Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (270)

Search Parameters:
Keywords = recombinant antigens production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2281 KiB  
Article
Amphipathic Alpha-Helical Peptides AH1 and AH3 Facilitate Immunogenicity of Enhanced Green Fluorescence Protein in Rainbow Trout (Oncorhynchus mykiss)
by Kuan Chieh Peng and Ten-Tsao Wong
J. Mar. Sci. Eng. 2025, 13(8), 1497; https://doi.org/10.3390/jmse13081497 - 4 Aug 2025
Abstract
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically [...] Read more.
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically produced in large quantities without growing many pathogens, as in inactivated or attenuated vaccine production. However, recombinant subunit vaccines are often weak or deficient in immunogenicity, resulting in inadequate defenses against infections. Technologies that can increase the immunogenicity of recombinant subunit vaccines are in desperate need. Enhanced green fluorescence protein (EGFP) has a low antigenicity and is susceptible to folding changes and losing fluorescence after fusing with other proteins. Using these valuable features of EGFP, we comprehend two amphipathic alpha-helical peptides, AH1 and AH3, derived from Hepatitis C virus and Influenza A virus, respectively, that can induce high immune responses of their fused EGFP in fish without affecting their folding. AH3-EGFP has the most elevated cell binding, significantly 62% and 36% higher than EGFP and AH1-EGFP, respectively. Immunizations with AH1-EGFP or AH3-EGFP significantly induced higher anti-EGFP antibody levels 300–500-fold higher than EGFP immunization after the boost injection in rainbow trout. Our results suggest that AH1 and AH3 effectively increase the immunogenicity of EGFP without influencing its structure. Further validation of their value in other recombinant proteins is necessary to demonstrate their broader utility in enhancing the immunogenicity of subunit vaccines. We also suggest that EGFP and its variants are promising candidates for initially screening proper immunogenicity-enhancing peptides or proteins to advance recombinant subunit vaccine development. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

20 pages, 3269 KiB  
Article
Immunomodulatory Effect of a Cysteine-Rich Secretory Protein from an Entomopathogenic Nematode with Sterol-Binding Activity
by Jorge Frias, Duarte Toubarro, Tiago Paiva and Nelson Simões
Toxins 2025, 17(7), 342; https://doi.org/10.3390/toxins17070342 - 5 Jul 2025
Viewed by 481
Abstract
The Steinernema carpocapsae nematode is known to release several excretory/secretory products (ESPs) in its venom upon contact and during the parasitic infection process of insect hosts. A recurrent family of proteins found in this nematode’s venom is the CAP (cysteine-rich secretory protein/antigen 5/pathogenesis-related [...] Read more.
The Steinernema carpocapsae nematode is known to release several excretory/secretory products (ESPs) in its venom upon contact and during the parasitic infection process of insect hosts. A recurrent family of proteins found in this nematode’s venom is the CAP (cysteine-rich secretory protein/antigen 5/pathogenesis-related 1) protein, but the functional role of these proteins remains unknown. To elucidate the biological function, this study focused on characterising the secreted protein, first identified in the venom of the nematode’s parasitic stage, and the sequence retrieved from transcriptomic analysis. The structural comparisons of the Sc-CAP protein model, as determined by AlphaFold2, revealed related structures from other parasitic nematodes of vertebrates. Some of these closely related proteins are reported to have sterol-binding ability. The Sc-CAP recombinant protein was successfully produced in Escherichia coli in conjunction with a chaperone protein. The results showed that the Sc-CAP protein binds to cholesterol, and docking analyses of sterols on the protein revealed potential molecular interactions. Immunoassays performed in Galleria mellonella larvae revealed that this venom protein has an inhibitory effect against phenoloxidase and the antimicrobial response of insects. This suggests that the venom protein has an immunomodulatory function against insects, emphasising its importance during the parasite–host interaction. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

