Research Progress in the Biocatalytic Conversion of Various Biomass Feedstocks for Terpenoid Production via Microbial Cell Factories
Abstract
1. Introduction
2. Biocatalytic Conversion of Different Carbon Sources for Terpenoids Production
2.1. Efficient Conversion of Starch-Based Glucose for Terpenoids Production
Terpenoids | Strains | Titers (g/L) | Fermentation Scale | Application and Market Demand | Reference |
---|---|---|---|---|---|
Limonene | S. cerevisiae | 2.63 | 3 L Bioreactor | applied in cleaning and fragrances fields, with a market demand of 68,200 tons | [24] |
Geraniol | E. coli | 2.0 | Shake Flask | applied in fragrances and insect repellents fields, with a market demand of 18,000 tons | [32] |
Artemisinic acid | S. cerevisiae | 25 | 5 L Bioreactor | applied in anti-malarial drug synthesis, with a market demand of 7200 tons | [21] |
Valencene | S. cerevisiae | 0.54 | 3 L Bioreactor | applied in citrus flavors and cleaning fields, with a market demand of 1230 tons | [33] |
Patchoulol | S. cerevisiae | 1.95 | 5 L Bioreactor | applied in perfumes and anti-inflammation production, with a market demand of 7500 tons | [34] |
β-Elemene | O. polymorpha | 4.7 | 3–5 L Bioreactor | applied in anti-tumor fields, with a Chinese market demand of 12,970 tons | [22] |
Miltiradiene | S. cerevisiae | 1.02 | 5 L Bioreactor | applied in cardiovascular drug synthesis, with a Chinese market demand of 410 tons | [35] |
Geranyllinalool | E. coli | 2.7 | 5 L Bioreactor | applied in flavor and anti-virus fields, with a projected demand of 1720 tons | [36] |
Dammaradienol | S. cerevisiae | 1.04 | 3.6 L Bioreactor | applied in liver protection and anti-aging fields, with a market demand of 500–800 tons | [31] |
Squalene | Y. lipolytica | 51.2 | 5 L Bioreactor | applied in moisturizers field, with a market demand of 54,600 tons | [26] |
Ursolic Acid | S. cerevisiae | 8.59 | 5 L Bioreactor | applied in anti-inflammation and anti-tumor fields, with a market demand of 650 tons | [37] |
2.2. Development of Processes Based on Non-Conventional Fermentable Feedstocks for the Synthesis of Terpenoids
2.2.1. Lignocellulose
2.2.2. Acetate
2.2.3. Glycerol
2.2.4. Waste Oils
3. Summary and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paramasivan, K.; Mutturi, S. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Crit. Rev. Biotechnol. 2017, 37, 974–989. [Google Scholar] [CrossRef]
- Carsanba, E.; Pintado, M.; Oliveira, C. Fermentation Strategies for Production of Pharmaceutical Terpenoids in Engineered Yeast. Pharmaceuticals 2021, 14, 295. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, C.; Qin, L.; Lv, B.; Zhang, G.; Li, C. Mining and engineering of terpene synthases and their applications in biomanufacturing. Chin. J. Chem. Eng. 2025; in press. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, J.; Hu, J.; Zhou, M. Terpenoid-based supramolecular materials: Fabrications, performances, applications. Supramol. Chem. 2023, 34, 105–131. [Google Scholar] [CrossRef]
- Meadows, A.L.; Hawkins, K.M.; Tsegaye, Y.; Antipov, E.; Kim, Y.; Raetz, L.; Dahl, R.H.; Tai, A.; Mahatdejkul-Meadows, T.; Xu, L.; et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 2016, 537, 694–697. [Google Scholar] [CrossRef]
- Association of Natural Rubber Producing Countries. Monthly Rubber Statistical Bulletin; ANRPC: Kuala Lumpur, Malaysia, 2025. [Google Scholar]
