Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = reduce medicinal waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 10654 KB  
Review
Valorization of Agro-Food Plant Wastes: Bioactive Compound Profiles and Biotechnological Potential of Twenty Crops
by Noori M. Cata Saady, Alejandro Vázquez Hernández, Karla Lucia Flores Servin, Jose Zuniga Rodriguez, Md Ariful Haque, Michael Kwaku Owusu, Sohrab Zendehboudi, Carlos Bazan and Juan Enrique Ruiz Espinoza
Recycling 2026, 11(1), 7; https://doi.org/10.3390/recycling11010007 - 5 Jan 2026
Viewed by 693
Abstract
Valorizing fruit and vegetable residues as renewable sources of bioactive compounds (BCs) is critical for advancing sustainable biotechnology. This review (i) assesses the occurrence, diversity and functionality of BCs in 20 edible plant residues; (ii) compares and classify them by botanical family and [...] Read more.
Valorizing fruit and vegetable residues as renewable sources of bioactive compounds (BCs) is critical for advancing sustainable biotechnology. This review (i) assesses the occurrence, diversity and functionality of BCs in 20 edible plant residues; (ii) compares and classify them by botanical family and residue type; (iii) reviews and evaluates the efficiency of conventional and green extraction and characterization techniques for recovering phytochemical and isolating phenolics (e.g., flavonoids and anthocyanins), carotenoids, alkaloids, saponins, and essential oils; and (iv) examines the BCs’ environmental, medical, and industrial applications. It synthesizes current knowledge on the phytochemical potential of these crops, highlighting their role in diagnostics, biomaterials, and therapeutic platforms. Plant-derived nanomaterials, enzymes, and structural matrices are employed in regenerative medicine and biosensing. Carrot- and pumpkin-based nanoparticles accelerate wound healing through antimicrobial and antioxidant protection. Spinach leaves serve as decellularized scaffolds that mimic vascular and tissue microenvironments. Banana fibers are used in biocompatible composites and sutures, and citrus- and berry-derived polyphenols improve biosensor stability and reduce signal interference. Agro-residue valorization reduces food waste and enables innovations in medical diagnostics, regenerative medicine, and circular bioeconomy, thereby positioning plant-derived BCs as a cornerstone for sustainable biotechnology. The BCs’ concentration in fruit and vegetable residues varies broadly (e.g., total phenolics (~50–300 mg GAE/g DW), anthocyanins (~100–600 mg C3G/g DW), and flavonoids (~20–150 mg QE/g DW)), depending on the crop and extraction method. By linking quantitative food waste hotspots with phytochemical potential, the review highlights priority streams for the circular-bioeconomy interventions and outlines research directions to close current valorization gaps. Full article
Show Figures

Figure 1

20 pages, 4787 KB  
Article
The Sustainable Synthesis of Silver and Gold Nanoparticles and Their Effect on the Growth of Metal Resistant Microorganisms
by Vira Hovorukha, Iryna Bida, Ruslan Mariychuk, Romana Smolkova, Adriana Eliašová, Vladyslav V. Lisnyak, Liudmyla M. Grishchenko, Hanna Maikova, Joanna Makuchowska-Fryc, Ewa Moliszewska and Oleksandr Tashyrev
Sustainability 2025, 17(22), 10232; https://doi.org/10.3390/su172210232 - 15 Nov 2025
Viewed by 630
Abstract
Silver and gold nanoparticles (NPs) have gained considerable attention in recent years due to their wide-ranging applications in medicine, agriculture, industry, and other fields where they may interact with the environment. Green synthesis of NPs supports sustainability by reducing chemical waste and energy [...] Read more.
Silver and gold nanoparticles (NPs) have gained considerable attention in recent years due to their wide-ranging applications in medicine, agriculture, industry, and other fields where they may interact with the environment. Green synthesis of NPs supports sustainability by reducing chemical waste and energy use while improving their biocompatibility through plant phytochemicals. Accordingly, it is important to assess the effects of metal NPs on microorganisms, which play vital roles in ecosystems and biogeochemical cycles. This study aimed to investigate microbial growth dynamics in the presence of green-synthesized silver and gold NPs (using an aqueous extract of Mentha × piperita leaves) and to evaluate potential mechanisms of their interaction. Microorganisms were cultivated in 96-well microtiter plates, and growth curves were analyzed alongside bacterial enumeration on Petri plates. Silver NPs affected the growth of Brevundimonas vesicularis USM1, Pseudarthrobacter oxydans USM2, and Pseudomonas putida USM4, although these strains exhibited partial resistance. In contrast, gold NPs did not inhibit the growth of the tested strains. The ability of Brevundimonas vesicularis USM1 to precipitate metal NPs highlights its potential for sustainable bioremediation applications. The findings contribute to a better understanding of the environmental impact and sustainability aspects of silver and gold NPs in microbial systems. Full article
Show Figures

