Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (179)

Search Parameters:
Keywords = recycled glass fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3231 KiB  
Article
Investigation into the Properties of Alkali-Activated Fiber-Reinforced Slabs, Produced with Marginal By-Products and Recycled Plastic Aggregates
by Fotini Kesikidou, Kyriakos Koktsidis and Eleftherios K. Anastasiou
Constr. Mater. 2025, 5(3), 48; https://doi.org/10.3390/constrmater5030048 - 24 Jul 2025
Viewed by 204
Abstract
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary [...] Read more.
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary widely. In this work, several alkali-activated mortars based on marginal by-products as binders, such as high calcium fly ash and ladle furnace slag, are investigated. Their mechanical (flexural and compressive strength, ultrasonic pulse velocity, and modulus of elasticity) and physical (porosity, absorption, specific gravity, and pH) properties were determined. After evaluating the mechanical performance of the mortars, the optimum mixture containing fly ash, which reached 15 MPa under compression at 90 days, was selected for the production of precast compressed slabs. Steel or glass fibers were also incorporated to improve their ductility. To reduce the density of the slabs, 60% of the siliceous sand aggregate was also replaced with recycled polyethylene terephthalate (PET) plastic aggregate. The homogeneity, density, porosity, and capillary absorption of the slabs were measured, as well as their flexural strength and fracture energy. The results showed that alkali activation can be used to improve the mechanical properties of weak secondary binders such as ladle furnace slag and hydrated fly ash. The incorporation of recycled PET aggregates produced slabs that could be classified as lightweight, with similar porosity and capillary absorption values, and over 65% achieved strength compared to the normal weight slabs. Full article
Show Figures

Figure 1

24 pages, 2554 KiB  
Review
Technical Chains in Civil and Urban Engineering: Review of Selected Solutions, Shaping, Geometry, and Dimensioning
by Krzysztof Adam Ostrowski and Mariusz Spyrowski
Appl. Sci. 2025, 15(13), 7600; https://doi.org/10.3390/app15137600 - 7 Jul 2025
Viewed by 437
Abstract
This article provides an in-depth review of selected technical chains, with particular emphasis on link chains and their load transmission mechanisms. It explores structural and functional characteristics, highlighting how chain geometry affects stress distribution, fatigue life, and performance under various loading conditions. The [...] Read more.
This article provides an in-depth review of selected technical chains, with particular emphasis on link chains and their load transmission mechanisms. It explores structural and functional characteristics, highlighting how chain geometry affects stress distribution, fatigue life, and performance under various loading conditions. The study includes a detailed classification of chains by type, material, and application, ranging from steel-based lifting and transport chains to lightweight, corrosion-resistant polymer types. Manufacturing methods and connection techniques are also discussed, underscoring the importance of proper assembly for mechanical reliability. Special attention is given to the role of materials, particularly the emergence of polymer composites reinforced with glass or carbon fibers, which offer promising alternatives to conventional metals. Although such composites exhibit advantageous properties—such as low weight, corrosion resistance, and energy efficiency—their application remains limited, insufficient load-bearing capacity, and the absence of standardized design guidelines. The review identifies critical knowledge gaps in the field, especially concerning shaping, dimensioning, and normative requirements for polymer-based load-bearing chains. It also highlights the lack of focused research on chain-specific geometries and the need for numerical simulations to optimize link design. The article concludes by emphasizing the importance of developing sustainable, durable, and standardized chain systems—particularly those utilizing recycled or novel materials—to meet both technical demands and environmental goals. This work supports future innovation in the design of advanced chain structures and provides a foundation for expanding the use of high-performance composites in civil and urban engineering applications. Full article
Show Figures