16 pages, 13905 KiB  
Article
Replication of Vectored Herpesvirus of Turkey (HVT) in a Continuous, Microcarrier-Independent Suspension Cell Line from Muscovy Duck
by Karoline Mähl, Deborah Horn, Sirine Abidi, Benedikt B. Kaufer, Volker Sandig, Alexander Karlas and Ingo Jordan
Vaccines 2025, 13(7), 714; https://doi.org/10.3390/vaccines13070714 - 30 Jun 2025
Viewed by 463
Abstract
Background/Objectives: More than 33 billion chickens are industrially raised for meat and egg production globally and vaccinated against Marek’s disease virus (MDV). The antigenically related herpesvirus of turkey (HVT) is used as a live-attenuated vaccine, commonly provided as a recombinant vector to protect [...] Read more.
Background/Objectives: More than 33 billion chickens are industrially raised for meat and egg production globally and vaccinated against Marek’s disease virus (MDV). The antigenically related herpesvirus of turkey (HVT) is used as a live-attenuated vaccine, commonly provided as a recombinant vector to protect chickens against additional unrelated pathogens. Because HVT replicates in a strictly cell-associated fashion to low levels of infectious units, adherent primary chicken or duck embryo fibroblasts are infected, dislodged from the cultivation surface and distributed as cryocultures in liquid nitrogen to the site of application. Although viable cells are complex products, application of infected cells in ovo confers protection even in presence of maternal antibodies. Methods/Results: The aim of our study was to determine whether a continuous cell line in a scalable cultivation format can be used for production of HVT-based vaccines. The AGE1.CR cell line (from Muscovy duck) was found to be highly permissive in adherent cultures. Propagation in suspension, however, initially gave very low yields. The induction of cell-to-cell contacts in carrier-independent suspensions and a metabolic shock improved titers to levels suitable for vaccine production (>105 infectious units/mL after infection with multiplicity of 0.001). Conclusions: Production of HVT is challenging to scale to large volumes and the reliance on embryonated eggs from biosecure facilities is complex. We demonstrate that a cell-associated HVT vector can be propagated in a carrier-independent suspension culture of AGE1.CR cells in chemically defined medium. The fed-batch production is independent of primary cells and animal-derived material and can be scaled to large volumes. Full article
(This article belongs to the Special Issue Animal Herpesviruses: 2nd Edition)
Show Figures

Figure 1

12 pages, 815 KiB  
Article
Evaluation of Recombinant Foot-and-Mouth Disease SAT2 Vaccine Strain in Terms of Antigen Productivity, Virus Inactivation Kinetics, and Immunogenicity in Pigs for Domestic Antigen Bank
by Jae Young Kim, Sun Young Park, Gyeongmin Lee, Mijung Kwon, Jong Sook Jin, Jong-Hyeon Park and Young-Joon Ko
Vaccines 2025, 13(7), 704; https://doi.org/10.3390/vaccines13070704 - 28 Jun 2025
Viewed by 502
Abstract
Background: Since the massive outbreak of foot-and-mouth disease (FMD) in South Korea in 2010–2011, cloven-hoofed livestock have been immunized with serotype O and A vaccines across the country. Other serotypes of FMD vaccines were stockpiled in overseas FMD vaccine factories as antigen banks. [...] Read more.
Background: Since the massive outbreak of foot-and-mouth disease (FMD) in South Korea in 2010–2011, cloven-hoofed livestock have been immunized with serotype O and A vaccines across the country. Other serotypes of FMD vaccines were stockpiled in overseas FMD vaccine factories as antigen banks. Once a manufacturing facility has been established in South Korea, the overseas antigen banks will be replaced by domestic one. Therefore, this study aimed to evaluate the commercial potential of the previously developed SAT2 vaccine candidate (SAT2 ZIM-R). Methods: The optimal condition was determined at various virus concentrations, infection times, and pH levels, resulting in 0.01 MOI for SAT2 ZIM-R for 24 h infection at a pH of 7.5. Results: When the SAT2 ZIM-R virus was produced in flasks from 40 to 1000 mL in fivefold increments, all scales of production yielded > 7.0 µg/mL of antigens. Using a bioreactor, 5.6 µg/mL of antigens was recovered from a 1 L viral culture. The optimal conditions of viral inactivation kinetics were determined to be 1 mM of binary ethyleneimine (BEI) treatment at 26 °C for 24 h, with approximately 91% of the antigen being retained after virus inactivation. When the SAT2 ZIM-R experimental vaccine was administered twice to pigs, the neutralizing antibody titer increased approximately 500-fold after booster immunization. Conclusions: To the best of our knowledge, this is the first study to evaluate the antigen productivity, viral inactivation kinetics, and immunogenicity of the SAT vaccine strain in pigs. In the future, the SAT2 ZIM-R vaccine may be a useful candidate vaccine for a domestic antigen bank. Full article
(This article belongs to the Special Issue Innovations in Vaccine Technology)
Show Figures