Figure 1

17 pages, 438 KB  
Review
Research Progress in the Biocatalytic Conversion of Various Biomass Feedstocks for Terpenoid Production via Microbial Cell Factories
by Jingying Zhang, Ruijie Chen, Li Deng, Huan Liu and Fang Wang
Catalysts 2025, 15(10), 975; https://doi.org/10.3390/catal15100975 - 13 Oct 2025
Cited by 1 | Viewed by 994
Abstract
Terpenoids, as a class of natural products with extensive biological activities, hold broad application prospects in the fields of medicine, food, materials, and energy, with the global market scale projected to reach USD 10 billion by 2030. Traditional chemical synthesis and plant extraction [...] Read more.
Terpenoids, as a class of natural products with extensive biological activities, hold broad application prospects in the fields of medicine, food, materials, and energy, with the global market scale projected to reach USD 10 billion by 2030. Traditional chemical synthesis and plant extraction methods rely on petroleum and plant resources, suffering from problems such as environmental pollution, cumbersome procedures, low yields from plant sources, enantioselectivity, geographical constraints, and competition for resources. Biocatalytic conversion of biomass feedstocks via microbial cell factories serves as an environmentally friendly alternative for the synthesis of terpenoids, but current production mostly depends on starch-based glucose, which triggers issues of food security and competition for arable land and water resources. This review focuses on the biocatalytic conversion of non-food alternative carbon sources (namely lignocellulose, acetate, glycerol, and waste oils) in the microbial synthesis of terpenoids, systematically summarizing the current research status and cutting-edge advances. These carbon sources exhibit potential for sustainable production due to their low cost, wide availability, and ability to reduce resource competition, but they also face significant technical bottlenecks. We systematically analyze the current problems in the biocatalytic conversion process and put forward some available solutions. It is hoped that this study will provide theoretical and technical suggestions for breaking through the bottlenecks in the biocatalytic conversion of non-food carbon sources and promoting the efficient and sustainable production of terpenoids. Full article
(This article belongs to the Special Issue Sustainable Enzymatic Processes for Fine Chemicals and Biodiesel)
Show Figures

Figure 1

46 pages, 3900 KB  
Review
Beyond Packaging: A Perspective on the Emerging Applications of Biodegradable Polymers in Electronics, Sensors, Actuators, and Healthcare
by Reshma Kailas Kumar, Chaoying Wan and Paresh Kumar Samantaray
Materials 2025, 18(19), 4485; https://doi.org/10.3390/ma18194485 - 26 Sep 2025
Viewed by 1662
Abstract
Biopolymers have emerged as a transformative class of materials that reconcile high-performance functionality with environmental stewardship. Their inherent capacity for controlled degradation and biocompatibility has driven rapid advancements across electronics, sensing, actuation, and healthcare. In flexible electronics, these polymers serve as substrates, dielectrics, [...] Read more.
Biopolymers have emerged as a transformative class of materials that reconcile high-performance functionality with environmental stewardship. Their inherent capacity for controlled degradation and biocompatibility has driven rapid advancements across electronics, sensing, actuation, and healthcare. In flexible electronics, these polymers serve as substrates, dielectrics, and conductive composites that enable transient devices, reducing electronic waste without compromising electrical performance. Within sensing and actuation, biodegradable polymer matrices facilitate the development of fully resorbable biosensors and soft actuators. These systems harness tailored degradation kinetics to achieve temporal control over signal transduction and mechanical response, unlocking applications in in vivo monitoring and on-demand drug delivery. In healthcare, biodegradable polymers underpin novel approaches in tissue engineering, wound healing, and bioresorbable implants. Their tunable chemical architectures and processing versatility allow for precise regulation of mechanical properties, degradation rates, and therapeutic payloads, fostering seamless integration with biological environments. The convergence of these emerging applications underscores the pivotal role of biodegradable polymers in advancing sustainable technology and personalized medicine. Continued interdisciplinary research into polymer design, processing strategies, and integration techniques will accelerate commercialization and broaden the impact of these lower eCO2 value materials across diverse sectors. This perspective article comments on the innovation in these sectors that go beyond the applications of biodegradable materials in packaging applications. Full article
(This article belongs to the Special Issue Recent Developments in Bio-Based and Biodegradable Plastics)
Show Figures

