Oxidative Stress and Neurotoxicity Biomarkers in Fish Toxicology
Abstract
1. Introduction
2. Indicators of Redox Imbalance in Fish Toxicology
Organic Pollutants and Redox Imbalance
3. Neurotoxicity Biomarkers in Fish Toxicology
3.1. Acetylcholinesterase as a Neurotoxicity Biomarker
GCS | Fish Species | Toxic Agent | Concentration [µmol] | Exp. dur. [d] | AChE Activity | Reference |
---|---|---|---|---|---|---|
M | D. rerio | microplastic | (10,000 @) | 5 | ↓ | Xue et al. [132] |
M | D. rerio embryos | microplastic | (0.1–10 °) | 4 | ↓ | Suman et al. [133] |
M | D. rerio embryos | microplastic | (0.1–3 °) | 5 | ↓ | Martin-Folgar et al. [134] |
M | O. javanicus | microplastic | (0.5–5 °) | 21 | ↑ | Usman et al. [135] |
M | O. mossambicus | polypropylene microplastic | (100 ××) (500 ××) (1000 ××) | 14 | – ↓ ↓ | Jeyavani et al. [136] |
M | O. niloticus | microplastic | (100 °) | 21 | ↓ | Yang et al. [137] |
M E | D. rerio | microplastic | (2 °) | 30 | ↑ | Santos et al. [138] |
copper (as CuSO4•5H2O) | 0.157 (25 *) | ↑ | ||||
M E | D. labrax | microplastic | (0.26 ° or 0.69 °) | 4 | ↓ | Barboza et al. [72] |
mercury (as HgCl2) | 0.037–0.059 (0.010 ° or 0.016 °) | ↓ | ||||
E | A. testudineus | chromium VI (as CrO3) | 27.503 or 55.006 (2.75 or 5.5 °) | 72 | ↓ | Kumar et al. [139] |
E | C. decemmaculatus | arsenic (as NaAsO2) | 3.849–38.488 (0.5–5 °) | 4 | – | González Núñez et al. [140] |
E E | D. rerio | chromium III (as CrCl3•6H2O) chromium VI (as (K2Cr2O7) | 6.315 (1 °) 3.400 (1 °) | 5 | ↓ ↓ | Xu et al. [141] |
E | D. rerio | aluminum | 203.840 (5.5 °) | 15 | ↓ | Alves et al. [142] |
E | D. rerio embryos | mercury (as HgCl2) | 36.830 (10 °) 368.297 (100 °) | 1 2–4 1 2–4 | – – – ↓ | Henriques et al. [143] |
E | D. rerio embryos + larvae | antimony (as K2Sb2C8H4O12 • 3 H2O) | 299.460–1197.838 (200–800 °) | 2 | ↓ | Xia et al. [144] |
E | H. molitrix larvae | mercury (as HgCl2) | 0.004–0.037 (1–10 *) | 14 | ↓ | Wang et al. [145] |
E | O. niloticus | aluminum (as Al2(SO4)3 | 0.003–0.009 (1 or 3 *) | 14 | ↑ | Oliveira et al. [146] |
E N | O. niloticus | titanium (as TiO2) titanium (as TiO2 NPs) | 0.626 or 1.252 (0.05 or 0.1 °) | 7–14 | – – | Abegoda-Liyanage and Pathiratne [147] |
N | D. rerio | selenium NPs | 6.331 or 126.629 (0.5 or 10 °) | 4 | ↓ | Fan et al. [148] |
N | D. rerio | silver NPs | 9.271 (1 °) 0.028–0.046 (3–5 *) | 4 | – ↓ | Marinho et al. [149] |
N N N N | O. mykiss | graphene nanoflakes graphene oxide reduced graphene oxide silicon carbide nanofibers | (4 °) | 36 | – | Jakubowska-Lehrmann et al. [150] |
F | D. rerio | paclobutrazol | 34.038 (10 °) | 4–14 | ↓ | Guo et al. [151] |
F | D. rerio | thifuzamide | 0.360 (0.19 °) 3.598 or 5.397 (1.9 or 2.85 °) | 6 | ↓ | Yang et al. [152] |
F | D. rerio embryos | mancozeb | 0.0009 (0.5 *) 0.009 (5 *) 0.092 (50 *) | 4 | ↓ – ↓ | Vieira et al. [153] |
H | D. rerio embryos | Roundup® glyphosate | 1.479 (0.25 °) | 2 | ↓ | Ames et al. [154] |
H | D. rerio larvae | Roundup® | 0.028 (4.8 *) | 5 | ↑ | Pompermaier et al. [155] |
H | D. rerio larvae | haloxyfop-p-methyl | 0.532–1.065 (0.2–0.4 °) | 4 | ↑ | Liu et al. [156] |
H | O. niloticus | pendimethalin | 1.848 (0.52 °) | 28 | ↓ | Hamed and El-Sayed [157] |
H | P. lineatus | Roundup® | 5.915 or 29.574 (1 or 5 °) | 4 | ↓ | Modesto and Martinez [2] |
H I | C. carpio | glyphosate chlorpyrifos | 20.701 (3.5 °) 0.071 (25 *) | 21 | ↓ ↓ | Zhang et al. [158] |
H I I | T. nilotica | diuron Nemacur® malathion | 4.290 (1 °) 0.330–6.593 (0.1–2 °) 0.303–6.054 (0.1–2 °) | 1 | ↓ ↓ ↓ | El-Nahhal [159] |
H I | D. rerio | DMA® 806 BR (Fipronil) Regent® 800 WG (2,4-D) | 0.134 (63.5 *) (447 *) | 4 | ↑ ↑ | Viana et al. [160] |
I | C. auratus gibelio | trichlorfon | 1942.2–7768.8 (0.5–2 ×××) | 0.5–4 | ↓ | Lu et al. [161] |
I | C. carpio C. idella A. nobilis | diafuran | 14.267–48.802 (1–3 °) | 4 | ↓ | Golombieski et al. [162] |
I | C. carpio | chlorpyrifos | 0.066 or 0.131 (23 or 46 *) | 14 | ↓ | Pala et al. [163] |
I | C. carpio | λ cyhalothrin | 0.0003 or 0.0006 (0.14 or 0.28 *) | 15–45 | ↓ | Chatterjee et al. [164] |
I | C. macropomum | malathion | 22.097 (7.3 °) | 4 | – | de Souza et al. [90] |
I | C. macropomum | trichlorfon | 1.010 or 1.670 (0.26 or 0.43 °) | 1–4 | ↓ | Duncan et al. [165] |
I I | C. punctatus | triazophos deltamethrin | 0.011 or 0.022 (3.4 or 6.8 *) 0.007 or 0.0014 (0.36 or 0.72 *) | 4 | ↓ ↓ | Singh et al. [166] |
I | C. umbla | chlorpyrifos | 156.880 (55 °) 313.760 (110 °) | 1 4 1 4 | – ↓ ↓ ↓ | Kirici [111] |
I | Clarias batrachus | thiamethoxam | 23.756 or 47.513 (6.93 or 13.86 °) | 45 | ↓ | Mukherjee et al. [167] |
I I | D. rerio | chlorpyrifos cyfluthrin | 0.003 (1.16 *) 0.016 or 0.033 (7.06 or 14.12 *) | 5 | ↓ ↓ | Zhang et al. [168] |
I | D. rerio | dinotefuran | 0.989 (0.2 °) 4.946 (1 °) | 28 | ↓ ↓ | Ran et al. [169] |
I | D. rerio | imidacloprid | 0.0006 (0.15 *) 0.059 or 0.176 (15 or 45 *) | 4 | – ↓ | Guerra et al. [170] |
I I | D. rerio | imidacloprid thiamethoxam | 0.0002–0.078 (0.05–20 *) 0.0002–0.069 (0.05–20 *) | 14–35 | – ↓ | Zhang et al. [171] |
I | D. rerio | sulfoxaflor | 3.138–12.659 (0.87–3.51 °) | 4 | ↑ | Benli and Celik [172] |
I | D. rerio | methomyl | 3.082–143.641 (0.5–23.3 °) | 6 | ↓ | Jablonski et al. [173] |
I | D. rerio embryos | chlorphoxim | 7.513–22.540 (2.5–7.5 °) | 4 | ↓ | Xiong et al. [174] |
I | D. rerio larvae | fenpropathrin | 0.046–0.183 (0.016–0.064 °) | 4 | ↑ | Yu et al. [175] |
I | D. rerio larvae | isoprocarb | 5.175–12.937 (1–2.5 °) | 6 | ↓ | Wang et al. [176] |
I | G. affinis | chlorpyrifos | 0.847 (0. 297 °) | 4 | ↓ | Kavitha and Rao [177] |
I | G. affinis | cypermethrin | 4.8 × 10−7 or 1.5 × 10−5 (0.2 or 6.25 #) | 7 | ↓ | Touaylia et al. [178] |
I | G. affinis | carbofuran | 0.863 or 0.701 (0.191 or 0.255 °) | 15–40 | ↓ | Rouachdia et al. [179] |
I | H. fossilis | chlorpyrifos | 0.257 or 0.548 (0.09 or 0.192°) | 7–30 | ↓ | Mishra et al. [180] |
I I | J. multidentata | cypermethrin chlorpyrifos | 9.610 × 10−5 or 9.610 × 10−4 (0.04 or 0.4 *) 0.001 or 0.011 (0.4 or 4 *) | 4 | – – | Bonansea et al. [122] |
I | O. latipes | diazinon | 0.033 or 0.066 (10 or 20 *) | 122 | ↓ | Flynn et al. [181] |
I | O. mykiss | chlorpyrifos | 6.413 or 12.830 (2.25 or 4.5 °) 0.021 (7.25 *) 0.021 (7.25 *) | 1–4 1–2 3–4 | – – ↓ | Topal et al. [182] |
I | O. mykiss | chlorpyrifos | 0.006 (2 *) 0.006 (2 *) 0.011 (4 *) 0.017 (6 *) | 7 14–21 7–21 7–21 | – ↓ ↓ ↓ | Mehtabidah et al. [183] |
I | O. mykiss | phosmet | 0.016 (5 *) 0.016 (5 *) 0.079 or 0.158 (25 or 50 *) | 1–2 3–4 1–4 | – ↓ ↓ | Muhammed and Dogan [184] |
I | O. mykiss larvae | chlorpyrifos | 0.0009 (0.3 *) 0.009 (3 *) | 21 | – ↓ | Weeks Santos et al. [185] |
I | O. niloticus | chlorpyrifos | 14.251–42.753 (5–15 *) | 30 | ↓ | Oruç [3] |
I I I | O. niloticus | malathion chlorpyrifos λ-cyhalothrin | 4.313 (1.425 °) 0.357 (0.125 °) 0.009 (0.0039 °) | 1 2 1 2 1 2 | ↑ ↓ ↑ ↑ – ↓ | Amin et al. [186] |
I | O. niloticus | carbofuran | 1.112 (0.246 °) | 30 | ↓ | Hamed et al. [187] |
I | P. lineatus | fipronil | 12.581 (5.5 °) 0.188 (82 $) | 15 | – ↓ | Santillan Deiú et al. [188] |
I | R. quelen | trichlorfon | 42.728 (11 °) | 21 | ↓ | Baldissera et al. [189] |
Pd | Corydoras paleatus | triclosan | 0.653 (189 *) | 2 | ↓ | Sager et al. [190] |
Pd | D. rerio | fluoxetine | 0.016–0.052 (5–16 #) | 4 | ↓ | Orozco-Hernández et al. [191] |
Pd | D. rerio | fluoxetine | 0.003–0.0323 (0.1–10 *) | 21 | – | Correia et al. [192] |
Pd | D. rerio embryos + larvae | cloramine T | 70.286 (16 °) 140.573 (32 °) 281.146 (64 °) 562.291 (128 °) | 4 | – – ↓ ↓ | Rivero-Wendt et al. [193] |
Pd | D. rerio embryos + larvae | 2,5-dichloro-1,4-benuinone | 1.130 (0.2 °) 2.260 or 3.390 (0.4 or 0.6 °) | 4 | – ↓ | Chen et al. [194] |
Pd | Danio rerio | metformin | 0.009–0.310 (1–40 *) | 120 | ↓ | Elizalde-Velázquez et al. [195] |
Pd | Danio rerio | sertraline | 3.266 (1 °) 32.655 or 326.552 (10 or 100 °) | 28 | – ↑ | Yang et al. [196] |
Pd | Danio rerio | nortriptyline | 0.003–1.898 (0.88–500 *) | 7 | ↓ | Oliveira et al. [197] |
Pd | Danio rerio embryos | moxidectin | 0.002–0.008 (1.5–5 *) | 4 | – | Muniz et al. [198] |
Pd | Danio rerio embryos + larvae | sertraline | 3.266–326.552 (1–100 °) | 10 | – | Yang et al. [152] |
Pd | Gambusia affinis | gestodene | 1.42 × 10−5 (4.4 #) 0.0012 (378.7 #) | 60 | ↓ ↑ | Tan et al. [199] |
Pd | Oreochromis mossambicus | triclosan | 0.452–3.613 (0.131–1.046 °) | 4 | ↓ | Deepika et al. [200] |
Pd | Oreochromis niloticus | synthetic progesterone | 0.636–2.544 (0.2–0.8 °) | 4 | ↓ | Rocha et al. [201] |
Pd | Rhamdia quelen | ciprofloxacin | 0.003 (1 *) 0.030 or 0.302 (10 or 100 *) | 28 | – ↓ | Carvalho et al. [202] |
O | A. testudineus | naphthalene | 32.769–39.011 (4.2–5.0 °) | 3 | ↓ | Nayak and Patnaik [203] |
O O | C. carpio | ammonia NH3 nitrite NO2- | 1802.701 (30.7 °) 3341.304 (153.7 °) | 4 | ↓ | Molayemraftar et al. [204] |
O O O | C. gariepinus | benzene toluene xylene | 9.76 × 10−6 (0.762 #) 0.0003 (26.614 #) 0.0011 (89.403 #) | 30 | ↓ – – | Sayed et al. [68] |
O | C. gariepinus | burnt tyre ash | (0.56–2.24 °) | 28 | ↓ | Iheanacho et al. [205] |
O | C. mrigala | phenol | 24.652–73.956 (2.32 or 6.96 °) | 7–28 | ↓ | Muthukumaravel et al. [206] |
O | D. rerio | tributylin | 3.24 × 10−5 (10 #) 0.0003–0.001 (100–300 #) | 42 | – ↓ | Li and Li [207] |
O | D. rerio | bisphenol A | 0.001–0.007 (0.22–1.5 *) | 4 | ↑ | Heredia-Garcia et al. [208] |
O | D. rerio | bisphenol AF | 0.149 or 1.487 (0.05 or 0.5 °) | 4 | ↓ | Rao et al. [209] |
O | D. rerio | methylparaben | 0.007 or 0.072 (1 or 11 *) | 30 | ↓ | Thakkar et al. [210] |
O | D. rerio | ethanol | 108.535 (5 °) | 7–28 | – | Agostini et al. [211] |
O | D. rerio embryos | bisphenol A | 49.936 (11.4 °) | 1 | ↓ | Murugan et al. [212] |
O | D. rerio embryos | methylparaben | 0.0007 or 0.007 (0.1 or 1 *) | 6 | ↓ | Raja et al. [213] |
O | D. rerio embryos | octocrylene | 0.014 (5 *) 0.138 or 1.383 (50 or 500 *) | 4 | – ↓ | Gayathri et al. [214] |
O | D. rerio embryos | benzophenone-3 | 0.001 or 0.010 (1 or 10 *) | 3 | ↓ | Sandoval-Gío et al. [215] |
O | D. rerio embryos + larvae | ammonia NH3 | 3.523–49.912 (0.06–0.85 °) | 7 | ↓ | Mariz et al. [216] |
O O | D. rerio larvae | hexabromobenzene pentabromobenzene | 0.054 (30 *) 0.181–0.544 (100–300 *) 0.063–0.212 (30–100 *) 0.635 (300 *) | 6 | – ↓ – ↓ | Chen et al. [217] |
O | G. affinis | bisphenol A | 20.763 or 33.904 (4.74 or 7.74 °) | 15–60 | ↓ | Belhamra et al. [218] |
O | G. affinis | decabromodiphenyl ether | 0.026 or 0.052 (25 or 50 *) | 2 | ↑ | Pérez-Iglesias et al. [219] |
O | O. mossambicus | ammonia NH3 | 58.720 (1 °) | 28–56 | ↓ | Gopi et al. [220] |
O | O. mossambicus | dichloromethane | 8595–9301 (730–790 °) | 4 | ↓ | Nirmala et al. [221] |
O | O. niloticus | benzylparaben | 2.19 × 10−5–0.022 (0.005–5 *) | 56 | ↓ | Lin et al. [222] |
O | O. niloticus | guanitoxin | (125 or 250 “”) | 4 | ↓ | Passos et al. [223] |
3.2. The Effects of Toxic Agents on Acetylcholinesterase Activity
3.3. Intergenerational Effects of Toxic Agents on Acetylcholinesterase Activity
3.4. Other Neurotoxicity Biochemical Biomarkers
4. Limitations of the Presented Studies
5. Conclusions
6. Recommendations
- (1)
- In toxicity studies of various chemicals, it is essential—following ethical considerations and recommendations—to include biochemical parameters, such as indicators of oxidative stress and AChE activity.
