Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,004)

Search Parameters:
Keywords = redox stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6929 KiB  
Article
Protective Effects of Sodium Copper Chlorophyllin and/or Ascorbic Acid Against Barium Chloride-Induced Oxidative Stress in Mouse Brain and Liver
by Salma Benayad, Basma Es-Sai, Yassir Laaziouez, Soufiane Rabbaa, Hicham Wahnou, Habiba Bouchab, Hicham El Attar, Bouchra Benabdelkhalek, Loubna Amahdar, Oualid Abboussi, Raphaël Emmanuel Duval, Riad El Kebbaj and Youness Limami
Molecules 2025, 30(15), 3231; https://doi.org/10.3390/molecules30153231 (registering DOI) - 1 Aug 2025
Abstract
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in [...] Read more.
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in the liver and brain of mice using a two-phase experimental protocol. Animals received either SCC (40 mg/kg), ASC (160 mg/kg), or their combination for 14 days prior to BaCl2 exposure (150 mg/L in drinking water for 7 days), allowing evaluation of both preventive and therapeutic effects. Toxicological and behavioral assessments confirmed the absence of systemic toxicity or neurobehavioral alterations following supplementation. Body weight, liver and kidney indices, and biochemical markers (Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT), creatinine) remained within physiological ranges, and no anxiogenic or locomotor effects were observed. In the brain, BaCl2 exposure significantly increased SOD (+49%), CAT (+66%), GPx (+24%), and GSH (+26%) compared to controls, reflecting a robust compensatory antioxidant response. Although lipid peroxidation (MDA) showed a non-significant increase, SCC, ASC, and their combination reduced MDA levels by 42%, 37%, and 55%, respectively. These treatments normalized antioxidant enzyme activities and GSH, indicating an effective neuroprotective effect. In contrast, the liver exhibited a different oxidative profile. BaCl2 exposure increased MDA levels by 80% and GSH by 34%, with no activation of SOD, CAT, or GPx. Histological analysis revealed extensive hepatocellular necrosis, vacuolization, and inflammatory infiltration. SCC significantly reduced hepatic MDA by 39% and preserved tissue architecture, while ASC alone or combined with SCC exacerbated inflammation and depleted hepatic GSH by 71% and 78%, respectively, relative to BaCl2-exposed controls. Collectively, these results highlight a differential, organ-specific response to BaCl2-induced oxidative stress and the therapeutic potential of SCC and ASC. SCC emerged as a safer and more effective agent, particularly in hepatic protection, while both antioxidants demonstrated neuroprotective effects when used individually or in combination. Full article
Show Figures

Figure 1

21 pages, 4201 KiB  
Review
Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia–Reperfusion Injury
by Kenneth J. Dery, Richard Chiu, Aanchal Kasargod and Jerzy W. Kupiec-Weglinski
Antioxidants 2025, 14(8), 944; https://doi.org/10.3390/antiox14080944 (registering DOI) - 31 Jul 2025
Viewed by 46
Abstract
Reactive oxygen species (ROS) play a dual role as both essential signaling molecules and harmful mediators of damage. Imbalances in the redox state of the liver can overwhelm antioxidant defenses and promote mitochondrial dysfunction, oxidative damage, and inflammation. Complex feedback loops between ROS [...] Read more.
Reactive oxygen species (ROS) play a dual role as both essential signaling molecules and harmful mediators of damage. Imbalances in the redox state of the liver can overwhelm antioxidant defenses and promote mitochondrial dysfunction, oxidative damage, and inflammation. Complex feedback loops between ROS and immune signaling pathways are a hallmark of pathological liver conditions, such as hepatic ischemia–reperfusion injury (IRI). This is a major cause of liver transplant failure and is of increasing significance due to the increased use of marginally discarded livers for transplantation. This review outlines the major enzymatic and metabolic sources of ROS in hepatic IRI, including mitochondrial reverse electron transport, NADPH oxidases, cytochrome P450 enzymes, and endoplasmic reticulum stress. Hepatocyte injury activates redox feedback loops that initiate immune cascades through DAMP release, toll-like receptor signaling, and cytokine production. Emerging regulatory mechanisms, such as succinate accumulation and cytosolic calcium–CAMKII signaling, further shape oxidative dynamics. Pharmacological therapies and the use of antioxidant and immunomodulatory approaches, including nanoparticles and redox-sensitive therapeutics, are discussed as protective strategies. A deeper understanding of how redox and immune feedback loops interact is an exciting and active area of research that warrants further clinical investigation. Full article
Show Figures