Graphical abstract

17 pages, 279 KB  
Article
Promoting Sustainability-Oriented Medical Education: Development of a Competency Model for Physicians Specializing in Laser and Energy-Based Device Therapy
by Shiou-Ru Fan and Neng-Tang Huang
Sustainability 2025, 17(18), 8236; https://doi.org/10.3390/su17188236 - 12 Sep 2025
Viewed by 1004
Abstract
Laser- and energy-based device (EBD) treatments in aesthetic medicine pose substantial environmental challenges, including high energy consumption, carbon emissions, and disposable medical waste. Although sustainable healthcare has gained global attention, no competency framework currently exists to guide physicians in integrating environmental sustainability into [...] Read more.
Laser- and energy-based device (EBD) treatments in aesthetic medicine pose substantial environmental challenges, including high energy consumption, carbon emissions, and disposable medical waste. Although sustainable healthcare has gained global attention, no competency framework currently exists to guide physicians in integrating environmental sustainability into aesthetic medicine. This study applied McClelland’s (1973) Competency Model Theory (CMT) to develop a sustainability-oriented competency model for physicians specializing in laser and EBD treatments. Using a mixed-methods design, competency-based interviews were conducted to identify the key tasks and sustainability-related competencies, followed by expert panel validation using content validity and Kendall’s coefficient of concordance. The final model consists of 33 competencies across six domains: sustainable operations, regulatory and ethical knowledge, physician patient communication, dermatological science, EBD techniques, and maintenance care. Experts rated most competencies as highly or very highly important and frequently used, and Kendall’s W confirmed significant consensus across domains. The model provides standardized competency benchmarks that can support future curriculum development, professional training, and sustainable healthcare governance. This study extends CMT into the field of environmental sustainability in medicine and offers a structured framework to reduce ecological footprints and promote low-carbon, socially accountable practices. Full article
16 pages, 1493 KB  
Article
Effect of Nitrogen Application Rate on Growth Physiology, Yield Quality, and Nitrogen Fertilizer Utilization Rate of Liriope muscari in Pots
by Yuhong Yuan, Jihong Xiao, Shaoyan Liu, Tianyou He, Jundong Rong and Yushan Zheng
Biology 2025, 14(8), 1104; https://doi.org/10.3390/biology14081104 - 21 Aug 2025
Cited by 1 | Viewed by 922
Abstract
Liriope muscari is a medicinal and ornamental herbaceous plant with significant economic value, as its tuberous roots are used for medicinal purposes. However, the current production of medicinal plants is characterized by wasteful use of resources and ecological risks caused by the unreasonable [...] Read more.
Liriope muscari is a medicinal and ornamental herbaceous plant with significant economic value, as its tuberous roots are used for medicinal purposes. However, the current production of medicinal plants is characterized by wasteful use of resources and ecological risks caused by the unreasonable application of nitrogen fertilizers. In this study, based on uniform application of phosphorus and potassium fertilizers, six nitrogen application levels were set in pot experiments (expressed as N): N0: 0 kg/ha, N1: 208.33 kg/ha, N2: 416.66 kg/ha, N3: 625 kg/ha, N4: 833.33 kg/ha, N5: 1041.66 kg/ha). The morphological characteristics, photosynthetic physiology, tuber yield and quality, and seven nitrogen fertilizer utilization indices of L. muscari were analyzed and measured. Correlation analysis and structural equation modeling (SEM) were employed to investigate the mechanism by which nitrogen influences its growth and development, photosynthetic characteristics, tuber yield and quality, and nitrogen fertilizer utilization efficiency. The results showed that (1) nitrogen significantly promoted plant height, crown width, tiller number, and chlorophyll synthesis, with the N3 treatment (625 kg/ha) reaching the peak value, and the crown width and tiller number increasing by 26.44% and 38.90% compared to N0; the total chlorophyll content and net photosynthetic rate increased by 39.67% and 77.04%, respectively, compared to N0; high nitrogen (N5) inhibited photosynthesis and increased intercellular CO2 concentration; (2) Fresh weight of tuberous roots, polysaccharide content, and saponin C content peaked at N3 (34.67 g/plant, 39.89%, and 0.21%), respectively, representing increases of 128.69%, 28.37%, and 33.66% compared to N0; (3) Nitrogen uptake, nitrogen fertilizer utilization efficiency, agronomic utilization efficiency, and apparent utilization efficiency were optimal at N3, while high nitrogen (N4–N5) reduced nitrogen fertilizer efficiency by 40–60%; (4) SEM analysis indicated that tiller number and transpiration rate directly drive yield, while stomatal conductance regulates saponin C synthesis. Under the experimental conditions, 625 kg/ha is the optimal nitrogen application rate balancing yield, quality, and nitrogen efficiency. Excessive nitrogen application (>833 kg/ha) induces photosynthetic inhibition and “luxury absorption”, leading to source-sink imbalance and reduced accumulation of secondary metabolites. This study provides a theoretical basis and technical support for the precise management of nitrogen in Liriope-type medicinal plants. It is expected to alleviate the contradictions of “high input, low output, and heavy pollution” in traditional fertilization models. Full article
Show Figures