- (2)
- In toxicological experiments, the potential influence of the physicochemical parameters of water on the results of biochemical analyses should be taken into account. It is important that researchers measure and report individual water quality parameters, such as the concentrations of ammonia, nitrites, and nitrates.
- (3)
- The vast majority of toxicological experiments focus on the effects of a single substance on fish of a given species. There is a need for studies aimed at determining the effects of co-exposure to multiple toxicants (e.g., pesticides and heavy metals).
- (4)
- There are few studies that include more than one fish species. Comparative studies involving various fish species simultaneously are needed.
- (5)
- It is recommended to conduct toxicological studies taking into account various development stages of fish (embryos, larvae, fry, sexually mature individuals).
- (6)
- Detailed information on the mechanisms of action and physiological roles of cholinesterases other than AChE in fish is lacking. Further research is needed to address this knowledge gap.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2,4-D | 2,4-dichlorophenoxyacetic acid |
8-OHdG | 8-hydroxy-2′-deoxyguanosine |
8-OHGua | 8-hydroxyguanine |
8-oxodG | 8-oxo-7,8-dihydro-2′-deoxyguanosine |
A. nobilis | Aristychthys nobilis |
A. testudineus | Anabas testudineus |
ACh | Acetylcholine |
AChE | Acetylcholinesterase |
Ah | Aromatic hydrocarbons |
BChE | Butyrylcholinesterase |
C. auratus gibelio | Carassius auratus gibelio |
C. carpio | Cyprinus carpio |
C. decemmaculatus | Cnesterodon decemmaculatus |
C. gariepinus | Clarias gariepinus |
C. idella | Ctenopharyngodon idella |
C. macropomum | Colossoma macropomum |
C. mrigala | Cirrhinus mrigala |
C. punctatus | Channa punctatus |
C. umbla | Capoeta umbla |
CAT | Catalase |
CbE | Carboxylesterase |
ChEs | Cholinesterases |
Cu,ZnSOD | Copper-zinc superoxide dismutase |
CYPs | Cytochrome P450 enzymes |
d | Days |
D. labrax | Dicentrarchus labrax |
D. rerio | Danio rerio |
DNA | Deoxyribonucleic acid |
DOPAC | Dihydroxyphenylacetic acid |
E | Elements |
EROD | Ethoxyresorufin-O-deethylase |
Exp. dur. | Exposure duration |
F | Fungicides |
G. affinis | Gambusia affinis |
GABA | γ-aminobutyric acid |
GCS | Group of chemical substance |
GPx | Glutathione peroxidase |
GR | Glutathione reductase |
GSH | Reduced glutathione |
GSSG | Oxidized glutathione |
GST | Glutathione S-transferase |
H | Herbicides |
H. fossilis | Heteropneustes fossilis |
H. molitrix | Hypophthalmichthys molitrix |
I | Insecticides |
J. multidentata | Jenynsia multidentata |
LPO | Lipid peroxidation |
m | Minutes |
M | Microplastics |
MDA | Malondialdehyde |
MFOs | Mixed-function oxygenases |
MnSOD | Manganese superoxide dismutase |
MTs | Metallothioneins |
N | Nanoparticles |
n/a | Not applicable |
NMDA receptor | N-methyl-D-aspartate receptor |
NPs | Nanoparticles |
NRF2 | Nuclear factor erythroid 2-related factor 2 |
O | Other substances |
O. javanicus | Oryzias javanicus |
O. latipes | Oryzias latipes |
O. mossambicus | Oreochromis mossambicus |
O. mykiss | Oncorhynchus mykiss |
O. niloticus | Oreochromis niloticus |
P. lineatus | Prochilodus lineatus |
PChE | Propionylcholinesterase |
POD | Peroxidase |
R. quelen | Rhamdia quelen |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
T. nilotica | Tilapia nilotica |
TAO | Total antioxidant |
TBARS | Thiobarbituric acid reactive substances |
TPX | Total peroxides |
References
- Kroon, F.; Streten, C.; Harries, S.A. Protocol for identifying suitable biomarkers to assess fish health: A systematic review. PLoS ONE 2017, 12, e0174762. [Google Scholar] [CrossRef]
- Modesto, K.A.; Martinez, C.B.R. Effects of Roundup Transorb on fish: Hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 2010, 81, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Oruç, E.Ö. Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pest. Biochem. Physiol. 2010, 96, 160–166. [Google Scholar] [CrossRef]
- Rodriguez-Fuentes, G.; Rubio-Escalante, F.J.; Noreña-Barroso, E.; Escalante-Herrera, K.S.; Schlenk, D. Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure. Comp. Biochem. Physiol. C 2015, 172–173, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Kim, J.-H.; Lee, D.-C.; Lim, H.-J.; Kang, J.-C. Toxic effects on oxidative stress, neurotoxicity, stress, and immune responses in juvenile olive flounder, Paralichthys olivaceus, exposed to waterborne hexavalent chromium. Biology 2022, 11, 766. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Naito, Y. What is oxidative stress. J. Jap. Med. Ass. 2002, 45, 271–276. [Google Scholar]
- Aon, M.A.; Cortassa, S.; O’Rourke, B. Redox-optimized ROS balance: A unifying hypothesis. Biochim. Biophys. Acta 2010, 1797, 865–877. [Google Scholar] [CrossRef]
- Lichtenberg, D.; Pinchuk, I. Oxidative stress, the term and the concept. Biochem. Biophys. Res. Comm. 2015, 461, 441–444. [Google Scholar] [CrossRef]
- Stoliar, O.B.; Lushchak, V.I. Environmental pollution and oxidative stress in fish. In Oxidative Stress—Environmental Induction and Dietary Antioxidants; Lushchak, V.I., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Romano, N.; Renugdas, N.; Fischer, H.; Shrivastava, J.; Baruah, K.; Egnew, N.; Sinha, A.K. Differential modulation of oxidative stress, antioxidant defense, histomorphology, ion-regulation and growth marker gene expression in goldfish (Carassius auratus) following exposure to different dose of virgin microplastics. Comp. Biochem. Physiol. C 2020, 238, 108862. [Google Scholar] [CrossRef]
- Falfushynska, H.I.; Stoliar, O.B. Function of metallothioneins in carp Cyprinus carpio from two field sites in Western Ukraine. Ecotoxicol. Environ. Saf. 2009, 72, 1425–1432. [Google Scholar] [CrossRef]
- Loro, V.L.; Jorge, M.B.; da Silva, K.R.; Wood, C.M. Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost Fundulus heteroclitus: Protective effects of salinity. Aquat. Toxicol. 2012, 110–111, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Alvim, T.M.; Reis Martinez, C.B. Genotoxic and oxidative damage in the freshwater teleost Prochilodus lineatus exposed to the insecticides lambda-cyhalothrin and imidacloprid alone and in combination. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 842, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Paital, B.; Guru, D.; Mohapatra, P.; Panda, B.; Parida, N.; Rath, S.; Kumar, V.; Saxena, P.S.; Srivastava, A. Ecotoxic impact assessment of graphene oxide on lipid peroxidation at mitochondrial level and redox modulation in fresh water fish Anabas testudineus. Chemosphere 2019, 224, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Miyamoto, H.; Inoue, S.I.; Shigeta, K.; Kondo, M.; Ito, T.; Kodama, H.; Miyamoto, H.; Matsushita, T. Thermophile-fermented compost as a fish feed additive modulates lipid peroxidation and free amino acid contents in the muscle of the carp, Cyprinus carpio. J. Biosci. Bioengin. 2016, 121, 530–535. [Google Scholar] [CrossRef]
- Baker, B.P.; Van Wie, I.; Braun, E.; Jimenez, A.G. Thermal stability vs. variability: Insights in oxidative stress from a eurytolerant fish. Comp. Biochem. Physiol. A 2020, 249, 110767. [Google Scholar] [CrossRef]
- Liu, J.; Dong, C.; Zhai, Z.; Tang, L.; Wang, L. Glyphosate-induced lipid metabolism disorder contributes to hepatotoxicity in juvenile common carp. Environ. Pollut. 2021, 269, 116186. [Google Scholar] [CrossRef]
- Sánchez-Nuño, S.; Sanahuja, I.; Fernández-Alacid, L.; Ordóñez-Grande, B.; Carbonell, T.; Ibarz, A. Oxidative attack during temperature fluctuation challenge compromises liver protein homeostasis of a temperate fish model. Comp. Biochem. Physiol. B 2019, 236, 110311. [Google Scholar] [CrossRef]
- Safari Asl, R.; Shariatmadari, F.; Sharafi, M.; Torshizi, M.A.K.; Shahverdi, A. Dietary fish oil supplemented with vitamin E improves quality indicators of rooster cold-stored semen through reducing lipid peroxidation. Cryobiology 2018, 84, 15–19. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Liu, Q.; Ye, H.; Zou, C.; Ye, C.; Wang, A.; Lin, H. Effects of dietary ginkgo biloba leaf extract on growth performance, plasma biochemical parameters, fish composition, immune responses, liver histology, and immune and apoptosis-related genes expression of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) fed high lipid diets. Fish Shellfish Immunol. 2018, 72, 399–409. [Google Scholar] [CrossRef]
- Topal, A.; Çomakli, S.; Özkaraca, M.; Baran, A.; Köktürk, M.; Parlak, V.; Sağlam, Y.S.; Atamanalp, M.; Ceyhun, S.B. Immunofluorescence evaluation of 4-hydroxynonenal and 8-hydroxy-2-deoxyguanosine activation in zebrafish (Daino rerio) larvae brain exposed (microinjected) to propyl gallate. Chemosphere 2017, 183, 252–256. [Google Scholar] [CrossRef]
- Pulster, E.L.; Fogelson, S.; Carr, B.E.; Mrowicki, J.; Murawski, S.A. Hepatobiliary, PAHs and prevalence of pathological changes in Red Snapper. Aquat. Toxicol. 2021, 230, 105714. [Google Scholar] [CrossRef]
- Raibeemol, K.P.; Chitra, K.C. Induction of immunological, hormonal and histological alterations after sublethal exposure of chlorpyrifos in the freshwater fish, Pseudetroplus maculatus (Bloch, 1795). Fish Shellfish Immunol. 2020, 102, 1–12. [Google Scholar] [CrossRef]
- Zhong, Y.; Shen, L.; Ye, X.; Zhou, D.; He, Y.; Zhang, H. Mechanism of immunosuppression in zebrafish (Danio rerio) spleen induced by environmentally relevant concentrations of perfluorooctanoic acid. Chemosphere 2020, 249, 126200. [Google Scholar] [CrossRef] [PubMed]
- Gómez Manrique, W.; Pereira Figueiredo, M.A.; Charlie-Silva, I.; Belo, M.A.A.; Corsi Dib, C. Spleen melanomacrophage centers response of Nile tilapia during Aeromanas hydrophila and Mycobacterium marinum infections. Fish Shellfish Immunol. 2019, 95, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Ottinger, C.A.; Smith, C.R.; Blazer, V.S. In vitro immune function in laboratory-reared age-0 smallmouth bass (Micropterus dolomieu) relative to diet. Fish Shellfish Immunol. 2019, 95, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mahboub, H.H.; Khedr, M.H.E.; Elshopakey, G.E.; Shakweer, M.S.; Mohamed, D.I.; Ismail, T.A.; Ismail, S.H.; Rahman, A.N.A. Impact of silver nanoparticles exposure on neuro-behavior, hematology, and oxidative stress biomarkers of African catfish (Clarias gariepinus). Aquaculture 2021, 544, 737082. [Google Scholar] [CrossRef]
- Jia, R.; Du, J.; Cao, L.; Feng, W.; He, Q.; Xu, P.; Yin, G. Application of transcriptome analysis to understand the adverse effects of hydrogen peroxide exposure on brain function in common carp (Cyprinus carpio). Environ. Pollut. 2021, 286, 117240. [Google Scholar] [CrossRef]
- Mohamed, A.A.; El-Houseiny, W.; EL-Murr, A.E.; Ebraheim, L.L.M.; Ahmed, A.I.; El-Hakim, Y.M.A. Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: Role of curcumin supplemented diet. Ecotoxicol. Environ. Saf. 2020, 188, 109890. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Rahman, A.N.A.A.; Mohammed, H.H.; Ebraheim, L.L.M.; Abo-ElMaaty, A.M.A.; Ali, S.A.; Elhady, W.M. Neurobehavioral, apoptotic, and DNA damaging effects of sub-chronic profenofos exposure on the brain tissue of Cyprinus carpio L.: Antagonistic role of Geranium essential oil. Aquat. Toxicol. 2020, 224, 105493. [Google Scholar] [CrossRef]