Figure 1

22 pages, 602 KiB  
Review
Mitochondrial Regulation of Spermatozoa Function: Metabolism, Oxidative Stress and Therapeutic Insights
by Zhiqian Xu, Qi Yan, Ke Zhang, Ying Lei, Chen Zhou, Tuanhui Ren, Ning Gao, Fengyun Wen and Xiaoxia Li
Animals 2025, 15(15), 2246; https://doi.org/10.3390/ani15152246 - 31 Jul 2025
Viewed by 53
Abstract
Mitochondria are central to energy production and redox regulation in spermatozoa, supporting key functions such as progressive motility, capacitation, and the acrosome reaction. These processes are essential for successful fertilization and embryo development. However, species-specific differences exist in the reliance on oxidative phosphorylation [...] Read more.
Mitochondria are central to energy production and redox regulation in spermatozoa, supporting key functions such as progressive motility, capacitation, and the acrosome reaction. These processes are essential for successful fertilization and embryo development. However, species-specific differences exist in the reliance on oxidative phosphorylation versus glycolysis. Mitochondria also generate reactive oxygen species, which at physiological levels aid in sperm function but can cause oxidative stress and damage when overproduced. Mitochondrial dysfunction and excessive ROS can impair membrane potential, induce apoptosis, and damage nuclear and mitochondrial DNA, ultimately compromising sperm quality. Sperm mitochondrial DNA is highly susceptible to mutations and deletions, contributing to reduced motility and fertility. Targeted antioxidant strategies have emerged as promising therapeutic interventions to mitigate oxidative damage. This article provides a comprehensive overview of mitochondrial regulation in spermatozoa, the consequences of redox imbalance, and the potential of mitochondria-targeted antioxidants to improve sperm function and male fertility outcomes. The paper aims to deepen our understanding of mitochondrial roles in sperm physiology and contribute to the advancement of strategies for addressing male infertility. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Graphical abstract

21 pages, 6921 KiB  
Article
Transcriptomic Analysis Identifies Oxidative Stress-Related Hub Genes and Key Pathways in Sperm Maturation
by Ali Shakeri Abroudi, Hossein Azizi, Vyan A. Qadir, Melika Djamali, Marwa Fadhil Alsaffar and Thomas Skutella
Antioxidants 2025, 14(8), 936; https://doi.org/10.3390/antiox14080936 - 30 Jul 2025
Viewed by 220
Abstract
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved [...] Read more.
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved in SSC function. Methods: SSCs were enriched from human orchiectomy samples using CD49f-based magnetic-activated cell sorting (MACS) and laminin-binding matrix selection. Enriched cultures were assessed through morphological criteria and immunocytochemistry using VASA and SSEA4. Transcriptomic profiling was performed using microarray and single-cell RNA sequencing (scRNA-seq) to identify oxidative stress-related genes. Bioinformatic analyses included STRING-based protein–protein interaction (PPI) networks, FunRich enrichment, weighted gene co-expression network analysis (WGCNA), and predictive modeling using machine learning algorithms. Results: The enriched SSC populations displayed characteristic morphology, positive germline marker expression, and minimal fibroblast contamination. Microarray analysis revealed six significantly upregulated oxidative stress-related genes in SSCs—including CYB5R3 and NDUFA10—and three downregulated genes, such as TXN and SQLE, compared to fibroblasts. PPI and functional enrichment analyses highlighted tightly clustered gene networks involved in mitochondrial function, redox balance, and spermatogenesis. scRNA-seq data further confirmed stage-specific expression of antioxidant genes during spermatogenic differentiation, particularly in late germ cell stages. Among the machine learning models tested, logistic regression demonstrated the highest predictive accuracy for antioxidant gene expression, with an area under the curve (AUC) of 0.741. Protein oxidation was implicated as a major mechanism of oxidative damage, affecting sperm motility, metabolism, and acrosome integrity. Conclusion: This study identifies key oxidative stress-related genes and pathways in human SSCs that may regulate spermatogenesis and impact sperm function. These findings offer potential targets for future functional validation and therapeutic interventions, including antioxidant-based strategies to improve male fertility outcomes. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