Figure 1

28 pages, 2183 KB  
Review
Production Technologies and Application of Polymer Composites in Engineering: A Review
by Milan Bukvić, Saša Milojević, Sandra Gajević, Momčilo Đorđević and Blaža Stojanović
Polymers 2025, 17(16), 2187; https://doi.org/10.3390/polym17162187 - 9 Aug 2025
Cited by 15 | Viewed by 5787
Abstract
Composite materials have been increasingly used in various branches of industry, transport, construction, and medicine—as well as in other sectors of the economy and science—in recent decades. A significant advancement in the improvement of composite material characteristics has been achieved through the use [...] Read more.
Composite materials have been increasingly used in various branches of industry, transport, construction, and medicine—as well as in other sectors of the economy and science—in recent decades. A significant advancement in the improvement of composite material characteristics has been achieved through the use of nanoparticles, which substantially enhance the properties of the base material, whether it is the matrix or the reinforcing phase in hybrid composites. The broad application of polymers and polymer composites in many areas of engineering has had a significant impact on reducing friction and wear, improving the thermal characteristics of individual components and entire technical systems, enhancing electrical conductivity, reducing the specific weight of components, lowering noise and vibration levels, and ultimately decreasing fuel consumption, production costs, and the costs of operation and maintenance of technical systems. This paper explores the potential applications of polymer composites in various assemblies and components of conventional vehicles, as well as in hybrid and electric vehicles. Furthermore, their use in medicine and the defense industry is examined—fields in which some authors believe composites were first pioneered. Finally, aviation represents an indispensable domain for the application of such materials, presenting unique exploitation boundary conditions, including dynamic environmental changes such as variations in temperature, pressure, velocity, and direction, as well as the need for high levels of protection. Future research can be unequivocally focused on the structural and technological advancement of polymer composites, specifically through optimization aimed at reducing waste and lowering production costs. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Figure 1