- Jiang, B.; Gao, L.; Wang, H.; Sun, Y.; Zhang, X.; Ke, H.; Liu, S.; Ma, P.; Liao, Q.; Wang, Y.; et al. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III. Science 2024, 383, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Er, L.; Liu, T. Efficient discovery and industrialized manufacture of terpenoids. Bull. Chin. Acad. Sci. 2025, 40, 47–66. [Google Scholar]
- Prerna; Chadha, J.; Khullar, L.; Mudgil, U.; Harjai, K. A comprehensive review on the pharmacological prospects of Terpinen-4-ol: From nature to medicine and beyond. Fitoterapia 2024, 176, 106051. [Google Scholar] [CrossRef] [PubMed]
- Nevarez, D.M.; Mengistu, Y.A.; Nawarathne, I.N.; Walker, K.D. An N-aroyltransferase of the BAHD superfamily has broad aroyl CoA specificity in vitro with analogues of N-dearoylpaclitaxel. J. Am. Chem. Soc. 2009, 131, 5994–6002. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-C.; Xu, L.; Sun, Y.; Yuan, L.; Xu, H.; Song, X.; Sun, L. Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. BioDesign Res. 2024, 6, 0051. [Google Scholar] [CrossRef]
- Jin, K.; Xia, H.; Liu, Y.; Li, J.; Du, G.; Lv, X.; Liu, L. Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microb. Cell Factories 2022, 21, 92. [Google Scholar] [CrossRef]
- Sharma, S.; Negi, S.; Kumar, P.; Irfan, M. Cellular strategies for surviving the alpine extremes: Methylerythritol phosphate pathway-driven isoprenoid biosynthesis and stress resilience. Protoplasma 2025, 262, 1053–1072. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Hoshyar, R.; Ande, S.R.; Chen, Q.M.; Solomon, C.; Zuse, A.; Naderi, M. Mevalonate Cascade and its Regulation in Cholesterol Metabolism in Different Tissues in Health and Disease. Curr. Mol. Pharmacol. 2017, 10, 13–26. [Google Scholar] [CrossRef]
- Yang, D.; Park, S.Y.; Park, Y.S.; Eun, H.; Lee, S.Y. Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis. Trends Biotechnol. 2020, 38, 745–765. [Google Scholar] [CrossRef]
- Yuan, Y.; Cheng, S.; Bian, G.; Yan, P.; Ma, Z.; Dai, W.; Chen, R.; Fu, S.; Huang, H.; Chi, H.; et al. Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi. Nat. Catal. 2022, 5, 277–287. [Google Scholar] [CrossRef]
- Yuan, W.; Jiang, C.; Wang, Q.; Fang, Y.; Wang, J.; Wang, M.; Xiao, H. Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast. Nat. Commun. 2022, 13, 7740. [Google Scholar] [CrossRef]
- Liu, D.; Garrigues, S.; de Vries, R.P. Heterologous protein production in filamentous fungi. Appl. Microbiol. Biotechnol. 2023, 107, 5019–5033. [Google Scholar] [CrossRef]
- Rahmat, E.; Kang, Y. Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites. Appl. Microbiol. Biotechnol. 2020, 104, 4659–4674. [Google Scholar] [CrossRef] [PubMed]
- Pramastya, H.; Song, Y.; Elfahmi, E.; Sukrasno, S.; Quax, W.J. Positioning Bacillus subtilis as terpenoid cell factory. J. Appl. Microbiol. 2020, 130, 1839–1856. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhu, Y.; Jia, H.; Han, Y.; Zheng, X.; Wang, M.; Feng, W. From Plant to Yeast—Advances in Biosynthesis of Artemisinin. Molecules 2022, 27, 6888. [Google Scholar] [CrossRef]
- Ye, M.; Gao, J.; Zhou, Y.J. Global metabolic rewiring of the nonconventional yeast Ogataea polymorpha for biosynthesis of the sesquiterpenoid β-elemene. Metab. Eng. 2023, 76, 225–231. [Google Scholar] [CrossRef]
- Dong, Y.; Hu, K.; Li, X.; Li, Q.; Zhang, X. Improving β-carotene production in Escherichia coli by metabolic engineering of glycerol utilization pathway. Chin. J. Biotechnol. 2017, 33, 247–260. [Google Scholar]