Figure 1

18 pages, 2836 KiB  
Article
Characterization of the Antigenic and Immunogenic Properties of the Gametocyte Antigen 56 from Eimeria necatrix
by Feiyan Wang, Liqin Cao, Lele Wang, Jinjun Xu, Jianping Tao and Dandan Liu
Animals 2025, 15(12), 1750; https://doi.org/10.3390/ani15121750 - 13 Jun 2025
Viewed by 468
Abstract
Coccidiosis, caused by Eimeria spp., significantly reduces poultry productivity and causes major economic losses. Traditional control methods are limited by drug resistance and high production costs. Recent genomic and bioinformatic advances have enabled the identification of novel antigens, making recombinant subunit vaccines a [...] Read more.
Coccidiosis, caused by Eimeria spp., significantly reduces poultry productivity and causes major economic losses. Traditional control methods are limited by drug resistance and high production costs. Recent genomic and bioinformatic advances have enabled the identification of novel antigens, making recombinant subunit vaccines a promising next-generation strategy by eliciting robust cellular and humoral immune responses. This study investigates the E. necatrix gametocyte protein 56 (EnGAM56) as a potential candidate for recombinant subunit vaccines. The full-length E. necatrix gametocyte gam56 gene (Engam56-F) was amplified, expressed in vitro, and characterized via SDS-PAGE and Western blot. Immunofluorescence assays revealed that EnGAM56-F is specifically localized in gametocytes and unsporulated oocysts. Chickens immunized with recombinant proteins (rEnGAM56-F and rEnGAM56-T) were evaluated for immunoprotection against E. necatrix infection through lesion scores, weight gain, oocyst production, anticoccidial index (ACI), and antibody and cytokine levels. The synergistic effects were evaluated by employing various combinations of recombinant proteins, including rEtGAM22, rEtGAM56-T, and rEtGAM59. Results showed that EnGAM56-F encodes a 468-amino acid protein with distinct tyrosine-serine-rich and proline-methionine-rich regions. rEnGAM56-F was specifically recognized by both anti-6 × His tag antibodies and convalescent serum from chickens infected with E. necatrix. Both rEnGAM56-F and rEnGAM56-T provided immune protection, with rEnGAM56-T showing superior efficacy. The combination of rEnGAM (22 + 59 + 56-T) yielded the strongest immune response, followed by rEnGAM (22 + 56-T). These findings highlight the potential of EnGAM56 as a candidate for recombinant subunit anticoccidial vaccines. Full article
(This article belongs to the Special Issue Coccidian Parasites: Epidemiology, Control and Prevention Strategies)
Show Figures

Figure 1

18 pages, 2938 KiB  
Article
Foot-and-Mouth Disease Virus-like Particles Produced in E. coli as Potential Antigens for a Novel Vaccine
by Sang-Cheol Yu, In-Kyu Lee, Hyun-Seok Kong, Sung-Ho Shin, Sung-Yoon Hwang, Yu-Jin Ahn, Jong-Hyeon Park, Bong-Yoon Kim and Young-Cheon Song
Vet. Sci. 2025, 12(6), 539; https://doi.org/10.3390/vetsci12060539 - 2 Jun 2025
Viewed by 658
Abstract
Foot-and-mouth disease virus (FMDV) continues to pose a significant threat to livestock health and the global agricultural economy, particularly in endemic regions of Asia, Africa, and the Middle East. Current vaccines based on chemically inactivated FMDV present several challenges, including biosafety risks, high [...] Read more.
Foot-and-mouth disease virus (FMDV) continues to pose a significant threat to livestock health and the global agricultural economy, particularly in endemic regions of Asia, Africa, and the Middle East. Current vaccines based on chemically inactivated FMDV present several challenges, including biosafety risks, high production costs, and limited effectiveness against emerging viral variants. To overcome these limitations, we developed virus-like particle (VLP) vaccines targeting FMDV serotypes O, A, and Asia1 using a recombinant Escherichia coli expression system. The resulting VLPs self-assembled into 25–30 nm particles with native-like morphology and antigenic properties, as confirmed by transmission electron microscopy, SDS-PAGE, and Western blot analysis. Immunogenicity was evaluated in mice and pigs using ELISA and virus neutralization tests (VNT), and protective efficacy was assessed through viral challenge studies. All VLPs induced strong serotype-specific antibody responses, with ELISA PI values exceeding 50% and significantly increased VNT titers after booster immunization. In mice, PD50 values were 73.5 (A-type), 32.0 (O-type), and 55.7 (Asia1-type); in pigs, PD50 values reached 10.6 (O-type) and 22.6 (Asia1-type). Notably, the vaccines induced robust immune responses even at lower antigen doses, suggesting the feasibility of dose-sparing formulations. These findings demonstrate that FMDV VLPs produced in E. coli are highly immunogenic and capable of eliciting protective immunity, highlighting their promise as safe, scalable, and cost-effective alternatives to conventional inactivated FMD vaccines. Full article
Show Figures