17 pages, 4465 KB  
Article
Sustainable Use of Expired Metoprolol as Corrosion Inhibitor for Carbon Steel in Saline Solution
by Mircea Laurențiu Dan, Nataliia Rudenko, Cristian George Vaszilcsin and George-Daniel Dima
Coatings 2025, 15(7), 742; https://doi.org/10.3390/coatings15070742 - 22 Jun 2025
Cited by 1 | Viewed by 1291
Abstract
The current paper examines the sustainable possibility for recycling unused or expired Metoprolol (MET), a benzodiazepine derivative, as an effective corrosion inhibitor for carbon steel in saline solutions. Repurposing expired medicinal drugs aligns with green chemistry concepts and supports circular economy initiatives by [...] Read more.
The current paper examines the sustainable possibility for recycling unused or expired Metoprolol (MET), a benzodiazepine derivative, as an effective corrosion inhibitor for carbon steel in saline solutions. Repurposing expired medicinal drugs aligns with green chemistry concepts and supports circular economy initiatives by reducing pharmaceutical waste and averting the production of new synthetic inhibitors. The technical benefit of recycling expired MET drugs pertains to the elimination of costs associated with organic inhibitor manufacturing and the decrease in disposal expenses for the expired medication. A combination of electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy) and quantum chemical calculations was employed to evaluate the inhibitory mechanism and efficacy of MET. At a concentration of 10−3 M, MET reduced the corrosion current density from 19.38 to 5.97 μA cm−2, achieving a maximum IE of 69.1%. Adsorption Gibbs free energy, determined using different adsorption isotherms, revealed that interactions between metal atoms and MET adsorbed molecules have a chemical character with a ∆Goads value of −50.7 kJ·mol−1. Furthermore, quantum chemistry calculations indicate that the investigated drug, owing to its molecular structure (EHOMO = −9.12 eV, ELUMO = 0.21 eV, µ = 3.95 D), possesses the capacity to establish an adsorption layer on the metal surface, thereby impeding the diffusion of molecules and ions involved in the overall corrosion process. The results obtained using the different techniques were in good agreement and highlighted the effectiveness of MET in the corrosion inhibition of carbon steel. Full article
Show Figures

Figure 1

26 pages, 3140 KB  
Review
Biodegradation of Poly(ε-caprolactone): Microorganisms, Enzymes, and Mechanisms
by Nikolay Krumov, Nikolina Atanasova, Ivanka Boyadzhieva, Kaloyan Petrov and Penka Petrova
Int. J. Mol. Sci. 2025, 26(12), 5826; https://doi.org/10.3390/ijms26125826 - 18 Jun 2025
Cited by 6 | Viewed by 4299
Abstract
Poly(ε-caprolactone) (PCL) is a synthetic plastic known for its excellent physicochemical properties and a wide range of applications in packaging, coatings, foaming, and agriculture. In medicine, its versatility allows it to function as a scaffold for drug delivery, sutures, implants, tissue engineering, and [...] Read more.
Poly(ε-caprolactone) (PCL) is a synthetic plastic known for its excellent physicochemical properties and a wide range of applications in packaging, coatings, foaming, and agriculture. In medicine, its versatility allows it to function as a scaffold for drug delivery, sutures, implants, tissue engineering, and 3D printing. In addition to its biocompatibility, PCL’s most notable characteristic is its biodegradability. However, this property is affected by temperature, microbial activity, and environmental conditions, which means PCL can sometimes remain in nature for long periods. This review shows that various types of microorganisms can efficiently degrade PCL, including different strains of Pseudomonas spp., Streptomyces spp., Alcaligenes faecalis, and fungi like Aspergillus oryzae, Fusarium spp., Rhizopus delemar, and Thermomyces lanuginosus. These microorganisms produce enzymes such as lipases, esterases, and cutinases that break down PCL into smaller molecules that act as substrates. The review also examines the phylogenetic diversity of organisms capable of biodegrading PCL, the biochemical pathways involved in this process, and specific aspects of the genetic framework responsible for the expression of the enzymes that facilitate degradation. Targeted research on microbial PCL biodegradation and its practical applications could significantly aid in reducing and managing plastic waste on a global ecological scale. Full article
Show Figures