- Kong, X.; Wu, Y.; Yu, W.; Liu, Y.; Li, J.; Du, G.; Lv, X.; Liu, L. Efficient Synthesis of Limonene in Saccharomyces cerevisiae Using Combinatorial Metabolic Engineering Strategies. J. Agric. Food Chem. 2023, 71, 7752–7764. [Google Scholar] [CrossRef]
- Bi, H.; Xv, C.; Su, C.; Feng, P.; Zhang, C.; Wang, M.; Fang, Y.; Tan, T. β-Farnesene Production from Low-Cost Glucose in Lignocellulosic Hydrolysate by Engineered Yarrowia lipolytica. Fermentation 2022, 8, 532. [Google Scholar] [CrossRef]
- Ning, Y.; Liu, M.; Ru, Z.; Zeng, W.; Liu, S.; Zhou, J. Efficient synthesis of squalene by cytoplasmic-peroxisomal engineering and regulating lipid metabolism in Yarrowia lipolytica. Bioresour. Technol. 2024, 395, 130379. [Google Scholar] [CrossRef]
- Chiu, Y.-W.; Walseth, B.; Suh, S. Water Embodied in Bioethanol in the United States. Environ. Sci. Technol. 2009, 43, 2688–2692. [Google Scholar] [CrossRef]
- Wang, X.B.; Yan, X.; Li, X.Y.; Tu, C.; Sun, Z.K. Environmental Safety Risks in Agricultural Application of Effluents from Sugar Molasses-Based Fermentation Industries. Sci. Agric. Sin. 2023, 56, 490–507. [Google Scholar]
- March, H. Sustainability in Austerity. How Local Government Can Deliver During Times of Crisis. J. Clean. Prod. 2011, 19, 1770–1771. [Google Scholar] [CrossRef]
- Fan, W.; Fan, L.; Wang, Z.; Mei, Y.; Liu, L.; Li, L.; Yang, L.; Wang, Z. Rare ginsenosides: A unique perspective of ginseng research. J. Adv. Res. 2024, 66, 303–328. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Li, Z.; Fan, B.; Ji, Z.; Yang, L.; Wu, Y.; Ye, Q.; Ji, A.; Liu, Z.; Duan, L. De Novo Biosynthesis of a Polyene-Type Ginsenoside Precursor Dammaradienol in Saccharomyces cerevisiae. ACS Synth. Biol. 2024, 13, 4015–4026. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, X.; Zhang, R.; Cheng, T.; Cao, Y.; Li, X.; Guo, J.; Liu, H.; Xian, M. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture. Biotechnol. Biofuels 2016, 9, 58. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, C.; Zhu, M.; Xiong, J.; Ma, H.; Zhuo, M.; Li, S. High production of valencene in Saccharomyces cerevisiae through metabolic engineering. Microb. Cell Factories 2019, 18, 195. [Google Scholar] [CrossRef]
- Tao, Q.; Du, G.; Chen, J.; Zhang, J.; Peng, Z. Metabolic Engineering for Efficient Synthesis of Patchoulol in Saccharomyces cerevisiae. Fermentation 2024, 10, 211. [Google Scholar] [CrossRef]
- Ge, W.; Pai, H.; Zhang, J.; Zhang, C.; Lu, W. Construction of isopentenol utilization pathway and artificial multifunctional enzyme for miltiradiene synthesis in Saccharomyces cerevisiae. Bioresour. Technol. 2025, 419, 132065. [Google Scholar] [CrossRef]
- Chang, J.; Wei, X.; Liu, D.; Li, Q.; Li, C.; Zhao, J.; Cheng, L.; Wang, G. Engineering Escherichia coli via introduction of the isopentenol utilization pathway to effectively produce geranyllinalool. Microb. Cell Factories 2024, 23, 292. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, X.; Li, W.; Qiao, J.; Zhao, G.-R. Modular Metabolic Engineering of Saccharomyces cerevisiae for Enhanced Production of Ursolic Acid. J. Agric. Food Chem. 2025, 73, 3580–3590. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; You, X.; Wu, T.; Li, W.; Chen, H.; Cha, Y.; Zhuo, M.; Chen, B.; Li, S. Efficient utilization of carbon to produce aromatic valencene in Saccharomyces cerevisiae using mannitol as the substrate. Green Chem. 2022, 24, 4614–4627. [Google Scholar] [CrossRef]