37 pages, 498 KiB  
Review
Oxidative Stress and Neurotoxicity Biomarkers in Fish Toxicology
by Grzegorz Formicki, Zofia Goc, Bartosz Bojarski and Małgorzata Witeska
Antioxidants 2025, 14(8), 939; https://doi.org/10.3390/antiox14080939 (registering DOI) - 30 Jul 2025
Viewed by 89
Abstract
Exposure to xenobiotics causes pathophysiological changes in fish, including oxidative stress and neurotoxicity. Here, we describe the biochemical mechanisms underlying oxidative stress (i.e., redox imbalance) and the biochemical markers commonly used to assess its level. Neurotoxicity biomarkers used in fish include behavioral, histological, [...] Read more.
Exposure to xenobiotics causes pathophysiological changes in fish, including oxidative stress and neurotoxicity. Here, we describe the biochemical mechanisms underlying oxidative stress (i.e., redox imbalance) and the biochemical markers commonly used to assess its level. Neurotoxicity biomarkers used in fish include behavioral, histological, molecular, neurotransmitter-related, and enzymatic parameters, among which acetylcholinesterase (AChE) activity is the most commonly measured. We therefore also review the changes in AChE activity in fish exposed to common xenobiotics. In most cases, AChE activity decreased in a concentration- and time-dependent manner, although some studies reported no change or even an increase. We emphasize the relevance of all the parameters discussed in the context of fish toxicology studies. Full article
(This article belongs to the Special Issue Reactive Oxygen Species Signalling and Oxidative Stress in Fish)
20 pages, 307 KiB  
Review
High-Intensity Interval Training as Redox Medicine: Targeting Oxidative Stress and Antioxidant Adaptations in Cardiometabolic Disease Cohorts
by Dejan Reljic
Antioxidants 2025, 14(8), 937; https://doi.org/10.3390/antiox14080937 - 30 Jul 2025
Viewed by 200
Abstract
High-intensity interval training (HIIT) has emerged as a promising non-pharmacological intervention for improving cardiometabolic health. In populations with diabetes, cardiovascular disease, obesity, or metabolic dysfunction, redox imbalance—characterized by elevated oxidative stress and impaired antioxidant defense—is a key contributor to disease progression. This narrative [...] Read more.
High-intensity interval training (HIIT) has emerged as a promising non-pharmacological intervention for improving cardiometabolic health. In populations with diabetes, cardiovascular disease, obesity, or metabolic dysfunction, redox imbalance—characterized by elevated oxidative stress and impaired antioxidant defense—is a key contributor to disease progression. This narrative review synthesizes current evidence on the effects of HIIT on oxidative stress and antioxidant capacity across diverse cardiometabolic disease cohorts. While findings are heterogeneous, the majority of studies demonstrate that HIIT intervention can reduce levels of oxidative stress markers and enhance antioxidant enzyme expression. These redox adaptations may underpin improvements in vascular endothelial function, inflammation, and metabolic regulation. Importantly, variations in intensity, duration, and health status influence these responses, highlighting the need for individualized exercise prescriptions. Safety considerations are emphasized, including the necessity for medical clearance, gradual progression, and individualized training prescriptions in higher-risk individuals. In conclusion, HIIT shows potential as a targeted strategy to restore redox homeostasis and improve cardiometabolic outcomes, although further research is needed to clarify optimal protocols and the underlying mechanisms. Full article
28 pages, 9760 KiB  
Article
Metabolic Imprint of Poliovirus on Glioblastoma Cells and Its Role in Virus Replication and Cytopathic Activity
by Martin A. Zenov, Dmitry V. Yanvarev, Olga N. Ivanova, Ekaterina A. Denisova, Mikhail V. Golikov, Artemy P. Fedulov, Roman I. Frykin, Viktoria A. Sarkisova, Dmitry A. Goldstein, Peter M. Chumakov, Anastasia V. Lipatova and Alexander V. Ivanov
Int. J. Mol. Sci. 2025, 26(15), 7346; https://doi.org/10.3390/ijms26157346 - 30 Jul 2025
Viewed by 220
Abstract
Poliovirus represents an oncolytic agent for human glioblastoma—one of the most aggressive types of cancer. Since interference of viruses with metabolic and redox pathways is often linked to their pathogenesis, drugs targeting metabolic enzymes are regarded as potential enhancers of oncolysis. Our goal [...] Read more.
Poliovirus represents an oncolytic agent for human glioblastoma—one of the most aggressive types of cancer. Since interference of viruses with metabolic and redox pathways is often linked to their pathogenesis, drugs targeting metabolic enzymes are regarded as potential enhancers of oncolysis. Our goal was to reveal an imprint of poliovirus on the metabolism of glioblastoma cell lines and to assess the dependence of the virus on these pathways. Using GC-MS, HPLC, and Seahorse techniques, we show that poliovirus interferes with amino acid, purine and polyamine metabolism, mitochondrial respiration, and glycolysis. However, many of these changes are cell line- and culture medium-dependent. 2-Deoxyglucose, the pharmacologic inhibitor of glycolysis, was shown to enhance the cytopathic effect of poliovirus, pointing to its possible repurposing as an enhancer of oncolysis. Inhibitors of polyamine biosynthesis, pyruvate import into mitochondria, and fatty acid oxidation exhibited antiviral activity, albeit in a cell-dependent manner. We also demonstrate that poliovirus does not interfere with the production of superoxide anions or with levels of H2O2, showing an absence of oxidative stress during infection. Finally, we showed that a high rate of poliovirus replication is associated with fragmentation of the mitochondrial network, pointing to the significance of these organelles for the virus. Full article
Show Figures