Figure 1

47 pages, 6854 KiB  
Article
Predicting and Unraveling Flexural Behavior in Fiber-Reinforced UHPC Through Based Machine Learning Models
by Jesus D. Escalante-Tovar, Joaquin Abellán-García and Jaime Fernández-Gómez
J. Compos. Sci. 2025, 9(7), 333; https://doi.org/10.3390/jcs9070333 - 27 Jun 2025
Viewed by 504
Abstract
Predicting the flexural behavior of fiber-reinforced ultra-high-performance concrete (UHPC) remains a significant challenge due to the complex interactions among numerous mix design parameters. This study presents a machine learning-based framework aimed at accurately estimating the modulus of rupture (MOR) of UHPC. A comprehensive [...] Read more.
Predicting the flexural behavior of fiber-reinforced ultra-high-performance concrete (UHPC) remains a significant challenge due to the complex interactions among numerous mix design parameters. This study presents a machine learning-based framework aimed at accurately estimating the modulus of rupture (MOR) of UHPC. A comprehensive dataset comprising 566 distinct mixtures, characterized by 41 compositional and fiber-related variables, was compiled. Seven regression models were trained and evaluated, with Random Forest, Extremely Randomized Trees, and XGBoost yielding coefficients of determination (R2) exceeding 0.84 on the test set. Feature importance was quantified using Shapley values, while partial dependence plots (PDPs) were employed to visualize both individual parameter effects and key interactions, notably between fiber factor, water-to-binder ratio, maximum aggregate size, and matrix compressive strength. To validate the predictive performance of the machine learning models, an independent experimental campaign was carried out comprising 26 UHPC mixtures designed with varying binder compositions—including supplementary cementitious materials such as fly ash, ground recycled glass, and calcium carbonate—and reinforced with mono-fiber (straight steel, hooked steel, and PVA) and hybrid-fiber systems. The best-performing models were integrated into a hybrid neural network, which achieved a validation accuracy of R2 = 0.951 against this diverse experimental dataset, demonstrating robust generalizability across both material and reinforcement variations. The proposed framework offers a robust predictive tool to support the design of more sustainable UHPC formulations incorporating supplementary cementitious materials without compromising flexural performance. Full article
Show Figures

Figure 1

13 pages, 2406 KiB  
Article
First Test and Characterizations on Urban Glass Waste with Waste-Derived Carbon Fiber Treated to Realize Foam Glass for Possible Construction Applications
by Zakim Hussain, Seyed Mostafa Nouri, Matteo Sambucci and Marco Valente
Ceramics 2025, 8(2), 73; https://doi.org/10.3390/ceramics8020073 - 17 Jun 2025
Viewed by 476
Abstract
Urban glass waste is a significant by-product of residential areas, while scrap carbon fiber is a prevalent industrial by-product. This study explores an innovative approach to valorize these materials by producing foam glass (FG) for versatile applications, particularly in construction. A key challenge [...] Read more.
Urban glass waste is a significant by-product of residential areas, while scrap carbon fiber is a prevalent industrial by-product. This study explores an innovative approach to valorize these materials by producing foam glass (FG) for versatile applications, particularly in construction. A key challenge in FG production is enhancing its properties to meet increasingly stringent application-specific standards. The properties of FG are intrinsically linked to its porous structure, which depends on factors such as the foaming process. The oxidation of carbon fibers at high temperatures can induce a foaming effect, creating a porous matrix in the glass. This research investigates the effect of powdered recycled carbon fiber (PRCF)—an alternative method for recovering waste carbon fiber as a foaming agent for FG. PRCF was added at concentrations of 0.5%, 1%, and 1.5% by mass relative to powdered waste glass. Increasing PRCF content enhanced foaming and improved porosity, with total porosity rising from 47.18% at 0.5% PRCF to 65.54% at 1.5% PRCF, accompanied by a 50% reduction in compressive strength and a 68% decrease in thermal conductivity. The results demonstrate the feasibility of large-scale FG production with enhanced properties, achieved without substantial additional investment and by recovering two waste materials. This process supports sustainable development by promoting waste valorization and advancing circular economy principles. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Graphical abstract