- Li, M.; Hou, F.; Wu, T.; Jiang, X.; Li, F.; Liu, H.; Xian, M.; Zhang, H. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Nat. Prod. Rep. 2019, 37, 80–99. [Google Scholar] [CrossRef]
- Kim, S.R.; Ha, S.-J.; Wei, N.; Oh, E.J.; Jin, Y.-S. Simultaneous co-fermentation of mixed sugars: A promising strategy for producing cellulosic ethanol. Trends Biotechnol. 2012, 30, 274–282. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Pan, X. Efficient sugar production from plant biomass: Current status, challenges, and future directions. Renew. Sustain. Energy Rev. 2022, 164, 112583. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, Y.; Chang, J.-S.; Lee, D.-J. Enzymes and enzymatic mechanisms in enzymatic degradation of lignocellulosic biomass: A mini-review. Bioresour. Technol. 2022, 367, 128252. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Su, K.; Mohan, M.; Chen, J.; Xu, Y.; Zhou, X. Research progress on organic acid pretreatment of lignocellulose. Int. J. Biol. Macromol. 2025, 307, 142325. [Google Scholar] [CrossRef]
- Brodeur, G.; Yau, E.; Badal, K.; Collier, J.; Ramachandran, K.B.; Ramakrishnan, S. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review. Enzym. Res. 2011, 2011, 787532. [Google Scholar] [CrossRef]
- Chen, J.; Ma, X.; Liang, M.; Guo, Z.; Cai, Y.; Zhu, C.; Wang, Z.; Wang, S.; Xu, J.; Ying, H. Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review. Waste 2024, 2, 451–473. [Google Scholar] [CrossRef]
- Shi, J.; Wu, Y.-Y.; Sun, R.-Z.; Hua, Q.; Wei, L. Synthesis of β-ionone from xylose and lignocellulosic hydrolysate in genetically engineered oleaginous yeast Yarrowia lipolytica. Biotechnol. Lett. 2024, 46, 1219–1236. [Google Scholar] [CrossRef]
- Liu, H.; Huang, X.; Liu, Y.; Jing, X.; Ning, Y.; Xu, P.; Deng, L.; Wang, F. Efficient Production of Triacetic Acid Lactone from Lignocellulose Hydrolysate by Metabolically Engineered Yarrowia lipolytica. J. Agric. Food Chem. 2023, 71, 18909–18918. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Quarterman, J.; Kim, S.R.; Cate, J.H.; Jin, Y.S. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat. Commun. 2013, 4, 2580. [Google Scholar] [CrossRef]
- Yaegashi, J.; Kirby, J.; Ito, M.; Sun, J.; Dutta, T.; Mirsiaghi, M.; Sundstrom, E.R.; Rodriguez, A.; Baidoo, E.; Tanjore, D.; et al. Rhodosporidium toruloides: A new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnol. Biofuels 2017, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Kirby, J.; Geiselman, G.M.; Yaegashi, J.; Kim, J.; Zhuang, X.; Tran-Gyamfi, M.B.; Prahl, J.-P.; Sundstrom, E.R.; Gao, Y.; Munoz, N.; et al. Further engineering of R. toruloides for the production of terpenes from lignocellulosic biomass. Biotechnol. Biofuels 2021, 14, 101. [Google Scholar] [CrossRef]
- Ojo, A.O. An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production. Fermentation 2023, 9, 990. [Google Scholar] [CrossRef]
- Ao, T.-J.; Wu, J.; Chandra, R.; Zhang, H.-Y.; Yuan, Y.-F.; Luo, Y.-P.; Li, D.; Liu, C.-G.; Renneckar, S.; Saddler, J. Influence of hemicellulose and lignin on the effect of drying of cellulose and the subsequent enzymatic hydrolysis. Green Chem. 2025, 27, 8901–8913. [Google Scholar] [CrossRef]