Figure 1

21 pages, 848 KiB  
Review
Food-Derived Phytochemicals: Multicultural Approaches to Oxidative Stress and Immune Response
by Eiger Gliozheni, Yusuf Salem, Eric Cho, Samuel Wahlstrom, Dane Olbrich, Brandon Shams, Michael Alexander and Hirohito Ichii
Int. J. Mol. Sci. 2025, 26(15), 7316; https://doi.org/10.3390/ijms26157316 - 29 Jul 2025
Viewed by 181
Abstract
This review will focus on how ethnic consumption of foods such as shiitake, ginseng, turmeric, black seeds, berries, rosemary, moringa and holy basil can help act as antioxidants and immune modulators in fighting many diseases. We will investigate how these foods act on [...] Read more.
This review will focus on how ethnic consumption of foods such as shiitake, ginseng, turmeric, black seeds, berries, rosemary, moringa and holy basil can help act as antioxidants and immune modulators in fighting many diseases. We will investigate how these foods act on pathways like Nrf2/Keap1 to increase endogenous antioxidant capacity and help in reducing ROS production, based on publications found in PubMed between 1994 and 2024. In addition, we will show how these plants can cause immune system shifts by changing the makeup of the ratio of Th1/Th2 cells, reduce inflammation, and have antiangiogenic effects on cancer. This review will also show how plants can alter the gut microbiota and lead to a further decrease in oxidative stress. Overall, it will show how plants and their metabolites can potentially create a path forward for creating novel therapeutic approaches and help lead to an improved redox balance, support immune function, and enhance long-term health outcomes. Full article
Show Figures

Figure 1

24 pages, 6890 KiB  
Article
Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy
by Kefan Cao, Yingtong Mu and Xiaoming Zhang
Genes 2025, 16(8), 898; https://doi.org/10.3390/genes16080898 - 28 Jul 2025
Viewed by 208
Abstract
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive [...] Read more.
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive strategies of A. kusnezoffii under different light intensities through integrated physiological and transcriptomic analyses. Methods: Two-year-old A. kusnezoffii plants were exposed to three controlled light regimes (790, 620, and 450 lx). Leaf anatomical traits were assessed via histological sectioning and microscopic imaging. Antioxidant enzyme activities (CAT, POD, and SOD), membrane lipid peroxidation (MDA content), osmoregulatory substances, and carbon metabolites were quantified using standard biochemical assays. Transcriptomic profiling was conducted using Illumina RNA-seq, with differentially expressed genes (DEGs) identified through DESeq2 and functionally annotated via GO and KEGG enrichment analyses. Results: Moderate light (620 lx) promoted optimal leaf structure by enhancing palisade tissue development and epidermal thickening, while reducing membrane lipid peroxidation. Antioxidant defense capacity was elevated through higher CAT, POD, and SOD activities, alongside increased accumulation of soluble proteins, sugars, and starch. Transcriptomic analysis revealed DEGs enriched in photosynthesis, monoterpenoid biosynthesis, hormone signaling, and glutathione metabolism pathways. Key positive regulators (PHY and HY5) were upregulated, whereas negative regulators (COP1 and PIFs) were suppressed, collectively facilitating chloroplast development and photomorphogenesis. Trend analysis indicated a “down–up” gene expression pattern, with early suppression of stress-responsive genes followed by activation of photosynthetic and metabolic processes. Conclusions: A. kusnezoffii employs a coordinated, multi-level adaptation strategy under moderate light (620 lx), integrating leaf structural optimization, enhanced antioxidant defense, and dynamic transcriptomic reprogramming to maintain energy balance, redox homeostasis, and photomorphogenic flexibility. These findings provide a theoretical foundation for optimizing artificial cultivation and light management of alpine medicinal plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

