowing. AgriEngineering 2024, 6, 1794–1806. [Google Scholar] [CrossRef]
- Obalalu, A.M.; Alqarni, M.M.; Odetunde, C.; Memon, M.A.; Olayemi, O.A.; Shobo, A.B.; Mahmoud, E.E.; Ali, M.R.; Sadat, R.; Hendy, A.S. Improving agricultural efficiency with solar-powered tractors and magnetohydrodynamic entropy generation in copper–silver nanofluid flow. Case Stud. Therm. Eng. 2023, 51, 103603. [Google Scholar] [CrossRef]
- Oduma, O.; Ugwu, E.C.; Ehiomogue, P.; Igwe, J.E.; Ntunde, D.I.; Agu, C.S. Modelling of the effects of working width, tillage depth and operational speed on draft and power requirements of disc plough in sandy-clay soil in South-East Nigeria. Sci. Afr. 2023, 21, e01815. [Google Scholar] [CrossRef]
- Dong, X.; Jin, J.; Jia, Z.; Qi, Y.; Chen, T.; He, L.; Zou, M. Design and passability study of soil-plowing wheel facing soft terrain. J. Terramech. 2025, 117, 101002. [Google Scholar] [CrossRef]
- Martins, M.B.; Bortolheiro, F.P.D.A.P.; Marques Filho, A.C.; Blanco Bertolo, D.M.; Sobrinho, R.L.; Okla, M.K.; Alaraidh, I.A.; AbdElgawad, H. Productivity and Energy Utilization in Sugarcane Soil Tillage Systems. Sugar Tech 2025, 27, 58–66. [Google Scholar] [CrossRef]
- Smaniotto, A.O.; Castoldi, G.; Laurindo, A.K.O.A.; Silva, T.L.; Tempesta, I.F.; Paim, T.P.; Costa, C.H.M.; Cruz, S.C.S. Subsoiling Operations Concurrent to the Distribution of Acidity Amendments in the Soil Profile: The Response from Soybeans. Agronomy 2024, 14, 1893. [Google Scholar] [CrossRef]
- Soylu, S.; Çarman, K. Fuzzy logic based automatic slip control system for agricultural tractors. J. Terramech. 2021, 95, 25–32. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Caballero-Calvo, A.; Fernández-Gálvez, J. Evaluating the Performance of a Novel Digital Slippage System for Tractor Wheels Across Varied Tillage Methods and Soil Textures. Agriculture 2024, 14, 1957. [Google Scholar] [CrossRef]
- Zhang, S.-l.; Wen, C.-k.; Ren, W.; Luo, Z.-h.; Xie, B.; Zhu, Z.-x.; Chen, Z.-j. A joint control method considering travel speed and slip for reducing energy consumption of rear wheel independent drive electric tractor in ploughing. Energy 2023, 263, 126008. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, M.B.; Conceição, J.S.; Marques Filho, A.C.; Alves, B.L.; Bertolo, D.M.B.; Seron, C.d.C.; Gomides, J.F.F.B.; Vendruscolo, E.P. Optimizing Gear Selection and Engine Speed to Reduce CO2 Emissions in Agricultural Tractors. AgriEngineering 2025, 7, 250. https://doi.org/10.3390/agriengineering7080250
Martins MB, Conceição JS, Marques Filho AC, Alves BL, Bertolo DMB, Seron CdC, Gomides JFFB, Vendruscolo EP. Optimizing Gear Selection and Engine Speed to Reduce CO2 Emissions in Agricultural Tractors. AgriEngineering. 2025; 7(8):250. https://doi.org/10.3390/agriengineering7080250
Chicago/Turabian StyleMartins, Murilo Battistuzzi, Jessé Santarém Conceição, Aldir Carpes Marques Filho, Bruno Lucas Alves, Diego Miguel Blanco Bertolo, Cássio de Castro Seron, João Flávio Floriano Borges Gomides, and Eduardo Pradi Vendruscolo. 2025. "Optimizing Gear Selection and Engine Speed to Reduce CO2 Emissions in Agricultural Tractors" AgriEngineering 7, no. 8: 250. https://doi.org/10.3390/agriengineering7080250
APA StyleMartins, M. B., Conceição, J. S., Marques Filho, A. C., Alves, B. L., Bertolo, D. M. B., Seron, C. d. C., Gomides, J. F. F. B., & Vendruscolo, E. P. (2025). Optimizing Gear Selection and Engine Speed to Reduce CO2 Emissions in Agricultural Tractors. AgriEngineering, 7(8), 250. https://doi.org/10.3390/agriengineering7080250