Graphical abstract

13 pages, 539 KB  
Review
Green Endoscopy: A Review of Global Perspectives on Environmental Sustainability of Gastrointestinal Endoscopy
by Adishwar Rao, Abdullah Sultany, Amlish Gondal, Raja Chandra Chakinala, Hareesha Rishab Bharadwaj, Saurabh Chandan, Hassam Ali, Sheza Malik, Saqr Alsakarneh and Dushyant Singh Dahiya
J. Clin. Med. 2025, 14(11), 3936; https://doi.org/10.3390/jcm14113936 - 3 Jun 2025
Cited by 4 | Viewed by 2360
Abstract
Endoscopic procedures are the cornerstone of intervention in gastroenterology—from evaluating common illnesses to non-surgically managing complex diseases. Expectedly, these procedures are linked to greenhouse gas (GHG) emissions globally and contribute significantly to the global climate change crisis. Professional gastroenterology societies globally raise awareness [...] Read more.
Endoscopic procedures are the cornerstone of intervention in gastroenterology—from evaluating common illnesses to non-surgically managing complex diseases. Expectedly, these procedures are linked to greenhouse gas (GHG) emissions globally and contribute significantly to the global climate change crisis. Professional gastroenterology societies globally raise awareness of this evolving crisis and suggest specific measures to appropriately measure the burden contributed by endoscopy units and mitigate the environmental impact of this common clinical practice. To the unsuspecting eye, the solution to this crisis is relatively simple: decrease the utilization of endoscopic procedures. However, the dependence of modern medicine on these procedures, both diagnostically and therapeutically, makes it significantly more challenging to reduce their utilization. Instead, a structured approach to systematically consider the specific indications for each procedure, minimize waste generation, promote recycling of waste products, and limit the number of repeat endoscopies until clinically necessary may be more pragmatic to reduce GHG emissions globally. In this narrative review, we discuss the perspectives of global gastroenterology societies on sustainable or “green” endoscopy and summarize their recommendations to aid the day-to-day gastroenterologist in making their contribution to environmental sustainability while providing optimal care to their patients. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

20 pages, 765 KB  
Review
A Review of Nature-Based Solutions for Valorizing Aromatic Plants’ Lignocellulosic Waste Through Oyster Mushroom Cultivation
by Mirca Zotti, Grazia Cecchi, Laura Canonica and Simone Di Piazza
Sustainability 2025, 17(10), 4410; https://doi.org/10.3390/su17104410 - 13 May 2025
Cited by 3 | Viewed by 3030
Abstract
A creative, nature-based way to solve environmental issues and promote sustainable development could be the cultivation of Pleurotus spp. mushrooms to use the lignocellulosic waste from Medicinal and Aromatic Plants (MAPs). Pleurotus species are characterized by flexibility and biodegradative capacities to generate bioactive [...] Read more.
A creative, nature-based way to solve environmental issues and promote sustainable development could be the cultivation of Pleurotus spp. mushrooms to use the lignocellulosic waste from Medicinal and Aromatic Plants (MAPs). Pleurotus species are characterized by flexibility and biodegradative capacities to generate bioactive compounds with antibacterial, antioxidant, and nutraceutical properties using lignocellulosic substrates. Aromatic plant residues, such as those from lavender, sage, and mint, can improve the resultant mushrooms’ metabolic profiles and act as nutrient-rich substrates. Higher levels of phenols, flavonoids, and terpenoids can be among these enhancements, which could make mushrooms useful as functional foods. This strategy could provide scalable and affordable waste management solutions by utilizing already existing agricultural systems, including mushroom cultivation, during slow times. Incorporating Pleurotus-based systems can help to produce renewable bio-based products, reduce pollution, and improve soil health. This study not only attempts to demonstrate how Pleurotus species may convert industrial and agricultural waste into valuable, bioactive products, reducing waste and promoting ecological remediation in a circular economy, but also to highlight the viability of using natural processes for economic and environmental sustainability. To exploit the potential of this nature-based approach, future research should concentrate on maximizing substrate consumption, scaling these solutions to industrial levels, and guaranteeing regulatory compliance. Full article
Show Figures