22 pages, 3942 KiB  
Article
The Therapeutic Potential of Galium verum for Psoriasis: A Combined Phytochemical, In Silico, and Experimental Approach
by Branislava Daskalovic, Vladimir Jakovljevic, Sergej Bolevic, Marijana Andjic, Jovana Bradic, Aleksandar Kocovic, Milos Nikolic, Nikola Nedeljkovic, Jovan Milosavljevic, Jovan Baljak, Milos Krivokapic, Svetlana Trifunovic and Jasmina Sretenovic
Int. J. Mol. Sci. 2025, 26(15), 7290; https://doi.org/10.3390/ijms26157290 - 28 Jul 2025
Viewed by 164
Abstract
Psoriasis is a chronic inflammatory skin disorder involving oxidative stress and immune dysregulation. Given the limitations and adverse effects of conventional therapies, interest in natural treatments with anti-oxidant and immunomodulatory properties is increasing. This study aimed to comprehensively evaluate the therapeutic potential of [...] Read more.
Psoriasis is a chronic inflammatory skin disorder involving oxidative stress and immune dysregulation. Given the limitations and adverse effects of conventional therapies, interest in natural treatments with anti-oxidant and immunomodulatory properties is increasing. This study aimed to comprehensively evaluate the therapeutic potential of Galium verum extract in an imiquimod-induced rat model of psoriasis. The extract was chemically characterized by HPLC and evaluated for anti-oxidant activity using DPPH, ABTS, and FRAP assays. Molecular docking studies targeted psoriasis-related proteins (IL-17, IL-22, IL-23, JAK2, MAPK2, NF-κB, STAT3), revealing strong binding affinities for rutin and quercetin, the extract’s dominant bioactives. In vivo, 18 Wistar albino male rats were divided into control (CTRL), psoriasis (PSORI), and psoriasis treated with Galium verum (PSORI + GV) groups. A seven-day topical application of 5% imiquimod cream was used for the induction of psoriasis. The PSORI + GV group received 250 mg/kg Galium verum extract orally for 7 days. Morphometric and redox analyses were performed. Histological and morphometric analyses showed reduced epidermal thickness, inflammation, and collagen content. Redox analysis revealed lowered oxidative stress biomarkers and enhanced anti-oxidant defenses. These findings suggest that Galium verum extract exerts anti-psoriatic effects through antioxidative and immunomodulatory mechanisms, supporting its potential as a natural adjunct therapy for psoriasis. Full article
Show Figures