18 pages, 7622 KiB  
Article
Recycling of Epoxy/Fiberglass Composite Using Pyridine
by Alexander E. Protsenko, Alexandra N. Protsenko, Olga G. Shakirova and Victor V. Petrov
Polymers 2025, 17(11), 1513; https://doi.org/10.3390/polym17111513 - 29 May 2025
Viewed by 520
Abstract
This study presents a new approach to chemical processing using pyridine-based solvolysis to produce high-quality glass fiber from epoxy composites. Pyridine was chosen due to its solubility parameter, which precisely matches the parameters calculated for the epoxy matrix segment. Experiments with exposure in [...] Read more.
This study presents a new approach to chemical processing using pyridine-based solvolysis to produce high-quality glass fiber from epoxy composites. Pyridine was chosen due to its solubility parameter, which precisely matches the parameters calculated for the epoxy matrix segment. Experiments with exposure in a pyridine medium demonstrated effective swelling and the potential for destruction. The solvolysis experiments were conducted in a round-bottomed flask with a reflux condenser and stirrer, under ambient conditions (20 °C) until the boiling point was reached (115.2 °C). Additionally, data from experimental studies conducted at subcritical temperatures before reaching 280 °C are presented. The dependences of changes in the mass of composites on time and temperature during the solvolysis process were determined. The tensile strength of the recovered fibers was examined, and thermogravimetric analysis was used to determine their properties. Fiberglass recovered at the boiling point is characterized by 91% tensile strength and 20% residual degradation products on the surface. The residual strength of fiberglass-reinforced plastic (FGRP) is 70.3%. The use of subcritical pyridine helps improve the quality of plastic products made from recycled fibers. This process retains 93% of the residual tensile strength for fibers that have been processed at 250 °C for two hours. Recycled fibers also contain 2.82% organic components on their surfaces. Using this material results in an increase in flexural strength of FGRP by 16.1%, compared to the reference samples. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Graphical abstract

24 pages, 3644 KiB  
Article
Experimental Stabilization of Clay Soils in Cartagena de Indias Colombia: Influence of Porosity/Binder Index
by Jair de Jesús Arrieta Baldovino, Ramon Torres Ortega and Yamid E. Nuñez de la Rosa
Appl. Sci. 2025, 15(11), 5895; https://doi.org/10.3390/app15115895 - 23 May 2025
Viewed by 433
Abstract
In response to the need for sustainable soil stabilization alternatives, this study explores the use of waste materials and biopolymers to improve the mechanical behavior of clay from Cartagena, Colombia. Crushed limestone waste (CLW), ground glass powder (GG), recycled gypsum (GY), xanthan gum [...] Read more.
In response to the need for sustainable soil stabilization alternatives, this study explores the use of waste materials and biopolymers to improve the mechanical behavior of clay from Cartagena, Colombia. Crushed limestone waste (CLW), ground glass powder (GG), recycled gypsum (GY), xanthan gum (XG), and the combination of XG with polypropylene fibers (XG–PPF) were used as stabilizing agents. Samples were compacted at different dry densities and cured for 28 days. Unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were conducted to assess the strength and stiffness of the treated mixtures. Results were normalized using the porosity/binder index (η/Biv), leading to predictive equations with high determination coefficients (R2 = 0.94 for UCS and R2 = 0.96 for stiffness). However, XG-treated mixtures exhibited distinct behavior that prevented their inclusion in a unified predictive model, as the fitted exponent x in the porosity/binder index (η/Bivx) differed markedly from the others. While an exponent of 0.28 was suitable for blends with mineral binders, the optimal x values for XG and XG–PPF mixtures were significantly lower at 0.02 and 0.03, respectively, reflecting their unique gel-like and fiber-reinforced characteristics. The analysis of variance (ANOVA) identified cement content and compaction density as the most influential factors, while some interactions involving the residues were not statistically significant, despite aligning with experimental trends. The findings support the technical viability of using sustainable additives to enhance soil properties with reduced environmental impact. Full article
Show Figures

Figure 1

31 pages, 8672 KiB  
Article
Enhancing the Mechanical Properties of Recycled Aggregate Concrete: A Comparative Study of Basalt- and Glass-Fiber Reinforcements
by Shibo Bao, Shuangjie Wang, Huahua Xia, Kewei Liu, Xugang Tang and Peng Jin
Buildings 2025, 15(10), 1718; https://doi.org/10.3390/buildings15101718 - 19 May 2025
Cited by 1 | Viewed by 649
Abstract
Recycled aggregate concrete (RAC) holds significant promise for reducing the environmental impact of the construction industry. However, the poor mechanical properties of RAC compared to conventional concrete are mainly due to the porous and soft nature of recycled aggregates. While fiber reinforcement has [...] Read more.
Recycled aggregate concrete (RAC) holds significant promise for reducing the environmental impact of the construction industry. However, the poor mechanical properties of RAC compared to conventional concrete are mainly due to the porous and soft nature of recycled aggregates. While fiber reinforcement has been proposed as a promising method to address this issue, existing studies primarily focus on steel and polypropylene fibers, with limited systematic comparison of alternative fiber types and dosages. In particular, the mechanical enhancement mechanisms of basalt and glass fibers in RAC remain underexplored, and there is a lack of predictive models for strength behavior. This study evaluates the effects of basalt and glass fibers on RAC through uniaxial compression, splitting tensile, and three-point bending tests. Nine mixtures with varying fiber types and volume fractions (1.0–2.5%) were tested, and results were compared to plain RAC. Key properties such as strength, energy absorption, toughness, and flexibility were analyzed using load–displacement curves and advanced toughness indices. Both fiber types improved tensile and flexural properties, with glass fibers showing superior performance, particularly at 1.5% content, where the splitting tensile strength increased by up to 40% and the flexural strength improved by 42.19%. Basalt fibers dispersed more uniformly but were less effective in enhancing toughness and crack resistance. Excessive fiber content reduced matrix homogeneity and mechanical performance. Optimal fiber dosages were identified as 1–1.5% for glass fibers and 1–2% for basalt fibers, depending on the targeted property. Predictive formulas for the flexural strength of fiber-reinforced RAC are also proposed, offering guidance for the design of structural RAC elements. Full article
(This article belongs to the Special Issue The Damage and Fracture Analysis in Rocks and Concretes)
Show Figures