- Li, N.; Yan, K.; Rukkijakan, T.; Liang, J.; Liu, Y.; Wang, Z.; Nie, H.; Muangmeesri, S.; Castiella-Ona, G.; Pan, X.; et al. Selective lignin arylation for biomass fractionation and benign bisphenols. Nature 2024, 630, 381–386. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Wu, Y.; Li, H.; Wang, J.; Li, C.; Zheng, H.; Ni, J. Chemoenzymatic platform with coordinated cofactor self-circulation for lignin valorization. Nat. Synth. 2025, 4, 1151–1160. [Google Scholar] [CrossRef]
- Qian, Q.; Zhang, J.; Cui, M.; Han, B. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2. Nat. Commun. 2016, 7, 11481. [Google Scholar] [CrossRef]
- Xu, X.; Xie, M.; Zhao, Q.; Xian, M.; Liu, H. Microbial production of mevalonate by recombinant Escherichia coli using acetic acid as a carbon source. Bioengineered 2018, 9, 116–123. [Google Scholar] [CrossRef]
- You, Z.; Du, X.; Zong, H.; Lu, X.; Zhuge, B. Acetic acid stress and utilization synergistically enhance squalene biosynthesis in Candida glycerinogenes. Biochem. Eng. J. 2024, 210, 109413. [Google Scholar] [CrossRef]
- Lu, S.; Deng, H.; Zhou, C.; Du, Z.; Guo, X.; Cheng, Y.; He, X. Enhancement of β-Caryophyllene Biosynthesis in Saccharomyces cerevisiae via Synergistic Evolution of β-Caryophyllene Synthase and Engineering the Chassis. ACS Synth. Biol. 2023, 12, 1696–1707. [Google Scholar] [CrossRef] [PubMed]
- Alphy, M.P.; Anjali, K.B.; Vivek, N.; Thirumalesh, B.V.; Sindhu, R.; Pugazhendi, A.; Pandey, A.; Binod, P. Sweet sorghum juice as an alternative carbon source and adaptive evolution of Lactobacillus brevis NIE9.3.3 in sweet sorghum juice and biodiesel derived crude glycerol to improve 1, 3 propanediol production. J. Environ. Chem. Eng. 2021, 9, 106086. [Google Scholar] [CrossRef]
- Abdul Raman, A.A.; Tan, H.W.; Buthiyappan, A. Two-Step Purification of Glycerol as a Value Added by Product from the Biodiesel Production Process. Front. Chem. 2019, 7, 774. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Ning, Y.; Zhang, R.; Deng, L.; Wang, F. Metabolic engineering of Escherichia coli for efficient production of 1,4-butanediol from crude glycerol. J. Environ. Chem. Eng. 2023, 12, 111660. [Google Scholar] [CrossRef]
- Schmerling, C.; Schroeder, C.; Zhou, X.; Bost, J.; Waßmer, B.; Ninck, S.; Busche, T.; Montero, L.; Kaschani, F.; Schmitz, O.J.; et al. An unusual glycerol-3-phosphate dehydrogenase in Sulfolobus acidocaldarius elucidates the diversity of glycerol metabolism across Archaea. Commun. Biol. 2025, 8, 539. [Google Scholar] [CrossRef]
- Li, D.-X.; Guo, Q.; Yang, Y.-X.; Jiang, S.-J.; Ji, X.-J.; Ye, C.; Wang, Y.-T.; Shi, T.-Q. Recent Advances and Multiple Strategies of Monoterpenoid Overproduction in Saccharomyces cerevisiae and Yarrowia lipolytica. ACS Synth. Biol. 2024, 13, 1647–1662. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Zhang, J.; Xiao, L.; Zhou, Y.; Wang, F.; Li, X. Metabolic engineering of Escherichia coli for efficient production of linalool from biodiesel-derived glycerol by targeting cofactors regeneration and reducing acetate accumulation. Ind. Crops Prod. 2023, 203, 117082. [Google Scholar] [CrossRef]
- Tan, N.; Ong, L.; Shukal, S.; Chen, X.; Zhang, C. High-Yield Biosynthesis of trans-Nerolidol from Sugar and Glycerol. J. Agric. Food Chem. 2023, 71, 8479–8487. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, C.; Nan, W.; Li, D.; Ke, D.; Lu, W. Glycerol improves heterologous biosynthesis of betulinic acid in engineered Yarrowia lipolytica. Chem. Eng. Sci. 2019, 196, 82–90. [Google Scholar] [CrossRef]