Figure 1

18 pages, 8713 KiB  
Article
Protective Potential and Functional Role of Antibodies Against SARS-CoV-2 Nucleocapsid Protein
by Alexandra Rak, Ekaterina Bazhenova, Polina Prokopenko, Victoria Matyushenko, Yana Orshanskaya, Konstantin V. Sivak, Arina Kostromitina, Larisa Rudenko and Irina Isakova-Sivak
Antibodies 2025, 14(2), 45; https://doi.org/10.3390/antib14020045 - 28 May 2025
Viewed by 1396
Abstract
Cases of new COVID-19 infection, which manifested in 2019 and caused a global socioeconomic crisis, still continue to be registered worldwide. The high mutational activity of SARS-CoV-2 leads to the emergence of new antigenic variants of the virus, which significantly reduces the effectiveness [...] Read more.
Cases of new COVID-19 infection, which manifested in 2019 and caused a global socioeconomic crisis, still continue to be registered worldwide. The high mutational activity of SARS-CoV-2 leads to the emergence of new antigenic variants of the virus, which significantly reduces the effectiveness of COVID-19 vaccines, as well as the sensitivity of diagnostic test systems based on variable viral antigens. These problems may be solved by focusing on highly conserved coronavirus antigens, for example nucleocapsid (N) protein, which is actively expressed by coronavirus-infected cells and serves as a target for the production of virus-specific antibodies and T cell responses. It is known that anti-N antibodies are non-neutralizing, but their protective potential and functional activity are not sufficiently studied. Here, the protective effect of anti-N antibodies was studied in Syrian hamsters passively immunized with polyclonal sera raised to N(B.1) recombinant protein. The animals were infected with 105 or 104 TCID50 of SARS-CoV-2 (B.1, Wuhan or BA.2.86.1.1.18, Omicron) 6 h after serum passive transfer, and protection was assessed by weight loss, clinical manifestation of disease, viral titers in the respiratory tract, as well as by the histopathological evaluation of lung tissues. The functional activity of anti-N(B.1) antibodies was evaluated by complement-dependent cytotoxicity (CDC) and antibody-dependent cytotoxicity (ADCC) assays. The protection of anti-N antibodies was evident only against a lower dose of SARS-CoV-2 (B.1) challenge, whereas almost no protection was revealed against BA.2.86.1.1.18 variant. Anti-N(B.1) monoclonal antibodies were able to stimulate both CDC and ADCC. Thus, anti-N(B.1) antibodies possess protective activity against homologous challenge infection, which is possibly mediated by innate Fc-mediated immune reactions. These data may be informative for the development of N-based broadly protective COVID-19 vaccines. Full article
(This article belongs to the Section Humoral Immunity)
Show Figures