Figure 1

21 pages, 4029 KB  
Article
Virginia Mallow: The Lost Fiber of the Future?
by Gabriela Vanja, Sandra Bischof and Zorana Kovačević
Fibers 2025, 13(5), 63; https://doi.org/10.3390/fib13050063 - 13 May 2025
Cited by 2 | Viewed by 2305
Abstract
Virginia mallow or Sida hermaphrodita (L.) Rusby (SH) is a perennial plant from the Malvaceae family (mallows) that is used for medicinal purposes, reducing soil erosion, cleaning soil, and most recently for energy production. The potential of sustainable lignocellulosic agro-waste is immense as [...] Read more.
Virginia mallow or Sida hermaphrodita (L.) Rusby (SH) is a perennial plant from the Malvaceae family (mallows) that is used for medicinal purposes, reducing soil erosion, cleaning soil, and most recently for energy production. The potential of sustainable lignocellulosic agro-waste is immense as it represents Earth’s most abundant organic compound. This paper explores fibers isolated from SH stems, a plant with significant industrial application potential, including technical textiles and biocomposites. The fibers were harvested in January, March, and November of 2020 and in January and March of 2021, and their yield, mechanical properties, moisture content, and density were thoroughly analyzed. The fiber yield showed slight variations depending on the harvest time, with consistent results observed across different years, suggesting stable productivity. The SH fibers demonstrated a favorable moisture content, making them suitable for storage and processing, and their density ranged between 1.52 and 1.58 g/cm3, comparable to that of other natural fibers. According to this research, the best mechanical properties were observed in the winter harvest. Furthermore, the high percentage of solid residue left after fiber extraction shows promise for sustainable utilization, primarily for biofuel production. This study underscores the versatility and sustainability of SH fibers, positioning them as a valuable resource for a wide range of industrial applications. Full article
Show Figures

Graphical abstract

12 pages, 2025 KB  
Article
Lambertianic Acid from Platycladus orientalis Inhibits Muscle Atrophy in Dexamethasone-Induced C2C12 Muscle Atrophy Cells
by Chan Hee Cho, Si Hyeon Chae, Ngoc Han Le Thi, Sung Hee Um, Seulah Lee, Jae Sik Yu, Ki Sung Kang and Ki Hyun Kim
Plants 2025, 14(9), 1357; https://doi.org/10.3390/plants14091357 - 30 Apr 2025
Cited by 2 | Viewed by 1795
Abstract
Platycladus orientalis, an evergreen tree belonging to the Cupressaceae family, has been traditionally used to treat various ailments, including fever, cough, diarrhea, diuresis, cold symptoms, and gastrointestinal disorders in folk medicine. As part of our ongoing investigation aimed at discovering bioactive natural [...] Read more.
Platycladus orientalis, an evergreen tree belonging to the Cupressaceae family, has been traditionally used to treat various ailments, including fever, cough, diarrhea, diuresis, cold symptoms, and gastrointestinal disorders in folk medicine. As part of our ongoing investigation aimed at discovering bioactive natural products and elucidating their mechanisms of action from various natural sources, we investigated a methanol (MeOH) extract of P. orientalis leaves. This investigation led to the isolation and identification of a labdane-type diterpene, lambertianic acid (LA), via column chromatography and HPLC purification. The structure of LA was elucidated using LC/MS and NMR spectroscopic analyses, including HR-ESIMS, while its absolute configuration was confirmed through electronic circular dichroism (ECD) calculations. Recent studies have reported that labdane-type diterpenes exhibit diverse pharmacological activities, such as anticancer, anti-inflammatory, anti-obesity, and hypolipidemic effects. Notably, LA has been shown to modulate adipocyte metabolism via AMPK signaling; however, its role in skeletal muscle atrophy remains unexplored. Therefore, in this study, we investigated the effects of LA on dexamethasone (Dex)-induced muscle atrophy in C2C12 myotubes. Treatment with LA at concentrations of 25 µM and 50 µM significantly rescued myotube diameter and reduced the expression of atrophy-related proteins, including MuRF-1 and atrogin-1/MAFbx, without compromising cell viability at these moderate concentrations. These findings suggest that LA derived from P. orientalis exerts protective effects against skeletal muscle atrophy, highlighting its potential as a promising natural therapeutic candidate for muscle-wasting disorders. Full article
Show Figures