- Couillaud, J.; Leydet, L.; Duquesne, K.; Iacazio, G. The Terpene Mini-Path, a New Promising Alternative for Terpenoids Bio-Production. Genes 2021, 12, 1974. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liu, S.-C.; Qi, Y.-K.; Liu, Z.; Chen, J.; Wei, L.-J.; Hua, Q. Enhancing Trans-Nerolidol Productivity in Yarrowia lipolytica by Improving Precursor Supply and Optimizing Nerolidol Synthase Activity. J. Agric. Food Chem. 2022, 70, 15157–15165. [Google Scholar] [CrossRef]
- Ojima, Y.; Saito, H.; Miyuki, S.; Fukunaga, K.; Tsuboi, T.; Azuma, M. Induction conditions that promote the effect of glycerol on recombinant protein production in Escherichia coli. Biotechnol. Rep. 2025, 46, e00898. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Xie, X.; Zhang, Y.; Li, X.; Wang, F. Atmospheric and room temperature plasma treatment to improve methanol tolerance and catalytic activity of Mucor circinelloides for one-step biodiesel production. Fuel 2025, 387, 134343. [Google Scholar] [CrossRef]
- Täuber, S.; Riedel, S.L.; Junne, S. Polyhydroxyalkanoate production from food residues. Appl. Microbiol. Biotechnol. 2025, 109, 171. [Google Scholar] [CrossRef] [PubMed]
- QY Research. 2025–2031 Global and China Waste Grease Recovery Industry Research and 15th Five-Year Plan Analysis Report; QY Research: Shanghai, China, 2025; p. 105. [Google Scholar]
- Khosa, S.; Rani, M.; Saeed, M.; Ali, S.D.; Alhodaib, A.; Waseem, A. A Green Nanocatalyst for Fatty Acid Methyl Ester Conversion from Waste Cooking Oil. Catalysts 2024, 14, 244. [Google Scholar] [CrossRef]
- Vasileiadou, A. Advancements in waste-to-energy (WtE) combustion technologies: A review of current trends and future developments. Discov. Appl. Sci. 2025, 7, 457. [Google Scholar] [CrossRef]
- Guo, Q.; Peng, Q.Q.; Chen, Y.Y.; Song, P.; Ji, X.J.; Huang, H.; Shi, T.Q. High-yield α-humulene production in Yarrowia lipolytica from waste cooking oil based on transcriptome analysis and metabolic engineering. Microb. Cell Factories 2022, 21, 271. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Zhao, B.; Zhang, Y.; Kong, J.; Rong, L.; Liu, S.; Wang, Y.; Zhang, C.-Y.; Xiao, D.; Foo, J.L.; et al. Mitochondrial Engineering of Yarrowia lipolytica for Sustainable Production of α-Bisabolene from Waste Cooking Oil. ACS Sustain. Chem. Eng. 2022, 10, 9644–9653. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Li, Q.; Wang, Z.; Cui, Z.; Su, T.; Lu, X.; Qi, Q.; Hou, J. Engineering Yarrowia lipolytica for the sustainable production of β-farnesene from waste oil feedstock. Biotechnol. Biofuels Bioprod. 2022, 15, 101. [Google Scholar] [CrossRef]
- Worland, A.M.; Han, Z.; Maruwan, J.; Wang, Y.; Du, Z.-Y.; Tang, Y.J.; Su, W.W.; Roell, G.W. Elucidation of triacylglycerol catabolism in Yarrowia lipolytica: How cells balance acetyl-CoA and excess reducing equivalents. Metab. Eng. 2024, 85, 1–13. [Google Scholar] [CrossRef]
- Palande, A.S.; Kulkarni, S.V.; León-Ramirez, C.; Campos-Góngora, E.; Ruiz-Herrera, J.; Deshpande, M.V. Dimorphism and hydrocarbon metabolism in Yarrowia lipolytica var. indica. Arch. Microbiol. 2014, 196, 545–556. [Google Scholar] [CrossRef]
- Laribi, A.; Zieniuk, B.; Bouchedja, D.N.; Hafid, K.; Elmechta, L.; Becila, S. Valorization of Olive Mill Wastewater via Yarrowia lipolytica: Sustainable Production of High-Value Metabolites and Biocompounds—A Review. Fermentation 2025, 11, 326. [Google Scholar] [CrossRef]