- Topal, A.; Alak, G.; Altun, S.; Erol, H.S.; Atamanalp, M. Evaluation of 8-hydroxy-2-deoxyguanosine and NFkB activation, oxidative stress response, acetylcholinesterase activity, and histopathological changes in rainbow trout brain exposed to linuron. Environ. Toxicol. Pharmacol. 2017, 49, 14–20. [Google Scholar] [CrossRef]
- Almeida, É.C.; Passos, L.S.; Vieira, C.E.D.; Acayaba, R.D.; Montagner, C.C.; Pinto, E.; Martinez, C.B.D.R.; Fonseca, A.L. Can the insecticide imidacloprid affect the health of the Neotropical freshwater fish Astyanax altiparanae (Teleostei: Characidae)? Environ. Toxicol. Pharmacol. 2021, 85, 103634. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, X.C.; Huang, Y.Y.; Ge, Y.P.; Sun, M.; Chen, W.L.; Liu, W.B.; Li, X.F. Carbonyl cyanide 3-chlorophenylhydrazone induced the imbalance of mitochondrial homeostasis in the liver of Megalobrama amblycephala: A dynamic study. Comp. Biochem. Physiol. C 2021, 244, 109003. [Google Scholar] [CrossRef] [PubMed]
- Blank do Amaral, A.M.; Kuhn de Mour, L.; de Pellegrin, D.; Guerra, L.J.; Cerezer, F.O.; Saibt, N.; Prestes, O.D.; Zanella, R.; Loro, V.L.; Clasen, B. Seasonal factors driving biochemical biomarkers in two fish species from a subtropical reservoir in southern Brazil: An integrated approach. Environ. Pollut. 2020, 266, 115168. [Google Scholar] [CrossRef] [PubMed]
- Iturburu, F.G.; Bertrand, L.; Mendieta, J.R.; Amé, M.V.; Menone, M.L. An integrated biomarker response study explains more than the sum of the parts: Oxidative stress in the fish Australoheros facetus exposed to imidacloprid. Ecol. Indic. 2018, 93, 351–357. [Google Scholar] [CrossRef]
- Feng, L.; Gan, L.; Jiang, W.D.; Wu, P.; Liu, Y.; Jiang, J.; Tang, L.; Kuang, S.Y.; Tang, W.N.; Zhang, Y.A.; et al. Gill structural integrity changes in fish deficient or excessive in dietary isoleucine: Towards the modulation of tight junction protein, inflammation, apoptosis and antioxidant defense via NF-κB, TOR and Nrf2 signaling pathways. Fish Shellfish Immunol. 2017, 63, 127–138. [Google Scholar] [CrossRef]
- Shahab, M.; Rosati, R.; Meyer, D.N.; Shields, J.N.; Crofts, E.; Baker, T.R.; Jamesdaniel, S. Cisplatin-induced hair cell loss in zebrafish neuromasts is accompanied by protein nitration and Lmo4 degradation. Toxicol. Appl. Pharmacol. 2021, 410, 115342. [Google Scholar] [CrossRef]
- Lee, J.W.; Deng, D.F.; Lee, J.; Kim, K.; Jung, H.J.; Choe, Y.; Park, S.H.; Yoon, M. The adverse effects of selenomethionine on skeletal muscle, liver, and brain in the steelhead trout (Oncorhynchus mykiss). Environ. Toxicol. Pharmacol. 2020, 80, 103451. [Google Scholar] [CrossRef]
- Huang, D.J.; Zhang, Y.M.; Song, G.; Long, J.; Liu, J.H.; Ji, W.H. Contaminants-induced oxidative damage on the carp Cyprinus carpio collected from the Upper Yellow River, China. Environ. Monit. Ass. 2007, 128, 483–488. [Google Scholar] [CrossRef]
- Falfushynska, H.; Horyn, O.; Fedoruk, O.; Khoma, V.; Rzymski, P. Difference in biochemical markers in the gibel carp (Carassius auratus gibelio) upstream and downstream of the hydropower plant. Environ. Pollut. 2019, 255, 113213. [Google Scholar] [CrossRef]
- Haider, K.; Haider, M.R.; Neha, K.; Yar, M.S. Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur. J. Med. Chem. 2020, 204, 112607. [Google Scholar] [CrossRef]
- Delfino, R.J.; Staimer, N.; Vaziri, N.D. Air pollution and circulating biomarkers of oxidative stress. Air Qual. Atm. Health 2011, 4, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, M. Metallothioneins: Historical review and state of knowledge. Talanta 1998, 46, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Banday, U.Z.; Swaleh, S.B.; Usmani, N. Heavy metal toxicity has an immunomodulatory effect on metallothionein and glutathione peroxidase gene expression in Cyprinus carpio inhabiting a wetland lake and a culture pond. Chemosphere 2020, 251, 126311. [Google Scholar] [CrossRef] [PubMed]
- Beg, M.U.; Al-Jandal, N.; Al-Subiai, S.; Karam, Q.; Husain, S.; Butt, S.A.; Ali, A.; Al-Hasan, E.; Al-Dufaileej, S.; Al-Husaini, M. Metallothionein, oxidative stress and trace metals in gills and liver of demersal and pelagic fish species from Kuwaits’ marine area. Mar. Pollut. Bull. 2015, 100, 662–672. [Google Scholar] [CrossRef]
- Pandey, S.; Parvez, S.; Sayeed, I.; Haque, R.; Bin-Hafeez, B.; Raisuddin, S. Biomarkers of oxidative stress: A comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci. Total Environ. 2003, 309, 105–115. [Google Scholar] [CrossRef]
- Bacanskas, L.R.; Whitaker, J.; Di Giulio, R.T. Oxidative stress in two populations of killifish (Fundulus heteroclitus) with differing contaminant exposure histories. Mar. Environ. Res. 2004, 58, 597–601. [Google Scholar] [CrossRef]
- Falfushynska, H.; Gnatyshyna, L.; Priydun, C.; Stoliar, O.; Nam, Y.K. Variability of responses in the crucian carp carassius from two Ukrainian ponds determined by multi-marker approach. Ecotoxicol. Environ. Saf. 2010, 73, 1896–1906. [Google Scholar] [CrossRef]
- Kurhaluk, N. Formation of an antioxidant profile in the sea trout (Salmo trutta m. trutta L.) from the Slupia River. Zoology 2019, 133, 54–65. [Google Scholar] [CrossRef]
- Sinha, A.K.; Zinta, G.; AbdElgawad, H.; Asard, H.; Blust, R.; De Boeck, G. High environmental ammonia elicits differential oxidative stress and antioxidant responses in five different organs of a model estuarine teleost (Dicentrarchus labrax). Comp. Biochem. Physiol. C 2015, 174–175, 21–31. [Google Scholar] [CrossRef]
- Johannsson, O.E.; Giacomin, M.; Sadauskas-Henrique, H.; Campos, D.F.; Braz-Mota, S.; Heinrichs-Caldas, W.D.; Baptista, R.; Wood, C.M.; Almeida-Val, V.M.F.; Val, A.L. Does hypoxia or different rates of re-oxygenation after hypoxia induce an oxidative stress response in Cyphocharax abramoides (Kner 1858), a Characid fish of the Rio Negro? Comp. Biochem. Physiol. A 2018, 224, 53–67. [Google Scholar] [CrossRef]
- Liu, M.J.; Guo, H.Y.; Liu, B.; Zhu, K.C.; Guo, L.; Liu, B.S.; Zhang, N.; Yang, J.W.; Jiang, S.G.; Zhang, D.C. Gill oxidative damage caused by acute ammonia stress was reduced through the HIF-1α/NF-κb signaling pathway in golden pompano (Trachinotus ovatus). Ecotoxicol. Environ. Saf. 2021, 222, 112504. [Google Scholar] [CrossRef]
- Cheng, C.H.; Yang, F.F.; Ling, R.Z.; Liao, S.A.; Miao, Y.T.; Ye, C.X.; Wang, A.L. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Aquat. Toxicol. 2015, 164, 61–71. [Google Scholar] [CrossRef]
- Wang, S.; Meng, F.; Liu, Y.; Xia, S.; Wang, R. Exogenous inositol ameliorates the effects of acute ammonia toxicity on intestinal oxidative status, immune response, apoptosis, and tight junction barriers of great blue-spotted mudskippers (Boleophthalmus pectinirostris). Comp. Biochem. Physiol. C 2021, 240, 108911. [Google Scholar] [CrossRef] [PubMed]
- Kennel, K.B.; Greten, F.R. Immune cell-produced ROS and their impact on tumor growth and metastasis. Redox Biol. 2021, 42, 101891. [Google Scholar] [CrossRef] [PubMed]
- Ching, B.; Chew, S.F.; Wong, W.P.; Ip, Y.K. Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper). Aquat. Toxicol. 2009, 95, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Alak, G.; Ucar, A.; Parlak, V.; Yeltekin, A.Ç.; Taş, I.H.; Ölmez, D.; Kocaman, E.M.; Yılgın, M.; Atamanalp, M.; Yanık, T. Assessment of 8-hydroxy-2-deoxyguanosine activity, gene expression and antioxidant enzyme activity on rainbow trout (Oncorhynchus mykiss) tissues exposed to biopesticide. Comp. Biochem. Physiol. C 2017, 203, 51–58. [Google Scholar] [CrossRef]
- Oliva, M.; Gravato, C.; Guilhermino, L.; Galindo-Riaño, M.D.; Perales, J.A. EROD activity and cytochrome P4501A induction in liver and gills of Senegal sole Solea senegalensis from a polluted Huelva Estuary (SW Spain). Comp. Biochem. Physiol. C 2014, 166, 134–144. [Google Scholar] [CrossRef]
- Yang, C.; Lim, W.; Song, G. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp. Biochem. Physiol. C 2020, 234, 108758. [Google Scholar] [CrossRef]
- Vega-López, A.; Galar-Martínez, M.; Jiménez-Orozco, F.A.; García-Latorre, E.; Domínguez-López, M.L. Gender related differences in the oxidative stress response to PCB exposure in an endangered goodeid fish (Girardinichthys viviparus). Comp. Biochem. Physiol. A 2007, 146, 672–678. [Google Scholar] [CrossRef]
- Slaninova, A.; Smutna, M.; Modra, H.; Svobodova, Z. A review: Oxidative stress in fish induced by pesticides. Neuroendocrinol. Let. 2009, 30, 2–12. [Google Scholar]
- Sun, Y.; Tang, L.; Liu, Y.; Hu, C.; Zhou, B.; Lam, P.K.S.; Lam, J.C.W.; Chen, L. Activation of aryl hydrocarbon receptor by dioxin directly shifts gut microbiota in zebrafish. Environ. Pollut. 2019, 255, 113357. [Google Scholar] [CrossRef]
- Choi, Y.; Jeon, J.; Kim, S.D. Identification of biotransformation products of organophosphate ester from various aquatic species by suspect and non-target screening approach. Water Res. 2021, 200, 117201. [Google Scholar] [CrossRef]
- Na, N.; Guo, H.; Zhang, S.; Li, Z.; Yin, L. In vitro and in vivo acute toxicity of fenpyroximate to flounder Paralichthys olivaceus and its gill cell line. Aquat. Toxicol. 2009, 92, 76–85. [Google Scholar] [CrossRef]
- Isik, I.; Celik, I. Acute effects of methylparathion and diazinon as inducers for oxidative stress on certain biomarkers in various tissues of rainbow trout (Oncorhynchus mykiss). Pest. Biochem. Physiol. 2008, 92, 38–42. [Google Scholar] [CrossRef]
- Nayak, S.; Dash, S.N.; Pati, S.S.; Priyadarshini, P.; Patnaik, L. Lipid peroxidation and antioxidant levels in Anabas testudineus (Bloch) under naphthalene (PAH) stress. Aquacult. Res. 2021, 52, 5739–5749. [Google Scholar] [CrossRef]
- Ji, Y.; Lu, G.H.; Wang, C.; Zhang, J. Biochemical responses of freshwater fish Carassius auratus to polycyclic aromatic hydrocarbons and pesticides. Water Sci. Eng. 2012, 5, 145–154. [Google Scholar] [CrossRef]
- Sayed, A.E.-D.H.; Soliman, H.A.M.; Idriss, S.K.; Abdel Ghaffar, S.K.; Hussein, A.A.A. Oxidative stress and immunopathological alterations of Clarias gariepinus exposed to monocyclic aromatic hydrocarbons (BTX). Water Air Soil Pollut. 2023, 234, 354. [Google Scholar] [CrossRef]
- Sadauskas-Henrique, H.; Duarte, R.M.; Gagnon, M.M.; Val, V.M.F.A. Validation of a suite of biomarkers of fish health in the tropical bioindicator species, tambaqui (Colossoma macropomum). Ecol. Indic. 2017, 73, 443–451. [Google Scholar] [CrossRef]
- Danion, M.; Floch, S.L.; Lamour, F.; Quentel, C. EROD activity and antioxidant defenses of sea bass (Dicentrarchus labrax) after an in vivo chronic hydrocarbon pollution followed by a post-exposure period. Environ. Sci. Pollut. Res. 2014, 21, 13769–13778. [Google Scholar] [CrossRef]
- Aguilar, L.; Dzul-Caamal, R.; Rendón-von Osten, J.; da Cruz, A.L. Effects of polycyclic aromatic hydrocarbons in Gambusia yucatana, an Endemic Fish from Yucatán Peninsula, Mexico. Polycycl. Aromat. Compd. 2022, 42, 907–924. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Vieira, L.R.; Branco, V.; Figueiredo, N.; Carvalho, F.; Carvalho, C.; Guilhermino, L. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat. Toxicol. 2018, 195, 49–57. [Google Scholar] [CrossRef]
- Gobi, N.; Vaseeharan, B.; Rekha, R.; Vijayakumar, S.; Faggio, C. Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol. Environ. Saf. 2018, 162, 147–159. [Google Scholar] [CrossRef]
- Husak, V.V.; Mosiichuk, N.M.; Storey, J.M.; Storey, K.B.; Lushchak, V.I. Acute exposure to the penconazole-containing fungicide Topas partially augments antioxidant potential in goldfish tissues. Comp. Biochem. Physiol. C 2017, 193, 1–8. [Google Scholar] [CrossRef]