Figure 1

30 pages, 10270 KiB  
Article
Fuelling the Fight from the Gut: Short-Chain Fatty Acids and Dexamethasone Synergise to Suppress Gastric Cancer Cells
by Radwa A. Eladwy, Mohamed Fares, Dennis Chang, Muhammad A. Alsherbiny, Chun-Guang Li and Deep Jyoti Bhuyan
Cancers 2025, 17(15), 2486; https://doi.org/10.3390/cancers17152486 - 28 Jul 2025
Viewed by 367
Abstract
Background: Short-chain fatty acids (SCFAs), microbial metabolites also known as postbiotics, are essential for maintaining gut health. However, their antiproliferative effects on gastric cancer cells and potential interactions with conventional therapies remain underexplored. This study aimed to investigate the effects of three SCFA [...] Read more.
Background: Short-chain fatty acids (SCFAs), microbial metabolites also known as postbiotics, are essential for maintaining gut health. However, their antiproliferative effects on gastric cancer cells and potential interactions with conventional therapies remain underexplored. This study aimed to investigate the effects of three SCFA salts—magnesium acetate (A), sodium propionate (P), and sodium butyrate (B)—individually and in combination (APB), as well as in combination with dexamethasone (Dex), on AGS gastric adenocarcinoma cells. Methods: AGS cells were treated with PB, AP, AB, APB, Dex, and APB+Dex. Cell viability was assessed to determine antiproliferative effects, and the IC50 of APB was calculated. Flow cytometry was used to evaluate apoptosis and necrosis. Reactive oxygen species (ROS) levels were measured to assess oxidative stress. Proteomic analysis via LC-MS was performed to identify differential protein expression and related pathways impacted by the treatments. Results: SCFA salts showed significant antiproliferative effects on AGS cells, with APB exhibiting a combined IC50 of 568.33 μg/mL. The APB+Dex combination demonstrated strong synergy (combination index = 0.76) and significantly enhanced growth inhibition. Both APB and APB+Dex induced substantial apoptosis (p < 0.0001) with minimal necrosis. APB alone significantly increased ROS levels (p < 0.0001), while Dex moderated this effect in the combination group APB+Dex (p < 0.0001). Notably, the APB+Dex treatment synergistically targeted multiple tumour-promoting mechanisms, including the impairment of redox homeostasis through SLC7A11 suppression, and inhibition of the haemostasis, platelet activation network and NF-κB signalling pathway via downregulation of NFKB1 (−1.34), exemplified by increased expression of SERPINE1 (1.99) within the “Response to elevated platelet cytosolic Ca2+” pathway. Conclusions: These findings showed a multifaceted anticancer mechanism by APB+Dex that may collectively impair cell proliferation, survival signalling, immune modulation, and tumour microenvironment support in gastric cancer. Full article
(This article belongs to the Special Issue Gut Microbiome, Diet and Cancer Risk)
Show Figures

Figure 1

24 pages, 1564 KiB  
Review
Anthocyanin-Rich Purple Plant Foods: Bioavailability, Antioxidant Mechanisms, and Functional Roles in Redox Regulation and Exercise Recovery
by Jarosław Nuszkiewicz, Joanna Wróblewska, Marcin Wróblewski and Alina Woźniak
Nutrients 2025, 17(15), 2453; https://doi.org/10.3390/nu17152453 - 28 Jul 2025
Viewed by 476
Abstract
Anthocyanin-rich purple fruits and vegetables—such as blackcurrants, blueberries, purple sweet potatoes, and red cabbage—are increasingly recognized for their health-promoting properties. These natural pigments exert antioxidant and anti-inflammatory effects, making them relevant to both chronic disease prevention and exercise recovery. This review critically examines [...] Read more.
Anthocyanin-rich purple fruits and vegetables—such as blackcurrants, blueberries, purple sweet potatoes, and red cabbage—are increasingly recognized for their health-promoting properties. These natural pigments exert antioxidant and anti-inflammatory effects, making them relevant to both chronic disease prevention and exercise recovery. This review critically examines current evidence on the redox-modulating mechanisms of anthocyanins, including their interactions with key signaling pathways such as Nrf2 and NF-κB, and their effects on oxidative stress, mitochondrial function, vascular homeostasis, and post-exercise adaptation. Particular attention is given to their bioavailability and the challenges associated with their chemical stability, metabolism, and food matrix interactions. In light of these factors, dietary strategies and technological innovations to improve anthocyanin absorption are also discussed. The synthesis of preclinical and clinical findings supports the potential of anthocyanin-rich foods as functional components in health optimization, athletic performance, and recovery strategies. Full article
Show Figures

Figure 1

20 pages, 1766 KiB  
Review
Recent Development of Exploring Ferroptosis-Inspired Effect of Iron as a Feasible Strategy for Combating Multidrug Resistant Bacterial Infections
by Nalin Abeydeera
Appl. Microbiol. 2025, 5(3), 73; https://doi.org/10.3390/applmicrobiol5030073 - 28 Jul 2025
Viewed by 492
Abstract
The increasing threat of antimicrobial resistance (AMR), along with the limited availability of new lead compounds in the drug development pipeline, highlights the urgent need to discover antimicrobial agents with innovative mechanisms of action. In this regard, metal complexes offer a unique opportunity [...] Read more.
The increasing threat of antimicrobial resistance (AMR), along with the limited availability of new lead compounds in the drug development pipeline, highlights the urgent need to discover antimicrobial agents with innovative mechanisms of action. In this regard, metal complexes offer a unique opportunity to access mechanisms distinct from those of conventional antibiotics. Although iron (Fe) is an essential element for all forms of life, including pathogenic bacteria, it also poses a serious risk of cytotoxicity due to its redox activity, which can trigger the production of reactive oxygen species (ROS) via the Fenton reaction. This review highlights recent advances in the development of iron-based antimicrobial agents that harness the toxicity resulting from dysregulated iron uptake, thereby inducing bacterial cell death through oxidative stress. These findings may guide the development of effective treatments for pathogenic infections and offer new perspectives on leveraging redox chemistry of iron to combat the growing threat of global bacterial resistance. Full article
Show Figures