Figure 1

24 pages, 2758 KiB  
Article
A Modified Variant of Fasciola hepatica FhSAP-2 (mFhSAP-2) as a Recombinant Vaccine Candidate Induces High-Avidity IgG2c Antibodies and Enhances T Cell Activation in C57BL/6 Mice
by Riseilly Ramos-Nieves, Albersy Armina-Rodriguez, Maria Del Mar Figueroa-Gispert, Ghalib Figueroa-Quiñones, Carlimar Ocasio-Malavé and Ana M. Espino
Vaccines 2025, 13(5), 545; https://doi.org/10.3390/vaccines13050545 - 20 May 2025
Viewed by 597
Abstract
Background/Objectives: In the past, FhSAP-2, an 11.5 kDa recombinant protein belonging to the Fasciola hepatica saposin-like/NK-lysin family, has been shown to induce over 60% partial protection in immunized rabbits and mice when challenged with F. hepatica metacercariae. However, despite FhSAP-2 being a promising [...] Read more.
Background/Objectives: In the past, FhSAP-2, an 11.5 kDa recombinant protein belonging to the Fasciola hepatica saposin-like/NK-lysin family, has been shown to induce over 60% partial protection in immunized rabbits and mice when challenged with F. hepatica metacercariae. However, despite FhSAP-2 being a promising vaccine candidate, its hydrophobic nature has made its purification a challenging process. The present study aimed to determine whether a modified 9.8 kDa variant of protein (mFhSAP-2), lacking a string of 16 hydrophobic amino acids at the amino terminus and a dominant Th1 epitope, could retain its immunogenic and Th1-inducing properties. Methods: RAW264.7 cells were stimulated with mFhSAP-2, and TNFα levels were determined. C57BL/6 mice were immunized with mFhSAP-2 alone or emulsified with Montanide ISA50. Total anti-mFhSAP-2 IgG subtypes, along with their avidity and titers, were measured using ELISA. The T cell proliferation index and levels of CD4+/CD8+ and IFNγ/IL-4 ratios were determined. Results: In vitro, mFhSAP-2 induced dose-dependent TNFα production in RAW264.7 cells. In vivo, mice immunized with mFhSAP-2 or mFhSAP-2+ISA50 developed high-avidity IgG2a and IgG2c antibodies at levels that were significantly higher than IgG1 antibody levels. However, the mFhSAP-2+ISA50 formulation induced higher and more homogenous antibody titers than mFhSAP-2, suggesting that an adjuvant may be required to enhance mFhSAP-2 immunogenicity. Immunization with mFhSAP-2+ISA50 also induced significantly higher activated CD4+/CD8+ T cell ratios and IFNγ/IL-4 ratios compared to naïve mice. Conclusions: Our results demonstrate that mFhSAP-2 retained its immunogenicity and Th1-polarizing properties, which were enhanced by the Montanide ISA50 adjuvant. The present study highlights the feasibility of inducing Th1-associated immune responses in mice using mFhSAP-2 as an antigen. Further studies are required to assess the potential application of the mFhSAP-2+ISA50 formulation as a vaccine against F. hepatica in natural hosts such as cattle and sheep, which could contribute to improved control and aid in the prevention and eradication of F. hepatica infection. Full article
Show Figures

Graphical abstract

21 pages, 5290 KiB  
Article
Development of SNAP-Tag Based Nanobodies as Secondary Antibody Mimics for Indirect Immunofluorescence Assays
by Wenjie Sheng, Chaoyu Zhang, T. M. Mohiuddin, Marwah Al-Rawe, Roland Schmitz, Marcus Niebert, Lutz Konrad, Steffen Wagner, Felix Zeppernick, Ivo Meinhold-Heerlein and Ahmad Fawzi Hussain
Cells 2025, 14(10), 691; https://doi.org/10.3390/cells14100691 - 10 May 2025
Viewed by 2912
Abstract
The immunofluorescence assay is widely used for cellular biology and diagnosis applications. Such an antigen–antibody detection system enables the assessment and visualization of the expression and localization of target proteins. In the classical indirect immunofluorescence assay, secondary antibodies are conjugated to fluorophores. However, [...] Read more.
The immunofluorescence assay is widely used for cellular biology and diagnosis applications. Such an antigen–antibody detection system enables the assessment and visualization of the expression and localization of target proteins. In the classical indirect immunofluorescence assay, secondary antibodies are conjugated to fluorophores. However, conventional secondary antibodies have limited applications due to their large size (150 kDa). Moreover, as animal-derived products, secondary antibodies are associated with ethical concerns and batch-to-batch variability. In this study, we developed fluorescence-labeled recombinant nanobodies as secondary antibodies by utilizing previously established anti–mouse and anti–rabbit IgG secondary nanobodies in combination with the self-labeling SNAP-tag. Nanobodies, which are significantly smaller (15 kDa), are capable to detect primary antibodies produced in mice and rabbits. The SNAP-tag (20 kDa) enables site-specific binding of various O6-benzylguanine (BG)-modified fluorophores to the recombinant nanobodies. These recombinant nanobodies were produced using mammalian cell expression system, and their specific binding to mouse or rabbit antibodies was validated using flow cytometry and multi-color fluorescence microscopy. The low cost, easy of expression, purification and site-specific conjugation procedures for these anti–mouse and anti–rabbit IgG secondary nanobodies make them an attractive alternative to traditional secondary antibodies for indirect immunofluorescence assays. Full article
Show Figures