Figure 1

23 pages, 9536 KiB  
Review
Prospects for the Valorization of Wind Turbine Blade Waste: Fiber Recovery and Recycling
by Regina Kalpokaitė-Dičkuvienė and Vilma Snapkauskienė
Sustainability 2025, 17(9), 4202; https://doi.org/10.3390/su17094202 - 6 May 2025
Cited by 1 | Viewed by 902
Abstract
The article reviews the literature on the potential utilization of decommissioned wind turbine blade waste (WTBW) in construction materials, including geopolymers, which are rarely discussed. The review indicates that only the mechanical processing of WTBW creates prerequisites for its possible use as fillers [...] Read more.
The article reviews the literature on the potential utilization of decommissioned wind turbine blade waste (WTBW) in construction materials, including geopolymers, which are rarely discussed. The review indicates that only the mechanical processing of WTBW creates prerequisites for its possible use as fillers in construction materials; however, adjustments to the composition of binding materials are necessary. Wind turbine blades (WTBs) are usually made from strong and durable composite materials, thus posing serious recycling and environmental challenges. Thermal process methods are promising approaches for recovering glass fibers from thermosets of WTBW through pyrolysis or converting WTBW into fibers via plasma processing. Preliminary durability studies of such recovered and recycled glass fibers have demonstrated their potential application in geopolymers or cement-based materials. Implementing these technologies would expand the waste management system, completing recycling and reuse solutions. To successfully adopt more environmentally friendly solutions, further development of geopolymer production processes and sustainable fiber recovery is recommended. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

20 pages, 6178 KiB  
Article
General Evaluation of the Recyclability of Polyester-Glass Laminates Used to Reinforce Steel Tanks
by Sławomir Stelmach, Dawid Gacki, Mateusz Szul, Kamil Słowiński, Tomasz Radko and Małgorzata Wojtaszek-Kalaitzidi
Sustainability 2025, 17(9), 4199; https://doi.org/10.3390/su17094199 - 6 May 2025
Viewed by 395
Abstract
Polyester-glass laminates are widely used to reinforce underground steel fuel tanks due to their excellent corrosion resistance and mechanical performance. However, the management of these composites at the end of their service life poses significant challenges, particularly in terms of material recovery and [...] Read more.
Polyester-glass laminates are widely used to reinforce underground steel fuel tanks due to their excellent corrosion resistance and mechanical performance. However, the management of these composites at the end of their service life poses significant challenges, particularly in terms of material recovery and environmental impact. This study investigates both the structural benefits and recyclability of polyester-glass laminates. Numerical simulations confirmed that reinforcing corroded steel tank shells with a 5 mm GFRP (Glass Fiber Reinforced Polymer) coating reduced the maximum equivalent stress by nearly 50%, significantly improving mechanical integrity. In parallel, thermogravimetric and microscopic analyses were conducted on waste GFRP samples subjected to pyrolysis, gasification, and combustion. Among the methods tested, pyrolysis proved to be the most favorable, allowing substantial organic degradation while preserving the structural integrity of the glass fiber fraction. However, microscopy revealed that the fibers were embedded in a dense char matrix, requiring additional separation processes. Although combustion leaves the fibers physically loose, pyrolysis is favored due to better preservation of fiber mechanical properties. Combustion resulted in loose and morphologically intact fibers but exposed them to high temperatures, which, according to the literature, may reduce their mechanical strength. Gasification showed intermediate performance in terms of energy recovery and fiber preservation. The findings suggest that pyrolysis offers the best trade-off between environmental performance and fiber recovery potential, provided that appropriate post-treatment is applied. This work supports the use of pyrolysis as a technically and environmentally viable strategy for recycling polyester-glass laminates and encourages further development of closed-loop composite waste management. Full article
(This article belongs to the Special Issue Solid Waste Management and Recycling for a Sustainable World)
Show Figures