- Zhang, C.; Hong, K. Production of Terpenoids by Synthetic Biology Approaches. Front. Bioeng. Biotechnol. 2020, 8, 347. [Google Scholar] [CrossRef]
- Wang, J.; Ji, X.; Yi, R.; Li, D.; Shen, X.; Liu, Z.; Xia, Y.; Shi, S. Heterologous Biosynthesis of Terpenoids in Saccharomyces cerevisiae. Biotechnol. J. 2025, 20, e202400712. [Google Scholar] [CrossRef]
- Khanam, S.; Mishra, P.; Faruqui, T.; Alam, P.; Albalawi, T.; Siddiqui, F.; Rafi, Z.; Khan, S. Plant-based secondary metabolites as natural remedies: A comprehensive review on terpenes and their therapeutic applications. Front. Pharmacol. 2025, 16, 1587215. [Google Scholar] [CrossRef]
- Wang, J.; Lei, Z.; Ma, W.; Ma, W.; Jiang, Y.; Jiang, W.; Wan, Y.; Xin, F.; Zhang, W.; Jiang, M. Metabolic Engineering of Yarrowia lipolytica for Efficient Production of Terpenoids. Ind. Eng. Chem. Res. 2024, 63, 14469–14479. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, W.; You, C.; Fan, C.; Ji, W.; Park, J.-T.; Kwak, J.; Chen, H.; Zhang, Y.-H.P.J.; Ma, Y. Biosynthesis of artificial starch and microbial protein from agricultural residue. Sci. Bull. 2023, 68, 214–223. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Sankaran, R.; Show, P.L.; Ibrahim, T.N.B.T.; Chew, K.W.; Culaba, A.; Chang, J.-S. Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects. Biofuel Res. J. 2020, 7, 1115–1127. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Xiong, Z.; Wang, Y. Pathway mining-based integration of critical enzyme parts for de novo biosynthesis of steviolglycosides sweetener in Escherichia coli. Cell Res. 2015, 26, 258–261. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, H.; Wang, Y.; He, B.; Lu, J.; Zhu, W.; Peng, L.; Wang, Y. Challenges and perspectives of green-like lignocellulose pretreatments selectable for low-cost biofuels and high-value bioproduction. Bioresour. Technol. 2022, 369, 128315. [Google Scholar] [CrossRef]
- Lv, P.J.; Qiang, S.; Liu, L.; Hu, C.Y.; Meng, Y.H. Dissolved-oxygen feedback control fermentation for enhancing β-carotene in engineered Yarrowia lipolytica. Sci. Rep. 2020, 10, 17114. [Google Scholar] [CrossRef]
- Zhu, K.; Kong, J.; Rong, L.; Liu, S.; Xiao, D.; Yu, A. Research Progress in Microbial Metabolic Engineering for Producing Monoterpene Aroma Products. Sci. Technol. Food Ind. 2021, 42, 390–398. [Google Scholar]
- Matsumoto, M.; Okuno, R.; Kondo, K. Extraction of 2,3-Butanediol with Aqueous Two-Phase Systems Formed by Water-Miscible Organic Solvents and Inorganic Salts. Solvent Extr. Res. Dev. Jpn. 2014, 21, 181–190. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Gao, H.; Zhang, Q.; Qin, L.; Dong, Y.; Li, C.; Sun, Y.; Xiu, Z. In-situ microextractive adsorption of α-pinene from fermentation broths by a recombinant yeast. Sep. Purif. Technol. 2025, 376, 134043. [Google Scholar] [CrossRef]
Products | Strains | Titer (g/L) | Fermentation Scale | Application and Market Demand | Reference |
---|---|---|---|---|---|
β-Ionone | Y. lipolytica | 0.12 | Shake Flask | applied in fragrances and vitamin A synthesis, with a global market demand of approximately 2500 tons | [46] |
Bisabolene | R. toruloides | 0.68 | 2 L Bioreactor | applied in biofuels and cosmetics fields, with a global market demand of approximately 1800 tons | [49] |
Amorphadiene | R. toruloides | 0.036 | Shake Flask | applied as an artemisinin precursor, with a global market demand of approximately 1200 tons | [49] |