Figure 1

14 pages, 1916 KiB  
Review
Emergence and Dissemination of the Avian Infectious Bronchitis Virus Lineages in Poultry Farms in South America
by Vagner Ricardo Lunge, Diéssy Kipper, André Felipe Streck, André Salvador Kazantzi Fonseca and Nilo Ikuta
Vet. Sci. 2025, 12(5), 435; https://doi.org/10.3390/vetsci12050435 - 2 May 2025
Viewed by 873
Abstract
Infectious bronchitis virus (IBV) is a chicken pathogen present in commercial poultry farms worldwide. It is classified within the species Avian coronavirus, genus Gammacoronavirus. As with other members of the family Coronaviridae, it has a single positive-sense RNA genome with [...] Read more.
Infectious bronchitis virus (IBV) is a chicken pathogen present in commercial poultry farms worldwide. It is classified within the species Avian coronavirus, genus Gammacoronavirus. As with other members of the family Coronaviridae, it has a single positive-sense RNA genome with 27.6 Kb and presents viral particles with a typical crown-like aspect due to the spike (S) transmembrane glycoprotein. IBV has a remarkable capacity for genetic recombination and mutation, resulting in many genotypes and antigenic variants over evolutionary time. Currently, it is classified into nine genetic types (GI to GIX) and 41 (1 to 41) lineages disseminated worldwide. In South America, IBV was first identified in early commercial poultry production ventures in Brazil in the 1950s. Since then, this virus has been frequently detected in commercial South American poultry farms, being classified into serotypes in the first decades and genotypes more recently. IBVs of the Massachusetts (Mass) serotype were initially detected and vaccine strains of this serotype were used extensively on commercial poultry farms. Other serotypes/genotypes were identified later, with almost all of them classified in the current genetic type I (GI). In addition, five GI lineages (GI-1, -11, -13, -16, and -23) have been associated with the main infectious bronchitis outbreaks in the continent, with some variations in the occurrence according to the countries and the period of time. Molecular epidemiological surveillance of IBV genetic types and lineages is necessary to anticipate potential outbreaks, revealing patterns of viral evolution and dissemination, as well as to guide the selection of appropriate vaccine strains and immunization programs. Full article
Show Figures

Figure 1

15 pages, 4274 KiB  
Article
The Novel Antigenic Epitopes of African Swine Fever Virus Inner Membrane p54 Protein Revealed by Monoclonal Antibodies
by Jiajia Zhang, Kaili Zhang, Shaohua Sun, Ping He, Dafu Deng, Hanrong Lv, Mingwang Xie, Pingping Zhang, Wanglong Zheng, Nanhua Chen, Jianfa Bai and Jianzhong Zhu
Animals 2025, 15(9), 1296; https://doi.org/10.3390/ani15091296 - 30 Apr 2025
Cited by 1 | Viewed by 505
Abstract
African swine fever (ASF) is caused by the African swine fever virus (ASFV); infection in domestic pigs and wild boars leads to a highly contagious, hemorrhagic disease. The p54 protein is encoded by the ASFV E183L gene and is an important structural protein [...] Read more.
African swine fever (ASF) is caused by the African swine fever virus (ASFV); infection in domestic pigs and wild boars leads to a highly contagious, hemorrhagic disease. The p54 protein is encoded by the ASFV E183L gene and is an important structural protein located on the inner envelope of the virus. It is involved in processes of virus assembly, apoptosis induction, and neutralizing antibody production. In this study, three specific monoclonal antibodies (mAbs) against ASFV p54 protein were generated, namely 6B11, 3E3, and 3C10, from mice who were immunized with recombinant prokaryotic p54-truncated protein. Three novel linear B cell epitopes, recognized by the mAbs, were revealed: 60AAIEEEDIQFINP72, 128MATGGPAAAPAAASAPAHPAE148, and 163MSAIENLRQRNTY175. The epitopes 60AAIEEEDIQFINP72 and 163MSAIENLRQRNTY175 were highly conserved in genotype I and II ASFV strains. In addition, the epitope peptide ELISA can be used for the detection of ASFV antibodies. Our work provides new insights for p54 antigenicity and an alternative tool for serological diagnosis of ASF. Full article
Show Figures