- Palanikumar, L.; Kumaraguru, A.K.; Ramakritinan, C.M.; Anand, M. Toxicity, biochemical and clastogenic response of chlorpyrifos and carbendazim in milkfish Chanos chanos. Int. J. Environ. Sci. Technol. 2014, 11, 765–774. [Google Scholar] [CrossRef]
- Han, Y.; Liu, T.; Wang, J.; Wang, J.; Zhang, C.; Zhu, L. Genotoxicity and oxidative stress induced by the fungicide azoxystrobin in zebrafish (Danio rerio) livers. Pest. Biochem. Physiol. 2016, 133, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Zlabek, V.; Velíšek, J.; Grabic, R.; Machova, J.; Kolařová, J.; Li, P.; Randak, T. Antioxidant responses and plasma biochemical characteristics in the freshwater rainbow trout, Oncorhynchus mykiss, after acute exposure to the fungicide propiconazole. Czech J. Anim. Sci. 2011, 56, 61–69. [Google Scholar] [CrossRef]
- Destro, A.L.F.; Silva, S.B.; Gregorio, K.P.; de Oliveira, J.M.; Lozi, A.A.; Zuanon, J.A.S.; Salaro, A.L.; da Matta, S.L.P.; Gonçalves, R.V.; Freitas, M.B. Effects of subchronic exposure to environmentally relevant concentrations of the herbicide atrazine in the Neotropical fish Astyanax altiparanae. Ecotoxicol. Environ. Saf. 2021, 208, 111601. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.K.; Soni, R.; Gupta, P. Herbicide pretilachlor induces oxidative stress in freshwater fish Clarias batrachus. Biol. Bull. 2023, 50, 449–456. [Google Scholar] [CrossRef]
- El-Houseiny, W.; Anter, R.G.; Arisha, A.H.; Mansour, A.T.; Safhi, F.A.; Alwutayd, K.M.; Elshopakey, G.E.; Abd El-Hakim, Y.M.; Mohamed, E.M.M. Growth retardation, oxidative stress, immunosuppression, and inflammatory disturbances induced by herbicide exposure of catfish, Clarias gariepinus, and the alleviation effect of dietary wormwood, Artemisia cina. Fishes 2023, 8, 297. [Google Scholar] [CrossRef]
- Braz-Mota, S.; Sadauskas-Henrique, H.; Duarte, R.M.; Val, A.L.; Almeida-Val, V.M. Roundup® exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere 2015, 135, 53–60. [Google Scholar] [CrossRef]
- Neglur, S.B.; David, M.; Sanakal, R.D. Studies on Fenaxoprop-P-Ethyl Induced Antioxidant Response in Cyprinus carpio L. Res. J. Agricult. Sci. 2021, 12, 2185–2192. [Google Scholar]
- Jin, Y.; Zhang, X.; Shu, L.; Chen, L.; Sun, L.; Qian, H.; Liu, W.; Fu, Z. Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere 2010, 78, 846–852. [Google Scholar] [CrossRef]
- Ghaffar, A.; Hussain, R.; Ahmad, N.; Ghafoor, R.; Akram, M.W.; Khan, I.; Khan, A. Evaluation of hemato-biochemical, antioxidant enzymes as biochemical biomarkers and genotoxic potential of glyphosate in freshwater fish (Labeo rohita). Chem. Ecol. 2021, 37, 646–667. [Google Scholar] [CrossRef]
- Abdelmagid, A.D.; Said, A.M.; Gawad, E.A.A.; Shalaby, S.A.; Dawood, M.A. Propolis nanoparticles relieved the impacts of glyphosate-induced oxidative stress and immunosuppression in Nile tilapia. Environ. Sci. Pollut. Res. 2022, 29, 19778–19789. [Google Scholar] [CrossRef]
- Acar, Ü.; İnanan, B.E.; Navruz, F.Z.; Yılmaz, S. Alterations in blood parameters, DNA damage, oxidative stress and antioxidant enzymes and immune-related genes expression in Nile tilapia (Oreochromis niloticus) exposed to glyphosate-based herbicide. Comp. Biochem. Physiol. C 2021, 249, 109147. [Google Scholar] [CrossRef]
- Gomes, J.D.L.C.; do Amaral, A.M.B.; Storck, T.R.; Moraes, B.S.; Loro, V.L.; Clasen, B. Can vitamin C supplementation improve the antioxidant capacity of Rhamdia quelen fish exposed to atrazine? Arch. Environ. Contam. Toxicol. 2022, 82, 551–557. [Google Scholar] [CrossRef]
- Dinu, D.; Marinescu, D.; Munteanu, M.C.; Staicu, A.C.; Costache, M.; Dinischiotu, A. Modulatory effects of deltamethrin on antioxidant defense mechanisms and lipid peroxidation in Carassius auratus gibelio liver and intestine. Arch. Environ. Contam. Toxicol. 2010, 58, 757–764. [Google Scholar] [CrossRef]
- Bharti, S.; Rasool, F. Analysis of the biochemical and histopathological impact of a mild dose of commercial malathion on Channa punctatus (Bloch) fish. Toxicol. Rep. 2021, 8, 443–455. [Google Scholar] [CrossRef]
- Souza, S.S.; Machado, R.N.; da Costa, J.C.; Campos, D.F.; da Silva, G.S.; de Almeida-Val, V.M.F. Severe damages caused by Malathion exposure in Colossoma macropomum. Ecotoxicol. Environ. Saf. 2020, 205, 111340. [Google Scholar] [CrossRef]
- Yonar, S.M. Toxic effects of malathion in carp, Cyprinus carpio carpio: Protective role of lycopene. Ecotoxicol. Environ. Saf. 2013, 97, 223–229. [Google Scholar] [CrossRef]
- Yonar, S.M.; Ural, M.Ş.; Silici, S.; Yonar, M.E. Malathion-induced changes in the haematological profile, the immune response, and the oxidative/antioxidant status of Cyprinus carpio carpio: Protective role of propolis. Ecotoxicol. Environ. Saf. 2014, 102, 202–209. [Google Scholar] [CrossRef]
- Narra, M.R.; Rajender, K.; Reddy, R.R.; Murty, U.S.; Begum, G. Insecticides induced stress response and recuperation in fish: Biomarkers in blood and tissues related to oxidative damage. Chemosphere 2017, 168, 350–357. [Google Scholar] [CrossRef]
- Abdel Rahman, A.N.; Mansour, D.A.; Abd El-Rahman, G.I.; Elseddawy, N.M.; Zaglool, A.W.; Khamis, T.; Mahmoud, S.F.; Mahboub, H.H. Imidacloprid toxicity in Clarias gariepinus: Protective role of dietary Hyphaene thebaica against biochemical and histopathological disruption, oxidative stress, immune genes expressions, and Aeromonas sobria infection. Aquaculture 2022, 555, 738170. [Google Scholar] [CrossRef]
- Menezes, C.; Leitemperger, J.; Murussi, C.; de Souza Viera, M.; Adaime, M.B.; Zanella, R.; Loro, V.L. Effect of diphenyl diselenide diet supplementation on oxidative stress biomarkers in two species of freshwater fish exposed to the insecticide fipronil. Fish Physiol. Biochem. 2016, 42, 1357–1368. [Google Scholar] [CrossRef]
- Abdel Rahman, A.N.; Mohamed, A.A.R.; Mohammed, H.H.; Elseddawy, N.M.; Salem, G.A.; El-Ghareeb, W.R. The ameliorative role of geranium (Pelargonium graveolens) essential oil against hepato-renal toxicity, immunosuppression, and oxidative stress of profenofos in common carp, Cyprinus carpio (L.). Aquaculture 2020, 517, 734777. [Google Scholar] [CrossRef]
- Hemalatha, D.; Amala, A.; Rangasamy, B.; Nataraj, B.; Ramesh, M. Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio. Environ. Toxicol. 2016, 31, 1399–1406. [Google Scholar] [CrossRef]
- Bacchetta, C.; Rossi, A.; Ale, A.; Campana, M.; Parma, M.J.; Cazenave, J. Combined toxicological effects of pesticides: A fish multi-biomarker approach. Ecol. Indic. 2014, 36, 532–538. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, Y.; Liu, L.; Zhang, Q.; Xu, S.; Guo, M.Y. Polystyrene microplastics induced inflammation with activating the TLR2 signal by excessive accumulation of ROS in hepatopancreas of carp (Cyprinus carpio). Ecotoxicol. Environ. Saf. 2023, 251, 114539. [Google Scholar] [CrossRef]
- Hamed, M.; Soliman, H.A.; Osman, A.G.; Sayed, A.E.D.H. Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. Environ. Sci. Pollut. Res. 2020, 27, 14581–14588. [Google Scholar] [CrossRef]
- Xing, X.; Li, M.; Yuan, L.; Song, M.; Ren, Q.; Shi, G.; Meng, F.; Wang, R. The protective effects of taurine on acute ammonia toxicity in grass carp Ctenopharynodon idellus. Fish Shellfish Immunol. 2016, 56, 517–522. [Google Scholar] [CrossRef]
- Faheem, M.; Lone, K.P. Oxidative stress and histopathologic biomarkers of exposure to bisphenol-A in the freshwater fish, Ctenopharyngodon idella. Braz. J. Pharm. Sci. 2017, 53, e17003. [Google Scholar] [CrossRef]
- Afzal, G.; Ahmad, H.I.; Hussain, R.; Jamal, A.; Kiran, S.; Hussain, T.; Saeed, S. Bisphenol A induces histopathological, hematobiochemical alterations, oxidative stress, and genotoxicity in common carp (Cyprinus carpio L.). Oxid. Med. Cell. Longev. 2022, 2022, 5450421. [Google Scholar] [CrossRef]
- Banaee, M.; Badr, A.A.; Multisanti, C.R.; Haghi, B.N.; Faggio, C. The toxicity effects of the individual and combined exposure of methyl tert-butyl ether (MTBE) and tire rubber powder (RP) on Nile tilapia fish (Oreochromis niloticus). Comp. Biochem. Physiol. C 2023, 274, 109759. [Google Scholar] [CrossRef]
- Zhang, M.; Li, M.; Wang, R.; Qian, Y. Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine. Fish Shellfish Immunol. 2018, 79, 313–320. [Google Scholar] [CrossRef]
- Maradonna, F.; Nozzi, V.; Dalla Valle, L.; Traversi, I.; Gioacchini, G.; Benato, F.; Colletti, E.; Gallo, P.; Di Marco Pisciottano, I.; Mita, D.G.; et al. A developmental hepatotoxicity study of dietary bisphenol A in Sparus aurata juveniles. Comp. Biochem. Physiol. C 2014, 166, 1–13. [Google Scholar] [CrossRef]
- Revathy, V.; Chitra, K.C. Effects of diisononyl phthalate on the antioxidant status in gill, liver and muscle tissues of the fish, Oreochromis mossambicus. Asian J. Adv. Basic Sci. 2018, 6, 37–48. [Google Scholar]
- Bojarski, B.; Jakubiak, M.; Bień, M.; Batoryna, M.; Formicki, G.; Socha, M.; Drąg-Kozak, E.; Tombarkiewicz, B. Assessment of gentamicin effect on oxidoreductive balance and microstructure of trunk kidney in Prussian carp (Carassius gibelio). Ann. Wars. Univ. Life Sci. SGGW Anim. Sci. 2019, 58, 115–123. [Google Scholar] [CrossRef]
- Stengel, D.; Wahby, S.; Braunbeck, T. In search of an understandable set of endpoints for the routine monitoring of neurotoxicity in vertebrates: Sensory perception and nerve transmission in zebrafish (Danio rerio) embryos. Environ. Sci. Pollut. Res. 2018, 25, 4066–4084. [Google Scholar] [CrossRef]
- Carvalho, P.S.; Fonseca-Rodrigues, D.; Pacheco, M.; Almeida, A.; Pinto-Ribeiro, F.; Pereira, P. Comparative neurotoxicity of dietary methylmercury and waterborne inorganic mercury in fish: Evidence of optic tectum vulnerability through morphometric and histopathological assessments. Aquat. Toxicol. 2023, 261, 106557. [Google Scholar] [CrossRef]
- Kirici, M. Assessment of 8-hydroxy-2-deoxyguanosine activity, apoptosis, acetylcholinesterase, and antioxidant enzyme activity in Capoeta umbla brain exposed to chlorpyrifos. Int. J. Ocean. Hydrobiol. 2022, 51, 167–177. [Google Scholar] [CrossRef]
- Puga, S.; Pereira, P.; Pinto-Ribeiro, F.; O’Driscoll, N.J.; Mann, E.; Barata, M.; Pousão-Ferreira, P.; Canário, J.; Almeida, A.; Pacheco, M. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment. Aquat. Toxicol. 2016, 180, 320–333. [Google Scholar] [CrossRef]
- Sanchez-Aceves, L.M.; Pérez-Alvarez, I.; Belén Onofre-Camarena, D.; Gutiérrez-Noya, V.M.; Rosales-Pérez, K.E.; Orozco-Hernández, J.M.; Hernández-Navarro, M.D.; Islas Flores, H.; Gómez-Olivan, L.M. Prolonged exposure to the synthetic glucocorticoid dexamethasone induces brain damage via oxidative stress and apoptotic response in adult Danio rerio. Chemosphere 2024, 364, 143012. [Google Scholar] [CrossRef]
- Chang, X.; Shen, Y.; Yang, M.; Yun, L.; Liu, Z.; Feng, S.; Yang, G.; Meng, X.; Su, X. Antipsychotic drug-induced behavioral abnormalities in common carp: The potential involvement of the gut microbiota-brain axis. J. Hazard. Mat. 2024, 472, 134444. [Google Scholar] [CrossRef]
- Oger, M.J.L.; Vermeulen, O.; Lambert, J.; Madanu, T.L.; Kestemont, P.; Cornet, V. Down to size: Exploring the influence of plastic particle Dimensions on physiological and nervous responses in early-stage zebrafish. Environ. Pollut. 2024, 351, 124094. [Google Scholar] [CrossRef] [PubMed]
- Wan, T.; Au, D.W.-T.; Mo, J.; Chen, L.; Cheung, K.-M.; Kong, R.Y.-C.; Seemann, F. Assessment of parental benzo[a]pyrene exposure induced cross-generational neurotoxicity and changes in offspring sperm DNA methylome in medaka fish. Environ. Epigenetics 2022, 8, dvac013. [Google Scholar] [CrossRef] [PubMed]