α-Bisabolene | R. toruloides | 2.6 | 2 L Bioreactor | applied in anti-inflammation and food additives fields, with a global market demand of approximately 800 tons | [50] |
1,8-Cineole | R. toruloides | 1.4 | 2 L Bioreactor | applied in pharmaceuticals and fragrances fields, with a global market demand of approximately 35,000 tons | [50] |
β-Farnesene | Y. lipolytica | 7.38 | 2 L Bioreactor | applied in insect attractants and skin care fields, with a global market demand of approximately 1500 tons | [25] |
Products | Carbon Sources | Strains | Titers (g/L) | Fermentation Scale | Application and Market Demand | Reference |
---|---|---|---|---|---|---|
Squalene | Acetate | C. glycerinogenes | 1.83 | 5 L Bioreactor | applied in cosmetics and health products fields, with a global demand of approximately 8000 tons | [57] |
β-Caryophyllene | Acetate | S. cerevisiae | 0.594 | 5 L Bioreactor | applied in food flavors and anti-inflammatory drugs fields, with a global demand of approximately 2500 tons | [58] |
Linalool | Glycerol | E. coli | 4.16 | 5 L Bioreactor | applied in fragrances and antibacterial agent fields, with a global demand of approximately 55,000 tons | [64] |
Nerolidol | Mixture of glucose, lactose and glycerol | E. coli | 3.3 | Shake Flask | applied in perfumes and repellents fields, with a global demand of approximately 1200 tons | [65] |
Trans-nerolidol | Glycerol | Y. lipolytica | 11.1 | 5 L Bioreactor | applied as an anticancer synergist, with a global demand of approximately 300 tons | [68] |
Betulinic acid | Glycerol | Y. lipolytica | 0.027 | Shake Flask | applied in antiviral applications and melanoma treatment fields, with a global demand of approximately 150 tons | [66] |
α-Humulene | Waste oils | Y. lipolytica | 5.9 | 5 L Bioreactor | applied in cosmetics and health products fields, with a global demand of approximately 8000 tons | [75] |
α-Bisabolene | Waste oils | Y. lipolytica | 1.06 | 5 L Bioreactor | applied in food flavors and anti-inflammatory drugs fields, with a global demand of approximately 2500 tons | [76] |
β-Farnesene | Waste oils | Y. lipolytica | 31.9 | 5 L Bioreactor | applied in fragrances and antibacterial agent fields, with a global demand of approximately 55,000 tons | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chen, R.; Deng, L.; Liu, H.; Wang, F. Research Progress in the Biocatalytic Conversion of Various Biomass Feedstocks for Terpenoid Production via Microbial Cell Factories. Catalysts 2025, 15, 975. https://doi.org/10.3390/catal15100975
Zhang J, Chen R, Deng L, Liu H, Wang F. Research Progress in the Biocatalytic Conversion of Various Biomass Feedstocks for Terpenoid Production via Microbial Cell Factories. Catalysts. 2025; 15(10):975. https://doi.org/10.3390/catal15100975
Chicago/Turabian StyleZhang, Jingying, Ruijie Chen, Li Deng, Huan Liu, and Fang Wang. 2025. "Research Progress in the Biocatalytic Conversion of Various Biomass Feedstocks for Terpenoid Production via Microbial Cell Factories" Catalysts 15, no. 10: 975. https://doi.org/10.3390/catal15100975
APA StyleZhang, J., Chen, R., Deng, L., Liu, H., & Wang, F. (2025). Research Progress in the Biocatalytic Conversion of Various Biomass Feedstocks for Terpenoid Production via Microbial Cell Factories. Catalysts, 15(10), 975. https://doi.org/10.3390/catal15100975