Figure 1

16 pages, 4603 KiB  
Article
M2e/NP Dual Epitope-Displaying Nanoparticles Enhance Cross-Protection of Recombinant HA Influenza Vaccine: A Universal Boosting Strategy
by Rui Liu, Lejun Yang, Jin Feng, Songchen Zhang, Liping Wu, Yingying Du, Dexin Kong, Yuhua Xu and Tao Peng
Vaccines 2025, 13(4), 412; https://doi.org/10.3390/vaccines13040412 - 15 Apr 2025
Viewed by 810
Abstract
Background/Objectives: Vaccination remains the most effective means of preventing influenza virus infections. However, the continuous antigenic drift and shift of influenza viruses lead to a reduced efficacy of the existing vaccines, necessitating vaccines capable of broad protection. Methods: To address this, [...] Read more.
Background/Objectives: Vaccination remains the most effective means of preventing influenza virus infections. However, the continuous antigenic drift and shift of influenza viruses lead to a reduced efficacy of the existing vaccines, necessitating vaccines capable of broad protection. Methods: To address this, we developed a modular vaccine strategy pairing a clinical-stage adjuvanted recombinant hemagglutinin (HA) vaccine (SCVC101) with OMN, a heptameric nanoparticle displaying conserved influenza A virus T-cell epitopes from nucleoprotein (NP) and matrix 2 ectodomain (M2e). Results: OMN induced cross-reactive M2e-specific antibodies, binding to diverse influenza A subtypes. Critically, the co-administration of OMN with SCVC101 enhanced cellular immunity and cross-protection without diminishing HA-induced humoral responses. Conclusions: This dual-antigen delivery system enables annual HA component updates, aligned with WHO recommendations, while the conserved OMN nanoparticle acts as a universal booster, leveraging existing production infrastructure. This approach offers a promising strategy for improving the influenza vaccine’s efficacy against emerging viral variants. Full article
(This article belongs to the Special Issue Recombinant Vaccine for Human and Animal Diseases)
Show Figures

Figure 1

14 pages, 3718 KiB  
Article
Scalable Production of Recombinant Adeno-Associated Virus Vectors Expressing Soluble Viral Receptors for Broad-Spectrum Inhibition of Porcine Reproductive and Respiratory Syndrome Virus Type 2
by Xiaoming Liu, Nuo Xu, Xiaoli Song, Linlin Zhuang, Qiuping Shen and Huaichang Sun
Vet. Sci. 2025, 12(4), 366; https://doi.org/10.3390/vetsci12040366 - 14 Apr 2025
Viewed by 628
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major threat to the global swine industry, causing significant economic losses. To address this, we developed a scalable recombinant adeno-associated virus (rAAV)-based strategy for the delivery of soluble viral receptors (SVRs) to [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major threat to the global swine industry, causing significant economic losses. To address this, we developed a scalable recombinant adeno-associated virus (rAAV)-based strategy for the delivery of soluble viral receptors (SVRs) to treat and potentially eliminate PRRSV infections. This strategy involves fusing the virus-binding domains of two key cellular receptors, sialoadhesin (Sn4D) and CD163 (SRCR5-9), with an Fc fragment. We then used an insect cell–baculovirus expression vector system to produce the rAAV-SRCR59-Fc/Sn4D-Fc vector. Through a series of optimizations, we determined the best conditions for rAAV production, including a baculovirus co-infection ratio of 0.5:1.0, an initial insect cell density of 2.0 × 106 cells/mL, a fetal bovine serum concentration of 2%, and a culture temperature of 30 °C. Under these optimized conditions, we achieved a high titer of rAAV-SRCR59-Fc/Sn4D-Fc in a 2 L bioreactor, reaching 5.4 ± 0.9 × 109 infectious viral particles (IVPs)/mL. Notably, in vitro neutralization assays using a Transwell co-culture system demonstrated a 4.3 log reduction in viral titers across genetically diverse PRRSV-2 strains, including VR2332, JXA1, JS07, and SH1705. Collectively, this study provides a robust platform for large-scale rAAV production and highlights the potential of SVR-based gene therapy to address the antigenic diversity of PRRSV-2. Full article
Show Figures