- Morsy, G.M. Bioaccumulation and neurotoxicity of dithiopyridine herbicide in the brain of freshwater fish, Cyprinus carpio. Toxicol. Indust. Health 2015, 31, 1116–1127. [Google Scholar] [CrossRef]
- Bedrossiantz, J.; Bellot, M.; Dominguez-García, P.; Faria, M.; Prats, E.; Gómez-Canela, C.; López-Arnau, R.; Escubedo, E.; Raldúa, D. A zebrafish model of neurotoxicity by binge-like methamphetamine exposure. Front. Pharmacol. 2021, 12, 770319. [Google Scholar] [CrossRef]
- Vieira, M.; Nunes, B. Cholinesterases of marine fish: Characterization and sensitivity towards specific chemicals. Environ. Sci. Pollut. Res. 2021, 28, 48595–48609. [Google Scholar] [CrossRef]
- Martínez-Morcillo, S.; Pérez-López, M.; Míguez, M.P.; Valcárcel, Y.; Soler, F. Comparative study of esterase activities in different tissues of marine fish species Trachurus trachurus, Merluccius merluccius and Trisopterus luscus. Sci. Total Environ. 2019, 679, 12–22. [Google Scholar] [CrossRef]
- Sandahl, J.F.; Baldwin, D.H.; Jenkins, J.J.; Scholz, N.L. Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in Coho salmon exposed to chlorpyrifos. Environ. Toxicol. Chem. 2005, 24, 136–145. [Google Scholar] [CrossRef]
- Bonansea, R.I.; Wunderlin, D.A.; Amé, M.V. Behavioral swimming effects and acetylcholinesterase activity changes in Jenynsia multidentata exposed to chlorpyrifos and cypermethrin individually and in mixtures. Ecotoxicol. Environ. Saf. 2016, 129, 311–319. [Google Scholar] [CrossRef]
- Tõugu, V. Acetylcholinesterase: Mechanism of catalysis and inhibition. Curr. Med. Chem. Cent. Nerv. Syst. Agents 2001, 1, 155–170. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Zhang, Y. Catalytic reaction mechanism of acetylcholinesterase determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations. J. Phys. Chem. B 2010, 114, 8817–8825. [Google Scholar] [CrossRef] [PubMed]
- Bigbee, J.W.; Sharma, K.W.; Gupta, J.J.; Dupree, J.L. Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development. Environ. Health Perspect. 1999, 107 (Suppl. S1), 81–87. [Google Scholar] [CrossRef] [PubMed]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, F.R.; Ferrari, L.; Salibian, A. Freshwater pollution biomarker: Response of brain acetylcholinesterase activity in two fish species. Comp. Biochem. Physiol. C 2002, 131, 271–280. [Google Scholar] [CrossRef]
- Menéndez-Helman, R.J.; Ferreyroa, G.V.; dos Santos Afonso, M.; Salibián, A. Circannual rhythms of acetylcholinesterase (AChE) activity in the freshwater fish Cnesterodon decemmaculatus. Ecotoxicol. Environ. Saf. 2015, 111, 236–241. [Google Scholar] [CrossRef]
- Bernal-Rey, D.L.; Cantera, C.G.; dos Santos Afonso, M.; Menéndez-Helman, R.J. Seasonal variations in the dose-response relationship of acetylcholinesterase activity in freshwater fish exposed to chlorpyrifos and glyphosate. Ecotoxicol. Environ. Saf. 2020, 187, 109673. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.J.R.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Frasco, M.F.; Fournier, D.; Carvalho, F.; Guilhermino, L. Do metals inhibit acetylcholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers 2005, 10, 360–375. [Google Scholar] [CrossRef]
- Xue, Y.-H.; Jia, T.; Yang, N.; Sun, Z.-X.; Xu, Z.-Y.; Wen, X.-L.; Feng, L.-S. Transcriptome alterations in zebrafish gill after exposure to different sizes of microplastics. J. Environ. Sci. Health A 2022, 57, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Suman, A.; Mahapatra, A.; Gupta, P.; Ray, S.S.; Singh, R.K. Polystyrene microplastics modulated bdnf expression triggering neurotoxicity via apoptotic pathway in zebrafish embryos. Comp. Biochem. Physiol. C 2023, 271, 109699. [Google Scholar] [CrossRef] [PubMed]
- Martin-Folgar, R.; Torres-Ruiz, M.; de Alba, M.; Cañas-Portilla, A.I.; González, M.C.; Morales, M. Molecular effects of polystyrene nanoplastics toxicity in zebrafish embryos (Danio rerio). Chemosphere 2023, 312, 137077. [Google Scholar] [CrossRef] [PubMed]
- Usman, S.; Razis, A.F.A.; Shaari, K.; Amal, M.N.A.; Saad, M.Z.; Isa, N.M.; Nazarudin, M.F. Polystyrene microplastics exposure: An insight into multiple organ histological alterations, oxidative stress and neurotoxicity in Javanese medaka fish (Oryzias javanicus Bleeker, 1854). Int. J. Environ. Res. Pub. Health 2021, 18, 9449. [Google Scholar] [CrossRef]
- Jeyavani, J.; Sibiya, A.; Stalin, T.; Vigneshkumar, G.; Al-Ghanim, K.A.; Riaz, M.N.; Govindarajan, M.; Vaseeharan, B. Biochemical, genotoxic and histological implications of polypropylene microplastics on freshwater fish Oreochromis mossambicus: An aquatic eco-toxicological assessment. Toxics 2023, 11, 282. [Google Scholar] [CrossRef]
- Yang, J.; Karbalaei, S.; Hussein, S.M.; Ahmad, A.F.; Walker, T.R.; Salimi, K. Biochemical effects of polypropylene microplastics on red tilapia (Oreochromis niloticus) after individual and combined exposure with boron. Environ. Sci. Eur. 2023, 35, 71. [Google Scholar] [CrossRef]
- Santos, D.; Luzio, A.; Felix, L.; Cabecinha, E.; Bellas, J.; Monteiro, S.M. Microplastics and copper induce apoptosis, alter neurocircuits, and cause behavioral changes in zebrafish (Danio rerio) brain. Ecotoxicol. Environ. Saf. 2022, 242, 113926. [Google Scholar] [CrossRef]
- Kumar, N.; Bhushan, S.; Patole, P.B.; Gite, A. Multi-biomarker approach to assess chromium, pH and temperature toxicity in fish. Comp. Biochem. Physiol. C 2022, 254, 109264. [Google Scholar] [CrossRef]
- González Núñez, A.A.; Ferro, J.P.; Campos, L.B.; Eissa, B.L.; Mastrángelo, M.M.; Ferrari, L.; Ossana, N.A. Evaluation of the acute effects of arsenic on adults of the neotropical native fish Cnesterodon decemmaculatus using a set of biomarkers. Environ. Toxicol. Chem. 2022, 41, 1246–1259. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Zhu, J.; Jiang, P.; Zhang, Z.; Li, L.; Wu, Q. Chromium induced neurotoxicity by altering metabolism in zebrafish larvae. Ecotoxicol. Environ. Saf. 2021, 228, 112983. [Google Scholar] [CrossRef]
- Alves, C.; Tamagno, W.A.; Vanin, A.P.; Pompermaier, A.; Gil Barcellos, L.J. Cannabis sativa based oils against aluminum induced neurotoxicity. Sci. Rep. 2023, 13, 813. [Google Scholar] [CrossRef]
- Henriques, M.C.; Carvalho, I.; Santos, C.; Herdeiro, M.T.; Fardilha, M.; Pavlaki, M.D.; Loureiro, S. Unveiling the molecular mechanisms and developmental consequences of mercury (Hg) toxicity in zebrafish embryo-larvae: A comprehensive approach. Neurotoxicol. Teratol. 2023, 100, 107302. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhu, X.; Yan, Y.; Zhang, Y.; Chen, G.; Lei, D.; Wang, G. Developmental neurotoxicity of antimony (Sb) in the early life stages of zebrafish. Ecotoxicol. Environ. Saf. 2021, 218, 112308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Chen, C.-Z.; Li, P.; Liu, L.; Chai, Y.; Li, Z.-H. Chronic toxic effects of waterborne mercury on silver carp (Hypophthalmichthys molitrix) larvae. Water 2022, 14, 1774. [Google Scholar] [CrossRef]
- Oliveira, V.M.; Assis, C.R.D.; Silva Costa, C.M.; Silva, R.P.F.; Santos, J.F.; Carvalho, L.B., Jr.; Bezerra, R.S. Aluminium sulfate exposure: A set of effects on hydrolases from brain, muscle and digestive tract of juvenile Nile tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C 2017, 191, 101–108. [Google Scholar] [CrossRef]
- Abegoda-Liyanage, C.S.; Pathiratne, A. Comparison of toxicity of nano and bulk titanium dioxide on Nile tilapia (Oreochromis niloticus): Acetylcholinesterase activity modulation and DNA damage. Bull. Environ. Contam. Toxicol. 2023, 110, 101. [Google Scholar] [CrossRef]
- Fan, S.; Yang, Y.; Sun, L.; Yu, B.; Dai, C.; Qu, Y. Different toxicity to liver and gill of zebrafish by selenium nanoparticles derived from bio/chemical methods. Environ. Sci. Pollut. Res. 2022, 29, 61512–61521. [Google Scholar] [CrossRef]
- Marinho, C.S.; Matias, M.V.F.; Toledo, E.K.M.; Smaniotto, S.; Ximenes-da-Silva, A.; Tonholo, J.; Santos, E.L.; Machado, S.S.; Zanta, C.L.P.S. Toxicity of silver nanoparticles on different tissues in adult Danio rerio. Fish Physiol. Biochem. 2021, 47, 239–249. [Google Scholar] [CrossRef]
- Jakubowska-Lehrmann, M.; Dąbrowska, A.; Białowąs, M.; Makaras, T.; Hallmann, A.; Urban-Malinga, B. The impact of various carbon nanomaterials on the morphological, behavioural, and biochemical parameters of rainbow trout in the early life stages. Aquat. Toxicol. 2023, 259, 106550. [Google Scholar] [CrossRef]
- Guo, D.; Luo, L.; Kong, Y.; Kuang, Z.; Wen, S.; Zhao, M.; Zhang, W.; Fan, J. Enantioselective neurotoxicity and oxidative stress effects of paclobutrazol in zebrafish (Danio rerio). Pest. Biochem. Physiol. 2022, 185, 105136. [Google Scholar] [CrossRef]
- Yang, H.; Chen, H.; Liang, X.; Zhao, Y.; Martyniuk, C.J. Molecular and behavioral responses of zebrafish embryos/larvae after sertraline exposure. Ecotoxicol. Environ. Saf. 2021, 208, 111700. [Google Scholar] [CrossRef]
- Vieira, R.; Venâncio, C.A.S.; Félix, L.M. Toxic effects of a mancozeb-containing commercial formulation at environmental relevant concentrations on zebrafish embryonic development. Environ. Sci. Pollut. Res. 2020, 27, 21174–21187. [Google Scholar] [CrossRef]
- Ames, J.; Stringini Severo, E.; Guilherme da Costa-Silva, D.; Rosso Storck, T.; Blank do Amaral, A.M.; Azambuja Miragem, A.; Broock Rosemberg, D.; Loro, V.L. Glyphosate-based herbicide (GBH) causes damage in embryo-larval stages of zebrafish (Danio rerio). Neurotoxicol. Teratol. 2023, 95, 107147. [Google Scholar] [CrossRef]
- Pompermaier, A.; Tamagno, W.A.; Alves, C.; Barcellos, L.J.G. Persistent and transgenerational effects of pesticide residues in zebrafish. Comp. Biochem. Physiol. C 2022, 262, 109461. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, J.; Liu, W.; Yang, F.; Deng, Y.; Meng, Y.; Cheng, B.; Fu, J.; Zhang, J.; Liao, X.; et al. Effects of haloxyfop-p-methyl on the developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish. Fish Shellfish Immunol. 2023, 132, 108466. [Google Scholar] [CrossRef] [PubMed]
- Hamed, H.S.; El-Sayed, Y.S. Antioxidant activities of Moringa oleifera leaf extract against pendimethalin-induced oxidative stress and genotoxicity in Nile tilapia, Oreochromis niloticus (L.). Fish Physiol. Biochem. A 2019, 45, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ding, W.; Liu, W.; Li, L.; Zhu, G.; Ma, J. Single and combined effects of chlorpyrifos and glyphosate on the brain of common carp: Based on biochemical and molecular perspective. Int. J. Mol. Sci. 2023, 24, 12934. [Google Scholar] [CrossRef]
- El-Nahhal, Y. Toxicity of some aquatic pollutants to fish. Environ. Monitor. Ass. 2018, 190, 449. [Google Scholar] [CrossRef]
- Viana, N.P.; Menezes da Silva, L.C.; Portruneli, N.; Soares, M.P.; Cardoso, I.L.; Bonansea, R.I.; Goulart, B.V.; Montagner, C.C.; Espíndola, E.L.G.; Wunderlin, D.A.; et al. Bioconcentration and toxicological impacts of fipronil and 2,4-D commercial formulations (single and in mixture) in the tropical fish, Danio rerio. Environ. Sci. Pollut. Res. 2022, 29, 11685–11698. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, M.; Lu, L. Tissue metabolism, hematotoxicity, and hepatotoxicity of trichlorfon in Carassius auratus gibelio after a single oral administration. Front. Physiol. 2018, 9, 551. [Google Scholar] [CrossRef]
- Golombieski, J.I.; Marchesan, E.; Rabaioli Camargo, E.; Salbego, J.; Schmitt Baumart, J.; Loro, V.L.; de Oliveira Machado, S.L.; Zanella, R.; Baldisserotto, B. Acetylcholinesterase enzyme activity in carp brain and muscle after acute exposure to diafuran. Sci. Agric. 2008, 65, 340–345. [Google Scholar] [CrossRef]