Graphical abstract

21 pages, 3564 KB  
Article
Avocado Seed Waste as a Green Catalyst for the Sustainable Oxidation of Limonene with Molecular Oxygen
by Sylwia Gajewska, Joanna Siemak, Agnieszka Wróblewska and Beata Michalkiewicz
Sustainability 2025, 17(9), 3923; https://doi.org/10.3390/su17093923 - 27 Apr 2025
Cited by 1 | Viewed by 2006
Abstract
Avocado is a rich source of numerous nutrients, such as micro- and macroelements, essential unsaturated fatty acids, and vitamins essential for the correct functioning of the body. Consequently, its consumption has significantly increased in recent years. The primary edible part of the fruit [...] Read more.
Avocado is a rich source of numerous nutrients, such as micro- and macroelements, essential unsaturated fatty acids, and vitamins essential for the correct functioning of the body. Consequently, its consumption has significantly increased in recent years. The primary edible part of the fruit is the flesh, while the seed is still considered biowaste. Currently, various methods for utilization of this biowaste are being explored, prompting the authors of this work to investigate the catalytic properties of ground avocado seeds. Dried, ground avocado seeds were used as the catalyst in the environmentally friendly oxidation of limonene with oxygen. The process was carried out in mild conditions, without the use of any solvent and at atmospheric pressure. The studies examined the influence of temperature (70–110 °C), the amount of the catalyst (0.5–5.0 wt%), and the reaction time (15–360 min). The analyses of the post-reaction mixtures were performed using the gas chromatography method (GC). The maximum value of the conversion of limonene obtained during the tests was 36 mol%. The main products of this process were as follows: 1,2-epoxylimonene, carveol, and perillyl alcohol. Also, the following compounds were determined in the post-reaction mixtures: carvone and 1,2-epoxylimonene diol. The studied process is interesting, taking into account both the management of waste in the form of avocado seeds and possible wide applications of limonene transformation products in medicine, cosmetics and the food industry. Given that limonene is now increasingly being extracted from waste orange peels, this is also a good way to manage the future naturally derived limonene and reduce the amount of waste orange peels. The presented studies fit perfectly with the goals of sustainable development and circular economy and may be the basis for the future development of “green technology” for obtaining value-added oxygenated derivatives of limonene. These studies show the use of waste biomass in the form of avocado seeds to obtain a green catalyst. In this context, our research presents an effective way of waste valorization. Full article
Show Figures

Figure 1

23 pages, 3762 KB  
Review
From Basic to Breakthroughs: The Journey of Microfluidic Devices in Hydrogel Droplet Generation
by Gabriela Hinojosa-Ventura, José Manuel Acosta-Cuevas, Carlos Arnulfo Velázquez-Carriles, Diego E. Navarro-López, Miguel Ángel López-Alvarez, Néstor D. Ortega-de la Rosa and Jorge Manuel Silva-Jara
Gels 2025, 11(5), 309; https://doi.org/10.3390/gels11050309 - 22 Apr 2025
Cited by 6 | Viewed by 5443
Abstract
Hydrogel particles are essential in biological applications because of their distinctive capacity to retain water and encapsulate active molecules within their three-dimensional structure. Typical particle sizes range from nanometers (10–500 nm) to micrometers (1–500 µm), depending on the specific application and method of [...] Read more.
Hydrogel particles are essential in biological applications because of their distinctive capacity to retain water and encapsulate active molecules within their three-dimensional structure. Typical particle sizes range from nanometers (10–500 nm) to micrometers (1–500 µm), depending on the specific application and method of preparation. These characteristics render them optimal carriers for the administration of active compounds, facilitating the regulated and prolonged release of pharmaceuticals, including anticancer agents, antibiotics, and therapeutic proteins. Hydrogel particles can exhibit various morphologies, including spherical, rod-shaped, disk-shaped, and core–shell structures. Each shape offers distinct advantages, such as improved circulation time, targeted drug delivery, or enhanced cellular uptake. Additionally, hydrogel particles can be engineered to respond to various stimuli, such as temperature, pH, light, magnetic fields, and biochemical signals. Furthermore, their biocompatibility and capacity to acclimate to many biological conditions make them appropriate for sophisticated applications, including gene treatments, tissue regeneration, and cell therapies. Microfluidics has transformed the creation of hydrogel particles, providing precise control over their dimensions, morphology, and stability. This technique facilitates reproducible and highly efficient production, reducing reagent waste and optimizing drug encapsulation. The integration of microfluidics with hydrogels provides opportunities for the advancement of creative and effective solutions in contemporary medicine. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Figure 1

Back to TopTop