Figure 1

18 pages, 3095 KiB  
Article
Investigating Seed Germination, Seedling Growth, and Enzymatic Activity in Onion (Allium cepa) Under the Influence of Plasma-Treated Water
by Sabnaj Khanam, Young June Hong, Eun Ha Choi and Ihn Han
Int. J. Mol. Sci. 2025, 26(15), 7256; https://doi.org/10.3390/ijms26157256 - 27 Jul 2025
Viewed by 272
Abstract
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical [...] Read more.
Seed germination and early seedling growth are pivotal stages that define crop establishment and yield potential. Conventional agrochemicals used to improve these processes often raise environmental concerns, highlighting the need for sustainable alternatives. In this study, we demonstrated that water treated with cylindrical dielectric barrier discharge (c-DBD) plasma, enriched with nitric oxide (NO) and reactive nitrogen species (RNS), markedly enhanced onion (Allium cepa) seed germination and seedling vigor. The plasma-treated water (PTW) promoted rapid imbibition, broke dormancy, and accelerated germination rates beyond 98%. Seedlings irrigated with PTW exhibited significantly increased biomass, root and shoot length, chlorophyll content, and antioxidant enzyme activities, accompanied by reduced lipid peroxidation. Transcriptomic profiling revealed that PTW orchestrated a multifaceted regulatory network by upregulating gibberellin biosynthesis genes (GA3OX1/2), suppressing abscisic acid signaling components (ABI5), and activating phenylpropanoid metabolic pathways (PAL, 4CL) and antioxidant defense genes (RBOH1, SOD). These molecular changes coincided with elevated NO2 and NO3 levels and finely tuned hydrogen peroxide dynamics, underpinning redox signaling crucial for seed activation and stress resilience. Our findings establish plasma-generated NO-enriched water as an innovative, eco-friendly technology that leverages redox and hormone crosstalk to stimulate germination and early growth, offering promising applications in sustainable agriculture. Full article
(This article belongs to the Special Issue Plasma-Based Technologies for Food Safety and Health Enhancement)
Show Figures

Figure 1

20 pages, 7947 KiB  
Article
Integrated Transcriptomic and Metabolomic Analyses Reveal Key Antioxidant Mechanisms in Dendrobium huoshanense Under Combined Salt and Heat Stress
by Xingen Zhang, Guohui Li, Jun Dai, Peipei Wei, Binbin Du, Fang Li, Yulu Wang and Yujuan Wang
Plants 2025, 14(15), 2303; https://doi.org/10.3390/plants14152303 - 25 Jul 2025
Viewed by 225
Abstract
Combined abiotic stresses often impose greater challenges to plant survival than individual stresses. In this study, we focused on elucidating the physiological and molecular mechanisms underlying the response of Dendrobium huoshanense to combined salt and heat stress by integrating physiological, transcriptomic, and metabolomic [...] Read more.
Combined abiotic stresses often impose greater challenges to plant survival than individual stresses. In this study, we focused on elucidating the physiological and molecular mechanisms underlying the response of Dendrobium huoshanense to combined salt and heat stress by integrating physiological, transcriptomic, and metabolomic analyses. Our results demonstrated that high temperature plays a dominant role in the combined stress response. Physiological assays showed increased oxidative damage under combined stress, accompanied by significant activation of antioxidant enzyme systems (SOD, POD, CAT). Metabolomic analysis revealed significant enrichment of glutathione metabolism and flavonoid biosynthesis pathways, with key antioxidants such as glutathione and naringenin chalcone accumulating under combined stress. Transcriptomic data supported these findings, showing differential regulation of stress-related genes, including those involved in reactive oxygen species scavenging and secondary metabolism. These results highlight a coordinated defense strategy in D. huoshanense, involving both enzymatic and non-enzymatic antioxidant systems to maintain redox homeostasis under combined stress. This study provides novel insights into the molecular mechanisms underlying combined stress tolerance and lays the foundation for improving stress resilience in medicinal orchids. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

Back to TopTop