- Pala, A.; Serdar, O.; Yonar, S.M.; Yonar, M.E. Ameliorative effect of Fennel (Foeniculum vulgare) essential oil on chlorpyrifos toxicity in Cyprinus carpio. Environ. Sci. Pollut. Res. 2021, 28, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Bhattacharya, R.; Chatterjee, S.; Saha, N.C. λ cyhalothrin induced toxicity and potential attenuation of hematological, biochemical, enzymological and stress biomarkers in Cyprinus carpio L. at environmentally relevant concentrations: A multiple biomarker approach. Comp. Biochem. Physiol. C 2021, 250, 109164. [Google Scholar] [CrossRef] [PubMed]
- Duncan, W.P.; Silva Idalino, J.J.; da Silva, A.G.; Moda, R.F.; Menezes da Silva, H.C.; Matoso, D.A.; Silva Gomes, A.L. Acute toxicity of the pesticide trichlorfon and inhibition of acetylcholinesterase in Colossoma macropomum (Characiformes: Serrasalmidae). Aquacult. Int. 2020, 28, 815–830. [Google Scholar] [CrossRef]
- Singh, S.; Tiwari, R.K.; Pandey, R.S. Evaluation of acute toxicity of triazophos and deltamethrin and their inhibitory effect on AChE activity in Channa punctatus. Toxicol. Rep. 2018, 5, 85–89. [Google Scholar] [CrossRef]
- Mukherjee, D.; Saha, S.; Chukwuka, A.V.; Ghosh, B.; Dhara, K.; Saha, N.C.; Pal, P.; Faggio, C. Antioxidant enzyme activity and pathophysiological responses in the freshwater walking catfish, Clarias batrachus Linn under sub-chronic and chronic exposures to the neonicotinoid, Thiamethoxam®. Sci. Total Environ. 2022, 836, 155716. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, R.; Luo, S.; Liu, Y.; Jin, Y.; Li, Y.; Li, B.; Chen, Y.; Jia, L.; Yuan, X. Combined effects of chlorpyrifos and cyfluthrin on neurobehavior and neurotransmitter levels in larval zebrafish. J. Appl. Toxicol. 2022, 42, 1662–1670. [Google Scholar] [CrossRef]
- Ran, L.; Yang, Y.; Zhou, X.; Jiang, X.; Hu, D.; Lu, P. The enantioselective toxicity and oxidative stress of dinotefuran on zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2021, 226, 112809. [Google Scholar] [CrossRef]
- Guerra, L.J.; Blank do Amaral, A.M.; de Quadros, V.A.; da Luz Fiuza, T.; Rosemberg, D.B.; Prestes, O.D.; Zanella, R.; Clasen, B.; Loro, V.L. Biochemical and behavioral responses in zebrafish exposed to imidacloprid oxidative damage and antioxidant responses. Arch. Environ. Contam. Toxicol. 2021, 81, 255–264. [Google Scholar] [CrossRef]
- Zhang, J.-G.; Ma, D.-D.; Xiong, Q.; Qiu, S.-Q.; Huang, G.-Y.; Shi, W.-J.; Ying, G.G. Imidacloprid and thiamethoxam affect synaptic transmission in zebrafish. Ecotoxicol. Environ. Saf. 2021, 227, 112917. [Google Scholar] [CrossRef]
- Benli, P.P.; Celik, M. In vivo effects of neonicotinoid-sulfoximine insecticide sulfoxaflor on acetylcholinesterase activity in the tissues of zebrafish (Danio rerio). Toxics 2021, 9, 73. [Google Scholar] [CrossRef]
- Jablonski, C.A.; Brandão Pereira, T.C.; De Souza Teodoro, L.; Altenhofen, S.; Rübensam, G.; Bonan, C.D.; Bogo, M.R. Acute toxicity of methomyl commercial formulation induces morphological and behavioral changes in larval zebrafish (Danio rerio). Neurotoxicol. Teratol. 2022, 89, 107058. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, C.; Dong, M.; Li, M.; Hu, C.; Xu, X. Chlorphoxim induces neurotoxicity in zebrafish embryo through activation of oxidative stress. Environ. Toxicol. 2022, 38, 566–578. [Google Scholar] [CrossRef]
- Yu, T.; Xu, X.; Mao, H.; Han, X.; Liu, Y.; Zhang, H.; Lai, J.; Gu, J.; Xia, M.; Hu, C.; et al. Fenpropathrin exposure induces neurotoxicity in zebrafish embryos. Fish Physiol. Biochem. 2022, 48, 1539–1554. [Google Scholar] [CrossRef]
- Wang, S.; Han, X.; Yu, T.; Liu, Y.; Zhang, H.; Mao, H.; Hu, C.; Xu, X. Isoprocarb causes neurotoxicity of zebrafish embryos through oxidative stress-induced apoptosis. Ecotoxicol. Environ. Saf. 2022, 242, 113870. [Google Scholar] [CrossRef]
- Kavitha, P.; Rao, J.V. Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environ. Toxicol. Pharmacol. 2008, 26, 192–198. [Google Scholar] [CrossRef]
- Touaylia, S.; Khazri, A.; Mezni, A.; Mezni, A. Assessment of biochemical biomarkers of mosquitofish (Gambusia affinis (Baird et Girard, 1853)) on exposure to the insecticide cypermethrin. Int. J. Environ. Stud. 2022, 81, 1122–1131. [Google Scholar] [CrossRef]
- Rouachdia, R.; Trea, F.; Tichati, L.; Ouali, K. Assessment of biochemical markers and behavior response of non-target freshwater teleost Gambusia affinis to carbofuran toxicity. Appl. Ecol. Environ. Res. 2023, 21, 545–559. [Google Scholar] [CrossRef]
- Mishra, A.K.; Gopesh, A.; Singh, K.P. Effects of chlorpyrifos toxicity on brain, pseudobranchial neurosecretory system and swimming performance of a catfish, Heteropneustes fossilis. Drug Chem. Toxicol. 2023, 47, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Flynn, K.; Johnson, R.; Lothenbach, D.; Swintek, J.; Whiteman, F.; Etterson, M. The effects of combinations of limited ration and diazinon exposure on acetylcholinesterase activity, growth and reproduction in Oryzias latipes, the Japanese medaka. J. Appl. Toxicol. 2020, 40, 535–547. [Google Scholar] [CrossRef]
- Topal, A.; Şişecioğlu, M.; Atamanalp, M.; Işık, A.; Yılmaz, B. The in vitro and in vivo effects of chlorpyrifos on acetylcholinesterase activity of rainbow trout brain. J. Appl. Anim. Res. 2016, 44, 243–247. [Google Scholar] [CrossRef]
- Mehtabidah, A.; Majid, M.; Hussain, I.; Kali, S.; Naz, T.; Niazi, M.B.K.; Khan, M.R.A.; Zafar, M.I. Chlorpyrifos mediated oxidative damage and histopathological alterations in freshwater fish Oncorhynchus mykiss in Northern Pakistan. Aquacult. Res. 2020, 51, 4583–4594. [Google Scholar] [CrossRef]
- Muhammed, M.; Dogan, D. Toxicity and biochemical responses induced by phosmet in rainbow trout (Oncorhynchus mykiss). Toxicol. Res. 2021, 10, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Weeks Santos, W.; Gonzalez, P.; Cormier, B.; Mazzella, N.; Moreira, A.; Clérandeau, C.; Morin, B.; Cachot, J. Subchronic exposure to environmental concentrations of chlorpyrifos affects swimming activity of rainbow trout larvae. Environ. Toxicol. Chem. 2021, 40, 3092–3102. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Yousuf, M.; Attaullah, M.; Ahmad, N.; Nor Azra, M.; Lateef, M.; Dad Buneri, I.; Zekker, I.; El-Saber Batiha, G.; Aboelenin, S.M.; et al. Cholinesterase activity as a potential biomarker for neurotoxicity induced by pesticides in vivo exposed Oreochromis niloticus (Nile tilapia): Assessment tool for organophosphates and synthetic pyrethroids. Environ. Technol. 2023, 44, 2148–2156. [Google Scholar] [CrossRef] [PubMed]
- Hamed, H.S.; Ismal, S.M.; Faggio, C. Effect of allicin on antioxidant defense system, and immune response after carbofuran exposure in Nile tilapia, Oreochromis niloticus. Comp. Biochem. Physiol. C 2021, 240, 108919. [Google Scholar] [CrossRef]
- Santillan Deiú, A.; de la Torre, F.R.; Ondarza, P.M.; Miglioranza, K.S.B. Multibiomarker responses and bioaccumulation of fipronil in Prochilodus lineatus exposed to spiked sediments: Oxidative stress and antioxidant defenses. Pest. Biochem. Physiol. 2021, 177, 104876. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Zanell, R.; Prestes, O.D.; Meinhart, A.D.; Da Silva, A.S.; Baldisserotto, B. Behavioral impairment and neurotoxic responses of silver catfish Rhamdia quelen exposed to organophosphate pesticide trichlorfon: Protective effects of diet containing rutin. Com. Biochem. Physiol. C 2021, 239, 108871. [Google Scholar] [CrossRef]
- Sager, E.; Scarcia, P.; Marino, D.; Mac Loughlin, T.; Rossi, A.; de La Torre, F. Oxidative stress responses after exposure to triclosan sublethal concentrations: An integrated biomarker approach with a native (Corydoras paleatus) and a model fish species (Danio rerio). J. Toxicol. Environ. Health A 2022, 85, 291–306. [Google Scholar] [CrossRef]
- Orozco-Hernández, J.M.; Gómez-Oliván, L.M.; Elizalde-Velázquez, G.A.; Rosales-Pérez, K.E.; Cardoso-Vera, J.D.; Heredia-García, G.; Islas-Flores, H.; García-Medina, S.; Galar-Martínez, M. Fluoxetine-induced neurotoxicity at environmentally relevant concentrations in adult zebrafish Danio rerio. NeuroToxicology 2022, 90, 121–129. [Google Scholar] [CrossRef]
- Correia, D.; Domingues, I.; Faria, M.; Oliveira, M. Chronic effects of fluoxetine on Danio rerio: A biochemical and behavioral perspective. Appl. Sci. 2022, 12, 2256. [Google Scholar] [CrossRef]
- Rivero-Wendt, C.L.G.; Fernandes, L.G.; dos Santos, A.N.; Brito, I.L.; dos Santos Jaques, J.A.; dos Santos dos Anjos, E.; Fernandes, C.E. Effects of Chloramine T on zebrafish embryos malformations associated with cardiotoxicity and neurotoxicity. J. Toxicol. Environ. Health A 2023, 86, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, C.; Xiao, L.; Gao, G.; He, L.; Zhao, K.; Shang, X. 2, 5-dichloro-1, 4-benuinone exposure to zebrafish embryos/larvae causes neurodevelopmental toxicity. Ecotoxicol. Environ. Saf. 2022, 243, 114007. [Google Scholar] [CrossRef] [PubMed]
- Elizalde-Velázquez, G.A.; Gómez-Oliván, L.M.; García-Medina, S.; Rosales-Pérez, K.E.; Orozco-Hernández, J.M.; Islas-Flores, H.; Galar-Martínez, M.; Hernández-Navarro, M.D. Chronic exposure to realistic concentrations of metformin prompts a neurotoxic response in Danio rerio adults. Sci. Total Environ. 2022, 849, 157888. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Gu, X.; Chen, H.; Zeng, Q.; Mao, Z.; Jin, M.; Li, H.; Ge, Y.; Zha, Y.; Martyniuk, C.J. Transcriptome profiling reveals toxicity mechanisms following sertraline exposure in the brain of juvenile zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2022, 242, 113936. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Fascineli, M.L.; Andrade, T.S.; Sousa-Moura, D.; Domingues, I.; Camargo, N.S.; Oliveira, R.; Grisolia, C.K.; Villacis, R.A.R. Exposure to tricyclic antidepressant nortriptyline affects early-life stages of zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2021, 210, 111868. [Google Scholar] [CrossRef]
- Muniz, M.S.; Halbach, K.; Araruna, I.C.A.; Martins, R.X.; Seiwert, B.; Lechtenfeld, O.; Reemtsma, T.; Farias, D. Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses. Environ. Pollut. 2021, 283, 117096. [Google Scholar] [CrossRef]
- Tan, Y.; Liang, C.; Guo, Y.; Zou, H.; Guo, Y.; Ye, J.; Hou, L.; Wang, X. Thyroid endocrine disruption and neurotoxicity of gestodene in adult female mosquitofish (Gambusia affinis). Chemosphere 2023, 313, 37594. [Google Scholar] [CrossRef]
- Deepika, D.; Padmavathy, P.; Srinivasan, A.; Sugumar, G.; Jawahar, P. Short term effects of antimicrobial agent triclosan on Oreochromis mossambicus (Peters, 1852): Biochemical and genetic alterations. Ind. J. Anim. Res. 2023, 57, 788–794. [Google Scholar] [CrossRef]
- Rocha, C.S.; Puchale, R.Z.; Barcarolli, I.F. Avaliação toxicológica da progesterona em biomarcadores de tilápia do Nilo (Oreochromis niloticus). Rev. Bras. Meio Amb. 2022, 10, 26–40. [Google Scholar]
- Carvalho, L.A.S.J.; Oya-Silva, L.F.; Perussolo, M.C.; Guaita, G.O.; Brito, J.C.M.; Evans, A.A.; Prodocimo, M.M.; Cestari, M.M.; Braga, T.T.; Silva de Assis, H.C. Experimentally exposed toxic effects of long-term exposure to environmentally relevant concentrations of CIP in males and females of the silver catfish Rhamdia quelen. Chemosphere 2023, 336, 139216. [Google Scholar] [CrossRef]