Figure 1

18 pages, 2025 KiB  
Article
Immunogenicity of Trypanosoma cruzi Multi-Epitope Recombinant Protein as an Antigen Candidate for Chagas Disease Vaccine in Humans
by Christian F. Teh-Poot, Andrea Alfaro-Chacón, Landy M. Pech-Pisté, Miguel E. Rosado-Vallado, Oluwatoyin Ajibola Asojo, Liliana E. Villanueva-Lizama, Eric Dumonteil and Julio Vladimir Cruz-Chan
Pathogens 2025, 14(4), 342; https://doi.org/10.3390/pathogens14040342 - 3 Apr 2025
Viewed by 1094
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi), is the most significant neglected tropical disease affecting individuals in the Americas. Currently, available drugs, such as nifurtimox and benznidazole (BZN), are both toxic and ineffective in the chronic phase of [...] Read more.
Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi), is the most significant neglected tropical disease affecting individuals in the Americas. Currently, available drugs, such as nifurtimox and benznidazole (BZN), are both toxic and ineffective in the chronic phase of the disease. A promising alternative is the development of a Chagas disease vaccine, although this effort is hampered by the complexity of the parasite and HLA polymorphisms. In addition, the activation of epitope-specific CD8+ T cells is critical to conferring a robust cell-mediated immune response and protection by producing IFN-γ and perforin. Thus, the antigen (s) for the development of a Chagas vaccine or immunotherapy must include CD8+ T cell epitopes. In this study, we aimed to develop a multi-epitope recombinant protein as a novel human vaccine for Chagas disease. Sixteen database programs were used to predict de novo 40 potential epitopes for the HLA-A*02:01 allele. Nine out of the 40 predicted epitopes were able to elicit IFN-γ production in Peripheral Blood Mononuclear Cells (PBMCs) from Chagas patients. Molecular docking revealed a good binding affinity among the epitopes with diverse HLA molecules. Therefore, a recombinant multi-epitope protein including these nine T. cruzi CD8+ epitopes was expressed and demonstrated to recall an antigen-specific immune response in ex-vivo assays using PBMCs from Chagas patients with the HLA-A*02 allele. These findings support the development of this multi-epitope protein as a promising candidate human vaccine against Chagas disease. Full article
Show Figures

Figure 1

19 pages, 3728 KiB  
Article
In Silico Epitope-Based Peptide Vaccine Design Against Influenza B Virus: An Immunoinformatics Approach
by Hao Wu, Chenyan Zhao, Ziqi Cheng, Weijin Huang and Yongxin Yu
Processes 2025, 13(3), 681; https://doi.org/10.3390/pr13030681 - 27 Feb 2025
Viewed by 1029
Abstract
Background/Objectives: Influenza viruses are highly transmissible and mutable, posing a significant burden on public health. This study aimed to design a recombinant multi-epitope vaccine with broad protective potential. Methods: Immunoinformatic approaches were employed to predict epitopes from over 30,000 protein sequences retrieved from [...] Read more.
Background/Objectives: Influenza viruses are highly transmissible and mutable, posing a significant burden on public health. This study aimed to design a recombinant multi-epitope vaccine with broad protective potential. Methods: Immunoinformatic approaches were employed to predict epitopes from over 30,000 protein sequences retrieved from protein databases. Epitopes were filtered using four key indicators: antigenicity, allergenicity, toxicity, and conservancy. Population coverage analysis was conducted to estimate the proportion of the global population that could potentially benefit from the vaccine. Secondary and tertiary structures of the recombinant vaccine were predicted using the PSIPRED server and AlphaFold2. The vaccine efficacy was validated through an immune simulation, molecular docking, and molecular dynamics simulation. Results: A recombinant multi-epitope vaccine demonstrating strong antigenicity, no allergenicity or toxicity, and high conservation across different subtypes was successfully constructed. Population coverage analysis indicated that the vaccine could elicit an immune response in 90.14% of the global population. Both the secondary and tertiary structures of the vaccine were accurately predicted. Molecular dynamics simulations further validated the structural stability and interactions of the vaccine components with TRL4. Molecular docking confirmed the robust binding affinity of T-cell epitopes to MHC molecules. Simulated immunity studies showed that the vaccine induced the proliferation of memory B cells and T cells, enabling rapid antibody production during viral challenges. Conclusions: This study provides a promising basis for the development of a broadly protective influenza vaccine, leveraging cutting-edge immunoinformatics and molecular dynamics simulations to address the global challenge posed by influenza virus variability. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

Back to TopTop