Figure 1

21 pages, 8241 KiB  
Article
Chemical Recycling of Bio-Based Thermosetting Epoxy Composite Produced by Vacuum-Assisted Resin Infusion Process
by Liberata Guadagno, Raffaele Longo, Marialuigia Raimondo, Luigi Vertuccio, Francesca Aliberti, Lorenzo Bonadies, Simone Morciano, Luigia Longo, Roberto Pantani and Elisa Calabrese
Polymers 2025, 17(9), 1241; https://doi.org/10.3390/polym17091241 - 2 May 2025
Viewed by 801
Abstract
This research work focuses on the chemical recycling of a Carbon Fiber-Reinforced Composite (CFRC) manufactured through a vacuum-assisted resin infusion (VARI) process, characterized by a high Young’s modulus of approximately 7640 MPa. The recycling reaction was performed using a mixture of eco-sustainable solvents, [...] Read more.
This research work focuses on the chemical recycling of a Carbon Fiber-Reinforced Composite (CFRC) manufactured through a vacuum-assisted resin infusion (VARI) process, characterized by a high Young’s modulus of approximately 7640 MPa. The recycling reaction was performed using a mixture of eco-sustainable solvents, composed of acetic acid and hydrogen peroxide, and was conducted at three different temperatures (70, 80, and 90 °C). The reaction yield values, evaluated with an innovative approach that involved the use of thermogravimetric analysis (TGA), confirmed the importance to recycle at a temperature corresponding to the glass transition temperature (Tg = 90.3 °C) of the resin. Spectroscopic investigations highlighted that the chemical bond cleavage occurred through the selective breaking of the C-N bonds of the cross-linked matrix structure, allowing the recovery of both the reinforcing phase of the epoxy matrix and the initial oligomers/monomers of the epoxy matrix. The morphological and electrical investigations carried out on the recovered fibers further confirmed the efficiency of the recycling process conducted at the highest explored temperature, allowing the recovery of cleaner fibers with an electrical conductivity value (8.04 × 102 S/m) closer to that of virgin fibers (2.20 × 103 S/m). The proposed strategy is a true challenge in terms of saving energy, solving waste disposal problems, preserving the earth, and preventing the depletion of planet resources. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

23 pages, 7536 KiB  
Article
Development of Sustainable Polymer Composites Containing Waste Glass and Natural Fibers for Strengthening Purposes
by Cihan Karademir, Hasan Murat Tanarslan, Çağlar Yalçınkaya, Mustafa Furkan Güler, Hasan Ateş, Kutlay Sever, Yasemin Seki and Metehan Atagür
Polymers 2025, 17(8), 1116; https://doi.org/10.3390/polym17081116 - 20 Apr 2025
Cited by 1 | Viewed by 884
Abstract
This study investigates the development of sustainable polymer composites for structural strengthening by incorporating waste glass fibers and natural fibers (flax and hemp) into an epoxy matrix, in response to the growing environmental concerns. Mechanical, thermal, and durability-related properties were evaluated through tensile [...] Read more.
This study investigates the development of sustainable polymer composites for structural strengthening by incorporating waste glass fibers and natural fibers (flax and hemp) into an epoxy matrix, in response to the growing environmental concerns. Mechanical, thermal, and durability-related properties were evaluated through tensile testing, dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), water absorption, and water immersion aging tests. Results showed that incorporating waste glass fibers enhanced the tensile strength and thermal decomposition temperature by 88% and 5.4%, respectively, compared to composites reinforced with solely natural fibers. Water absorption tests indicated that waste glass fiber-reinforced hybrid composites exhibited lower water uptake than flax and hemp fiber-reinforced composites. After water immersion, the tensile strength loss was recorded as 22, 25, and 8.5% for the composites reinforced with hemp, flax, and waste glass fiber, respectively. The findings confirm that incorporating waste glass fibers into natural fiber composites effectively mitigates moisture sensitivity and improves mechanical performance. Hybridizing flax and hemp fibers with waste glass fibers provides a practical and sustainable approach to enhancing composite performance, making them a viable alternative for strengthening reinforced concrete structures requiring long-term resistance. The recycled waste glass fibers employed in this study offered comparable mechanical performance while drastically lowering raw material consumption and environmental impact, in contrast to virgin glass fibers frequently used in earlier investigations. This demonstrates how recycling-oriented composite design can provide both sustainability and performance benefits. Full article
Show Figures