- Nayak, S.; Patnaik, L. Acetylcholinesterase, as a potential biomarker of naphtalene toxicity in different tissues of a freshwater teleost, Anabas testudineus. Environ. Eng. Landsc. Manag. 2021, 29, 403–409. [Google Scholar] [CrossRef]
- Molayemraftar, T.; Peyghan, R.; Jalali, M.R.; Shahriari, A. Single and combined effects of ammonia and nitrite on common carp, Cyprinus carpio: Toxicity, hematological parameters, antioxidant defenses, acetylcholinesterase, and acid phosphatase activities. Aquaculture 2022, 548, 737676. [Google Scholar] [CrossRef]
- Iheanacho, S.C.; Ekpenyong, J.; Nwose, R.; Adeolu, A.I.; Offu, P.; Amadi-Eke, A.; Iheanacho, A.C.; Ogunji, J. Effects of burnt tire-ash on Na+/K+, Ca2+-ATPase, serum immunoglobulin and brain acetylcholinesterase activities in Clarias gariepinus (Burchell, 1822). Drug Chem. Toxicol. 2023, 46, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaravel, K.; Vasanthi, N.; Kanagavalli, V.; Santhanabharathi, B.; Pradhoshini, K.P.; Alam, L.; Faggio, C. Potential biomarker of phenol toxicity in freshwater fish C. mrigala: Serum cortisol, enzyme acetylcholine esterase and survival organ gill. Comp. Biochem. Physiol. C 2023, 263, 109492. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, Z.-H. Neurotoxicity and physiological stress in brain of zebrafish chronically exposed to tributyltin. J. Toxicol. Environ. Health A 2021, 84, 20–30. [Google Scholar] [CrossRef]
- Heredia-García, G.; Elizalde-Velázquez, G.A.; Gómez-Oliván, L.M.; Islas-Flores, H.; García-Medina, S.; Galar-Martínez, M.; Dublán-García, O. Realistic concentrations of Bisphenol-A trigger a neurotoxic response in the brain of zebrafish: Oxidative stress, behavioral impairment, acetylcholinesterase inhibition, and gene expression disruption. Chemosphere 2023, 330, 138729. [Google Scholar] [CrossRef]
- Rao, J.V.; Begum, G.; Pallela, R.; Usman, P.K.; Rao, R.N. Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos. Int. J. Environ. Res. Public Health 2023, 2, 478–483. [Google Scholar] [CrossRef]
- Thakkar, S.; Seetharaman, B.; Ramasamy, V. Impact of chronic sub-lethal methylparaben exposure on cardiac hypoxia and alterations in neuroendocrine factors in zebrafish model. Mol. Biol. Rep. 2022, 49, 331–340. [Google Scholar] [CrossRef]
- Agostini, J.F.; Zuehl Dal Toé, H.C.; Medeiros Vieira, K.; Baldin, S.L.; Fernandes Costa, N.L.; Uribe Cruz, C.; Longo, L.; Machado, M.M.; da Silveira, T.R.; Schuck, P.F.; et al. Cholinergic system and oxidative stress changes in the brain of a zebrafish model chronically exposed to ethanol. Neurotoxicol. Res. 2018, 33, 749–758. [Google Scholar] [CrossRef]
- Murugan, R.; Arokiyaraj, B.H.S.; Arockiaraj, J. Deacetyl epoxyazadiradione ameliorates BPA-induced neurotoxicity by mitigating ROS and inflammatory markers in N9 cells and zebrafish larvae. Comp. Biochem. Physiol. C 2023, 271, 109692. [Google Scholar] [CrossRef]
- Raja, G.L.; Subhashree, K.D.; Lite, C.; Santosh, W.; Barathi, S. Transient exposure of methylparaben to zebrafish (Danio rerio) embryos altered cortisol level, acetylcholinesterase activity and induced anxiety-like behaviour. Gen. Comp. Endocrinol. 2019, 279, 53–59. [Google Scholar] [CrossRef]
- Gayathri, M.; Sutha, J.; Mohanthi, S.; Ramesh, M.; Poopal, R.-K. Ecotoxicological evaluation of the UV-filter octocrylene (OC) in embryonic zebrafish (Danio rerio): Developmental, biochemical and cellular biomarkers. Comp. Biochem. Physiol. C 2023, 271, 109688. [Google Scholar] [CrossRef]
- Sandoval Gío, J.J.; Noreña Barroso, E.; Escalante Herrera, K.; Rodríguez Fuentes, G. Effect of benzophenone-3 to acetylcholinesterase and antioxidant system in zebrafish (Danio rerio) embryos. Bull. Environ. Contam. Toxicol. 2021, 107, 814–819. [Google Scholar] [CrossRef]
- Mariz, C.F.; de Melo Alves, M.K.; dos Santos, S.M.V.; Alves, R.N.; Carvalho, P.S.M. Lethal and sublethal toxicity of un-ionized ammonia to early life stages of Danio rerio. Zebrafish 2023, 20, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guo, W.; Lei, L.; Guo, Y.; Yang, L.; Han, J.; Zhou, B. Bioconcentration and developmental neurotoxicity of novel brominated flame retardants, hexabromobenzene and pentabromobenzene in zebrafish. Environ. Pollut. 2021, 268, 115895. [Google Scholar] [CrossRef] [PubMed]
- Belhamra, R.; Tichati, L.; Trea, F.; Ouali, K. Effect of subacute treatment with bisphenol A on oxidative stress biomarkers and lipid peroxidation in Gambusia affinis mosquitofish. Toxicol. Environ. Health Sci. 2023, 15, 6. [Google Scholar] [CrossRef]
- Pérez-Iglesias, J.M.; González, P.; Calderón, M.R.; Natale, G.S.; Almeida, C.S. Comprehensive evaluation of the toxicity of the flame retardant (decabromodiphenyl ether) in a bioindicator fish (Gambusia affinis). Environ. Sci. Pollut. Res. 2022, 29, 50845–50855. [Google Scholar] [CrossRef]
- Gopi, N.; Iswarya, A.; Vijayakumar, S.; Jayanthi, S.; Nord, A.S.M.; Velusamye, P.; Vaseeharan, B. Protective effects of dietary supplementation of probiotic Bacillus licheniformis Dahb1 against ammonia induced immunotoxicity and oxidative stress in Oreochromis mossambicus. Comp. Biochem. Physiol. C 2022, 259, 109379. [Google Scholar] [CrossRef]
- Nirmala, G.N.; Sharma, A.; Ragunathan, V. Antagonistic effect of dichloromethane on Oreochromis mossambicus and immune stimulation activity of Aloe vera. Front. Environ. Sci. 2022, 10, 913065. [Google Scholar] [CrossRef]
- Lin, H.; Jia, Y.; Han, F.; Xia, C.; Zhao, Q.; Zhang, J.; Li, E. Toxic effects of waterborne benzylparaben on the growth, antioxidant capacity and lipid metabolism of Nile tilapia (Oreochromis niloticus). Aquat. Toxicol. 2022, 248, 106197. [Google Scholar] [CrossRef]
- Passos, L.S.; Gomes, L.C.; Pereira, T.M.; Sadauskas-Henrique, H.; Dal Pont, G.; Ostrensky, A.; Pinto, E. Response of Oreochromis niloticus (Teleostei: Cichlidae) exposed to a guanitoxin-producing cyanobacterial strain using multiple biomarkers. Sci. Total Environ. 2022, 835, 155471. [Google Scholar] [CrossRef]
- Fulton, M.H.; Key, P.B. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ. Toxicol. Chem. 2001, 20, 37–45. [Google Scholar] [CrossRef]
- Arora, S.; Kumar, A. Mixture toxicity assessment of selected insecticides to silver perch fingerling, Bidyanus bidyanus. Ecotoxicol. Environ. Saf. 2021, 226, 112790. [Google Scholar] [CrossRef]
- Patisaul, H.B.; Behl, M.; Birnbaum, L.S.; Blum, A.; Diamond, M.L.; Fernández, S.R.; Hogberg, H.T.; Kwiatkowski, C.F.; Page, J.D.; Soehl, A.; et al. Beyond cholinesterase inhibition: Developmental neurotoxicity of organophosphate ester flame retardants and plasticizers. Environ. Health Perspect. 2021, 129, 105001. [Google Scholar] [CrossRef]
- Sato, R.; Mitani, K.; Matsumoto, T.; Takahashi, S.; Yamada, R.-H.; Kera, Y. Effects of insecticides in vitro on acetylcholinesterase purified from body muscle of Koi carp (Cyprinus carpio). Jpn. J. Environ. Toxicol. 2007, 10, 31–38. [Google Scholar]
- Nordin, N.; Abdulla, R.; Ahmad, S.A.; Sabullah, M.K. Acetylcholinesterase (AChE) of Diodon hystrix brain as an alternative biomolecule in heavy metals biosensing. J. Appl. Sci. Eng. 2022, 25, 573–580. [Google Scholar] [CrossRef]
- Mladenovic, M.B.; Arsic, B.B.; Ragno, R.; Stankovic, N.; Mihovic, N.; Regan, A.; Milicevic, J.S.; Micic, R. The targeted pesticides as acetylcholinesterase inhibitors: Comprehensive cross-organism molecular modelling studies performed to anticipate the pharmacology of harmfulness to humans in vitro. Molecules 2018, 23, 2192. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Rubio, H.F.; Espinosa-Aguirre, J.J. Acetylcholinesterase activity in fish species exposed to crude oil hydrocarbons: A review and new perspectives. Chemosphere 2021, 264, 128401. [Google Scholar] [CrossRef] [PubMed]
- Fakhereddin, T.; Doğan, D. Pro-oxidant potency of clothianidin in rainbow trout. Arch. Ind. Hyg. Toxicol. 2021, 72, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, A.T.B.; Silva de Assisb, H.C.; Boeger, W. The effect of trichlorfon on acetylcholinesterase activity and histopathology of cultivated fish Oreochromis niloticus. Ecotoxicol. Environ. Saf. 2007, 68, 57–62. [Google Scholar] [CrossRef]
- Tilton, F.A.; Bammler, T.K.; Gallagher, E.P. Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp. Biochem. Physiol. C 2011, 153, 9–16. [Google Scholar] [CrossRef]
- Ullah, S.; Li, Z.; Hassan, S.; Ahmad, S.; Guo, X.; Wanghe, K.; Nabi, G. Heavy metals bioaccumulation and subsequent multiple biomarkers based appraisal of toxicity in the critically endangered Tor putitora. Ecotoxicol. Environ. Saf. 2021, 228, 113032. [Google Scholar] [CrossRef]
- dos Santos Teixeira, J.M.; da Silva Lima, V.; de Moura, F.R.; da Costa Marisco, P.; Sinhorin, A.P.; Gindri Sinhorin, V.D. Acute toxicity and effects of Roundup Original® on pintado da Amazônia. Environ. Sci. Pollut. Res. 2018, 25, 25383–25389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yang, M.; Pan, H.; Li, S.; Ren, B.; Ren, Z.; Xing, N.; Qi, L.; Ren, Q.; Xu, S.; et al. Does time difference of the acetylcholinesterase (AChE) inhibition in different tissues exist? A case study of zebra fish (Danio rerio) exposed to cadmium chloride and deltamethrin. Chemosphere 2017, 168, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Issac, P.K.; Guru, A.; Velayutham, M.; Pachaiappan, R.; Arasu, M.V.; Al-Dhabi, N.A.; Choi, K.C.; Harikrishnan, R.; Arockiaraj, J. Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications. Life Sci. 2021, 283, 119864. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Rizvi, S.I. Age-dependent decline in erythrocyte acetylcholinesterase activity: Correlation with oxidative stress. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2009, 153, 195–198. [Google Scholar] [CrossRef]
- Liu, H.; Wu, J.; Yao, J.-Y.; Wang, H.; Li, S.-T. The role of oxidative stress in decreased acetylcholinesterase activity at the neuromuscular junction of the diaphragm during sepsis. Oxidative Med. Cell. Longev. 2017, 2017, 9718615. [Google Scholar] [CrossRef]
- Melo, J.B.; Agostinho, P.; Oliveira, C.R. Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci. Res. 2003, 45, 117–127. [Google Scholar] [CrossRef]
- Snega Priya, P.; Pratiksha Nandhini, P.; Vaishnavi, S.; Pavithra, V.; Almutairi, M.H.; Almutairi, B.O.; Arokiyaraj, S.; Pachaiappan, R.; Arockiaraj, J. Rhodamine B, an organic environmental pollutant induces reproductive toxicity in parental and teratogenicity in F1 generation in vivo. Comp. Biochem. Physiol. C 2024, 280, 109898. [Google Scholar] [CrossRef]
- Wu, Q.; Yan, W.; Cheng, H.; Liu, C.; Hung, T.-C.; Guo, X.; Li, G. Parental transfer of microcystin-LR induced transgenerational effects of developmental neurotoxicity in zebrafish offspring. Environ. Pollut. 2017, 231, 471–478. [Google Scholar] [CrossRef]
- Schmitt, C.; Peterson, E.; Willis, A.; Kumar, N.; McManus, M.; Subbiah, S.; Crago, J. Transgenerational effects of developmental exposure to chlorpyrifos-oxon in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 2020, 408, 115275. [Google Scholar] [CrossRef] [PubMed]
- Brander, S.M.; White, J.W.; De Courten, B.M.; Major, K.; Hutton, S.J.; Connon, R.E.; Mehinto, A. Accounting for transgenerational effects of toxicant exposure in population models alters the predicted long-term population status. Environ. Epigenetics 2022, 8, dvac023. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Windisch, H.S.; Ludwichowski, K.-U.; Seegert, S.L.L.; Pörtner, H.-O.; Storch, D.; Bock, C. Differences in neurochemical profiles of two gadid species under ocean warming and acidification. Front. Zool. 2017, 14, 49. [Google Scholar] [CrossRef]