Figure 1

12 pages, 4732 KiB  
Article
Recycling Waste Fiberglass by Powder Grinding and Direct Molding of Powders
by Fabrizio Quadrini, Leandro Iorio, Giorgio Patrizii, Denise Bellisario and Loredana Santo
Polymers 2025, 17(7), 987; https://doi.org/10.3390/polym17070987 - 5 Apr 2025
Viewed by 844
Abstract
Direct molding is a compression molding process of thermoset particles without the addition of any linking agent or binder. It is suitable for recycling end-of-life fiberglass or other waste from the manufacturing of fiberglass products. In this study, for the first time, the [...] Read more.
Direct molding is a compression molding process of thermoset particles without the addition of any linking agent or binder. It is suitable for recycling end-of-life fiberglass or other waste from the manufacturing of fiberglass products. In this study, for the first time, the feasibility of recycling waste fiberglass powder, collected from an industry, is shown in the case of a vinyl ester matrix. Powders have been directly molded, without any pre-treatment such as sieving, to manufacture small samples for four-point bending tests. Supplied powders have been characterized by microscopy and thermal analysis. Its size distribution has been evaluated by sieving, and the amount of resin by burning test. Samples have been compression molded in an eight-cavity mold and have shown good homogeneity and surface aspect. The average density of the recycled fiberglass is 1.23 g/cm3, the bending strength 28 MPa, the elongation at break 1.6%, and the elastic modulus 1.9 GPa, with low dispersion (7% at maximum). Surface analysis has shown a rough surface and the presence of embedded glass fibers into the agglomerated fiberglass. Results show that waste powders from secondary processes of fiberglass manufacturers, such as surface grinding, may provide secondary raw materials for the production of molded parts without mixing with virgin substances. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

20 pages, 2598 KiB  
Article
Recycling Fiber-Reinforced Polyamide Waste from the Automotive Industry: Life Cycle Assessment (LCA) of an Advanced Pyrolysis Process to Reclaim Glass Fibers and Valuable Chemicals
by Blanca María Caballero, Alexander Lopez-Urionabarrenechea, Jean Paul Gonzalez-Arcos, Borja Benjamín Perez-Martinez, Esther Acha, Maider Iturrondobeitia, Julen Ibarretxe, Aritz Esnaola and Maider Baskaran
Materials 2025, 18(7), 1594; https://doi.org/10.3390/ma18071594 - 1 Apr 2025
Viewed by 740
Abstract
The generation of pyrolysis liquids and gases with poor quality is a limiting factor for the development of the recycling process of fiber-reinforced plastic waste. In this article, the life cycle assessment (LCA) of an advanced two-step pyrolysis process to recycle glass fiber-reinforced [...] Read more.
The generation of pyrolysis liquids and gases with poor quality is a limiting factor for the development of the recycling process of fiber-reinforced plastic waste. In this article, the life cycle assessment (LCA) of an advanced two-step pyrolysis process to recycle glass fiber-reinforced polyamide waste is presented. First, the solid waste is pyrolyzed by heating up at 3 °C/min to 500 °C in a tank reactor. The generated volatiles are subsequently thermally cracked at 900 °C in a tubular packed bed reactor. The process is able to reclaim the glass fibers similarly to the conventional one reactor pyrolysis, while producing liquids and gases with better properties. The large quantity of oxygenated pyrolysis oils generated in the conventional pyrolysis are cracked into gaseous hydrocarbons, CO, CO2 and a minor aqueous liquid. The pyrolysis gases become the main product of the process, presenting an interesting composition of hydrogen (39.9 vol.%), methane (22.5 vol.%), carbon monoxide (19.5 vol.%) and ethylene (10.8 vol.%). The LCA shows that advanced pyrolysis demonstrates better environmental performance than conventional pyrolysis, avoiding fossil resource scarcity and reducing global warming by half and human carcinogenic toxicity by one third. Full article
Show Figures