- Regan, M.D.; Turko, A.J.; Heras, J.; Andersen, M.K.; Lefevre, S.; Wang, T.; Bayley, M.; Brauner, C.J.; Huong, D.T.T.; Phuong, N.T.; et al. Ambient CO2, fish behaviour and altered GABAergic neurotransmission: Exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. J. Exp. Biol. 2016, 219, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Santana, M.S.; Sandrini-Neto, L.; Di Domenico, M.; Mela Prodocimo, M. Pesticide effects on fish cholinesterase variability and mean activity: A meta-analytic review. Sci. Total Environ. 2021, 757, 143829. [Google Scholar] [CrossRef]
- Solé, M.; Vega, S.; Varo, I. Characterization of type “B” esterases and hepatic CYP450 isoenzimes in Senegalese sole for their further application in monitoring studies. Ecotoxicol. Environ. Saf. 2012, 78, 72–79. [Google Scholar] [CrossRef]
- Ortiz-Delgado, J.B.; Funes, V.; Albendín, G.; Scala, E.; Sarasquete, C. Toxicity of malathion during Senegalese sole, Solea senegalensis larval development and metamorphosis: Histopathological disorders and effects on type B esterases and CYP1A enzymatic systems. Environ. Toxicol. 2021, 36, 1894–1910. [Google Scholar] [CrossRef]
Biomarker | Process | References |
---|---|---|
lipid peroxides | oxidative damage to lipids | Tanaka et al. [15] |
hydroxyl lipids | oxidative damage to lipids | Baker et al. [16]; Tanaka et al. [15] |
malondialdehyde | oxidative damage to lipids | Liu et al. [17]; Paital et al. [14]; Sánchez-Nuño et al. [18]; Safari Asl et al. [19]; Tan et al. [20] |
4-hydroxynonenal | oxidative damage to lipids | Topal et al. [21]; Sánchez-Nuño et al. [18] |
lipofuscin | oxidative damage to lipids | Pulster et al. [22]; Raibeemol and Chitra [23]; Zhong et al. [24]; Gómez Manrique et al. [25]; Ottinger et al. [26] |
8-hydroxy-2′-deoxyguanosine, 8-oxo-7,8-dihydro-2′-deoxyguanosine | oxidative damage to DNA guanosine | Mahboub et al. [27]; Jia et al. [28]; Mohamed et al. [29,30]; Topal et al. [31] |
8-hydroxyguanine | oxidative damage to DNA guanine | no data found |
5,6-dihydroxy-5,6-dihydrothymine | oxidative damage to DNA thymine | no data found |
advanced oxidation protein products | oxidation of proteins | Sánchez-Nuño et al. [18] |
protein carbonyls | oxidation of proteins | Almeida et al. [32]; Zhang et al. [33]; Blank do Amaral et al. [34]; Iturburu et al. [35]; Feng et al. [36] |
Hydroxyleucine | oxidation of protein leucine | no data found |
Nitrotyrosine | nitration of protein tyrosine | Shahab et al. [37]; Lee et al. [38] |
Fish Species | Toxic Agent | Exp. dur. [d] | Concentration [µmol] | No Change | Decrease | Increase | Reference | |
---|---|---|---|---|---|---|---|---|
Ah | Anabas testudineus | naphthalene | 3 | 32.789 (4.2 °) 34.329 (4.4 °) 35.890 (4.6 °) 37.450 (4.8 °) 39.010 (5 °) | CAT, GPx, GSH, TBARS TBARS – – – | – GPx, GSH GPx, GSH GPx, GSH GPx, GSH | – CAT, TBARS CAT, TBARS CAT, TBARS CAT, TBARS | Nayak et al. [66] |
Ah | Carassius auratus | benzo(k)fluoranthene | 1–15 | 0.399 (0.1 ^^) 0.240 (0.06 ^^) 1.189 (0.3 ^^) 5.870 (1.48 ^^) 29.367 (7.41 ^^) | GSH, GST, TBARS GST, TBARS TBARS TBARS – | – GSH GSH GSH GSH | – – GST GST, TBARS GST, TBARS | Ji et al. [67] |
Ah | Clarias gariepinus | benzene | 30 | 9.76 × 10−6 (0.762 #) | GST | SOD, TAS | MDA | Sayed et al. [68] |
Ah | Clarias gariepinus | toluene | 30 | 0.00033 (26.614 #) | GST, SOD, TAS, MDA | – | – | Sayed et al. [68] |
Ah | Clarias gariepinus | xylene | 30 | 0.0008 (89.403 #) | GST, SOD, TAS, MDA | – | – | Sayed et al. [68] |
Ah | Colossoma macropomum | benzo[a]pyrene | 4 | (1 ^) (10 ^) (100 ^) (1000 ^) | SOD, CAT, GPx, GST, LPO SOD, CAT, GPx, GST SOD, CAT, GPx, GST CAT, GPx | – – – – | – LPO SOD, LPO SOD, GST, LPO | Sadauskas-Henrique et al. [69] |
Ah | Dicentrarchus labrax | polycyclic aromatic hydrocarbons | 21 | (835 ± 52 #) | GSH, SOD, GPx, CAT | SOD | GSH | Danion et al. [70] |
Ah | Gambusia yucatana | polycyclic aromatic hydrocarbons | 4 | (4.37 *) (8.73 *) (17.46 *) (34.95 *) | SOD, GPx SOD, GPx, SOD, GPx GPx | TBARS, CAT TBARS, CAT TBARS, CAT TBARS, CAT | GST GST GST GST, SOD | Aguilar et al. [71] |
E | Dicentrarchus labrax | mercury (as HgCl2) | 4 | 0.037 (0.010 °) 0.059 (0.016 °) | – – | – – | LPO LPO | Barboza et al. [72] |
E | Oreochromis mossambicus | selenium (as Na2SeO3) | 4 | 0.029 (5 *) 0.058 (10 *) 0.145 (25 *) 0.289 (50 *) 0.578 (100 *) | – – – – – | – – – – – | LPO, GSH LPO, GSH LPO, GSH LPO, GSH LPO, GSH | Gobi et al. [73] |
F | Carassius auratus | Topas 100 EC | 4 | 5.278 (1.5 °) 52.783 (15 °) 87.972 (25 °) | LOOH, SOD, CAT, GPx, GST, GR LOOH, CAT, GST, GR LOOH, GR | – GST GST | – SOD, GPx, GST SOD, CAT, GPx, GST, GR | Husak et al. [74] |
F | Chanos chanos | carbendazim | 4 | 0.015 (2.85 *) 0.029 (5.45 *) 0.057 (10.97 *) 0.105 (20.17 *) 0.237 (45.31 *) | LPO, CAT, GST LPO – – – | – CAT, GST CAT, GST CAT, GST CAT, GST | – – LPO LPO LPO | Palanikumar et al. [75] |
F | Daniorerio | azoxystrobin | 7–28 | 0.002 (1 *) 0.025 (10 *) 0.248 (100 *) | GST, MDA CAT, GST, MDA CAT, GST | SOD, CAT SOD SOD | ROS, SOD, GST, MDA ROS, SOD, CAT, GST, MDA ROS, SOD, CAT, GST, MDA | Han et al. [76] |
F | Oncorhynchus mykiss | propiconazole | 4 | 14.727 (5.04 °) | TBARS, CAT, GR | SOD, CAT, GPx, GR | SOD, GPx, TBARS | Li et al. [77] |
H | Astyanax altiparanae | atrazine (as Atrazina Atanor®) | 30 | 0.002 (0.5 *) 0.005 (1 *) 0.009 (2 *) 0.046 (10 *) | CAT, SOD, MDA CAT, SOD, MDA CAT, SOD, MDA SOD, MDA | GST GST GST GST | – – – CAT | Destro et al. [78] |
H | Clarias batrachus | pretilachlor (50% EC) | 30–60 | 0.930 (0.29 °) 1.251 (0.39 °) 1.860 (0.58 °) | GR GR GR | – – – | TBARS, SOD, CAT TBARS, SOD, CAT TBARS, SOD, CAT | Verma et al. [79] |
H | Clarias gariepinus | oxyfluorfen | 60 | 3.207 (1.16 °) | – | SOD, CAT, GPx, GSH | MDA | El-Houseiny et al. [80] |
H | Colossoma macropomum | glyphosate (as Roundup) | 4 | 59.146 (10°) 88.719 (15 °) | SOD, GPx SOD | GST GST | – GPx | Braz-Mota et al. [81] |
H | Cyprinus carpio | fenaxoprop-P-ethyl | 15–30 | 0.104 (37.5 *) | – | GPx, GR, GST | MDA | Neglur et al. [82] |
H | Danio rerio | atrazine | 14 | 0.005 (1 *) 0.046 (10 *) 0.464 (100 *) 4.636 (1000 *) | MDA, SOD, CAT MDA CAT – | GSH GSH GSH GSH | – SOD, CAT SOD, MDA SOD, CAT, MDA | Jin et al. [83] |
H | Labeo rohita | glyphosate | 4–12 | 2.957 (0.5 °) 3.549 (0.6 °) 4.140 (0.7 °) 4.732 (0.8 °) | ROS, TBARS, GSH, CAT, SOD, POD ROS, TBAR, GSH, CAT, SOD, POD – – | – – GSH, CAT, SOD, POD GSH, CAT, SOD, POD | – – ROS, TBARS ROS, TBARS | Ghaffar et al. [84] |
H | Oreochromis niloticus | glyphosate (as Roundup) | 14–28 | 3.549 (0.6 °) | – | GSH | MDA | Abdelmagid et al. [85] |
H | Oreochromis niloticus | glyphosate-based herbicide | 14 | (5 °) (10 °) (20 °) (30 °) (40 °) | – – – – – | – – TBARS TBARS TBARS | – CAT CAT CAT CAT | Acar et al. [86] |
H | Rhamdia quelen | atrazine | 4 | 0.046 (10 *) | GPx, MDA | CAT | Gomes et al. [87] | |
I | Carassius gibelio | deltamethrin | 1–14 | 0.004 (2 *) | GPX | SOD, CAT, GPX, GST, GR, GSH | LPO, CAT, GPX, GST, GR, GSH | Dinu et al. [88] |
I | Chanos chanos | chlorpyrifos (as Trickel) | 4 | 0.004 (1.38 *) 0.006 (2.15 *) 0.013 (4.53 *) 0.026 (9.27 *) 0.054 (18.97 *) | LPO, CAT, GST LPO – – – | – CAT, GST CAT, GST CAT, GST CAT, GST | – – LPO LPO LPO | Palanikumar et al. [75] |
I | Channa punctatus | malathion (commercial grade) | 4–12 | 1.211 (0.4 °) | – | – | SOD, CAT, LPO | Bharti and Rasool [89] |
I | Colossoma macropomum | malathion (emulsion) | 4 | 22.097 (7.30 °) | SOD, GPx, LPO | – | GST, CAT, SOD, GPx | Souza et al. [90] |
I | Cyprinus carpio | malathion (commercial formulation) | 14 | 1.514 (0.5 °) 3.027 (1 °) | – – | GPx, GSH GPx, GSH | MDA, SOD, CAT MDA, SOD, CAT | Yonar [91] |
I | Cyprinus carpio | malathion (commercial formulation) | 10 | 1.514 (0.5 °) 3.027 (1 °) | – – | GPx, GSH GPx, GSH | MDA, SOD, CAT MDA, SOD, CAT | Yonar et al. [92] |
I | Clarias batrachus | chlorpyrifos (20% EC) | 15 | 4.706 (1.65 °) | – | SOD, CAT, GSH, LPO, GST, GPX | SOD, CAT, GSH, LPO, GST, GPX | Narra et al. [93] |
I | Clarias batrachus | monocrotophos (36% EC) | 15 | 9.590 (2.14 °) | – | SOD, CAT, GSH, LPO, GST, GPX | SOD, CAT, GSH, LPO, GST, GPX | Narra et al. [93] |
I | Clarias gariepinus | imidacloprid (as Sunclopride 35% SC) | 60 | 0.008 (2.03 *) | – | SOD, GPx | MDA | Abdel Rahman et al. [94] |
I | Cyprinus carpio | fipronil (as Standak-BASF) | 8 | 0.001 (0.65 *) | MDA, GST | – | MDA, GST | Menezes et al. [95] |
I | Cyprinus carpio | profenofos | 60 | 0.013 (4.74 *) | – | SOD, CAT, GSH | MDA | Abdel Rahman et al. [96] |
I | Cyprinus carpio | quinalphos (25% EC) | 20 | 0.0009 (1.09 ~) 0.0018 (2.18 ~) | – – | – – | SOD, CAT, MDA, GST SOD, CAT, MDA, GST | Hemalatha et al. [97] |
I | Piaractus mesopotamicus | endosulfan (as Zebra Ciagro®) | 4 | 0.003 (1.1 *) | – | – | GPx, CAT, GST, GR | Bacchetta et al. [98] |
I | Piaractus mesopotamicus | lambda-cyhalothrin (Cilambda®) | 4 | 0.016 (0.7 *) | – | GR, GST | CAT, GPx, GR, GST | Bacchetta et al. [98] |
I | Rhamdia quelen | fipronil (as Standak-BASF) | 8 | 0.002 (0.65 *) | MDA, GST | GST | MDA | Menezes et al. [95] |
M | Cyprinus carpio | polystyrene microplastics | 21 | (1000 #) | – | CAT, SOD, GPX | ROS, MDA | Cui et al. [99] |
M | Dicentrarchus labrax | fluorescence red polymer microspheres | 4 | (0.26 °) (0.69 °) | – – | – – | LPO LPO | Barboza et al. [72] |
M | Oreochromis niloticus | microplastics (>100 nm in size) | 15 | (1 °) (10 °) (100 °) | – – – | TAC TAC TAC | SOD, CAT, TPX SOD, CAT, TPX, SOD, CAT, TPX | Hamed et al. [100] |
O | Ctenopharyngodon idella | ammonium acetate | n/a | 9000 (9 **) | CAT | SOD, GSH, | MDA | Xing et al. [101] |
O | Ctenopharyngodon idella | bisphenol A | 14 | 0.014 (3.2 ##) | – | CAT, GSH | TBARS, GST | Faheem and Lone [102] |
O | Cyprinus carpio | bisphenol A | 30 | 13.141 (3.0 °) 19.712 (4.5 °) 26.282 (6 °) | TBARS, ROS – – | – SOD, CAT, POD, GSH SOD, CAT, POD, GSH | – TBARS, ROS TBARS, ROS | Afzal et al. [103] |
O | Oreochromis niloticus | methyl tert-butyl ether | 27 | 0.028 (2.5 ~) 0.057 (5 ~) | – – | TAO GR, TAO | SOD, CAT, GPx, MDA SOD, CAT, GPx, MDA | Banaee et al. [104] |
O | Pelteobagrus fulvidraco | ammonium acetate | n/a | 8000 (8 **) | GPX | TAO | SOD, CAT, MDA | Zhang et al. [105] |
O | Sparus aurata | bisphenol A | 21 | 21.902 (5 ^^) 219.020 (50 ^^) | GST CAT, GST | – – | CAT – | Maradonna et al. [106] |
O | Oreochromis mossambicus | diisononyl phthalate | 1–4 | 0.717 (300 ##) | SOD, CAT, GR, GPx | SOD, CAT, GPx, GR | SOD, CAT, GR, MDA | Revathy and Chitra [107] |
Pd | Carassius gibelio | gentamicin | 3 | 3.595 (5 ###) | GSH, SOD, CAT, GPx | – | – | Bojarski et al. [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formicki, G.; Goc, Z.; Bojarski, B.; Witeska, M. Oxidative Stress and Neurotoxicity Biomarkers in Fish Toxicology. Antioxidants 2025, 14, 939. https://doi.org/10.3390/antiox14080939
Formicki G, Goc Z, Bojarski B, Witeska M. Oxidative Stress and Neurotoxicity Biomarkers in Fish Toxicology. Antioxidants. 2025; 14(8):939. https://doi.org/10.3390/antiox14080939
Chicago/Turabian StyleFormicki, Grzegorz, Zofia Goc, Bartosz Bojarski, and Małgorzata Witeska. 2025. "Oxidative Stress and Neurotoxicity Biomarkers in Fish Toxicology" Antioxidants 14, no. 8: 939. https://doi.org/10.3390/antiox14080939
APA StyleFormicki, G., Goc, Z., Bojarski, B., & Witeska, M. (2025). Oxidative Stress and Neurotoxicity Biomarkers in Fish Toxicology. Antioxidants, 14(8), 939. https://doi.org/10.3390/antiox14080939