Figure 1

19 pages, 7778 KiB  
Article
Mechanical and Thermal Properties of Recycled Fishing Net-Derived Polyamide 6/Switchgrass Fiber Composites for Automotive Applications
by Zakariae Belmokhtar, Patrice Cousin, Saïd Elkoun and Mathieu Robert
Recycling 2025, 10(2), 59; https://doi.org/10.3390/recycling10020059 - 1 Apr 2025
Viewed by 1294
Abstract
The increasing demand for sustainable materials in automotive applications, coupled with the critical need to address marine plastic pollution, presents an opportunity for innovative material development. This study explores composites made from recycled polyamide 6 (PA6) fishing nets reinforced with switchgrass fibers (0–30 [...] Read more.
The increasing demand for sustainable materials in automotive applications, coupled with the critical need to address marine plastic pollution, presents an opportunity for innovative material development. This study explores composites made from recycled polyamide 6 (PA6) fishing nets reinforced with switchgrass fibers (0–30 wt%). The composite with 30 wt% switchgrass fibers increased tensile strength by 23% and Young’s modulus by 126% compared to unreinforced recycled PA6, achieving 93% of the tensile strength of commercial automotive-grade neat PA6 and surpassing another grade by 22%. However, higher fiber loading hindered processability, as evidenced by incomplete mold filling and reflected by a decrease in melt flow rate from 19.35 to 8.63 g/10 min. Thermal analysis revealed reduced crystallinity and crystallization temperatures with fiber addition, attributed to restricted polymer chain mobility. While dynamic mechanical analysis demonstrated improved stiffness below the glass transition temperature, scanning electron microscopy indicated optimal fiber-matrix adhesion at up to 20 wt% fiber loading, with aggregation at higher concentrations. These findings establish recycled fishing net-derived PA6/switchgrass fiber composites as a viable alternative to virgin materials in automotive applications, with mechanical properties comparable to commercial grades. Although the composites demonstrate enhanced mechanical strength and modulus, the significant reduction in ductility restricts their use to rigid, semi-structural components where flexibility is not critical. Future research should address processing challenges to enhance fiber dispersion and interfacial adhesion at higher loadings. Full article
Show Figures

Figure 1

18 pages, 3761 KiB  
Article
Utilization of Wind Turbine Blade Waste in the Production of ABS Composites and Selected Products Based on These Composites
by Rafał Malinowski, Volodymyr Krasinskyi, Krzysztof Bajer, Oksana Krasinska, Piotr Augustyn, Anna Pietruszka and Krzysztof Moraczewski
Polymers 2025, 17(6), 796; https://doi.org/10.3390/polym17060796 - 17 Mar 2025
Viewed by 733
Abstract
The paper presents studies on the use of waste from wind turbine blades (WTBs) in the production of thermoplastic composites and regranulate-based products of acrylonitrile-butadiene-styrene (ABS) copolymers. Composites containing two types of WTB fractions (finely milled fraction—GRm and dust fraction—GRd) were produced using [...] Read more.
The paper presents studies on the use of waste from wind turbine blades (WTBs) in the production of thermoplastic composites and regranulate-based products of acrylonitrile-butadiene-styrene (ABS) copolymers. Composites containing two types of WTB fractions (finely milled fraction—GRm and dust fraction—GRd) were produced using a co-rotating twin-screw extruder. During extrusion, different screw configurations of the plasticizing system as well as different material formulations were investigated. The studied composites contained from 10 to 70 wt% of shredded WTB, as well as up to 15 wt% of additional components, mainly those improving impact strength and processing properties. It was found that the individual WTB fractions generally deteriorate the mechanical properties of ABS. However, a composite containing 30 wt% GRm and modified with an additional 7 wt% ACM-G2 (impact modifier type) can be hot-pressed into good quality panels. It can also be successfully used to produce profiles in the extrusion process, mainly due to its significantly reduced viscosity. The studies presented in this article showed one of the possible ways of using WTB waste. It is advantageous because it uses WTB waste in a thermoplastic ABS matrix, which is also a secondary raw material. As a consequence of this, a completely new composite material based wholly on secondary raw materials can be obtained, which can be subjected to multiple processing. Full article
Show Figures

Figure 1

Back to TopTop